
Waypoint navigation with an MAV

Semester Project

Adrien Briod

Section Microtechnique

SPRING 2008

Assistants:

Severin Leven

Jean-Christophe Zufferey

Laboratory of Intelligent Systems (LIS)

Prof. Dario Floreano

EPFL

Faculte Sciences et Techniques de l’ingenieur (STI)

Institut d’ingenierie des systemes (I2S)

FACULTE SCIENCES ET TECHNIQUES DE

L'INGENIEUR

LABORATORY OF INTELLIGENT SYSTEMS (LIS)
Station 11

CH-1015 LAUSANNE

DIPLOMA PROJECT --- WINTER 2006 / 2007

Title : Waypoint Navigation with an MAV

Candidate : Adrien Briod Section : Microtechnique

Professor : Dario Floreano

Assistant 1 : Severin Leven Assistant 2 : Jean-Christophe Zufferey

Project Summary

The goal of the project is to implement a

waypoint navigation using GPS as the position

input, for an outdoor MAV. A waypoint

navigation allows an operator to set a number of

places (waypoints) where he wants the plane to

pass. The waypoint navigation implemented for

this project allows the user to fix a desired

heading at every waypoint.

Navigation is done thanks to the control of the

turning rate. First, a homing behavior (circular

path) was developed and tested. It was shown

experimentally that the GPS limits the possible

turning rate that can be commanded in

navigation because the GPS isn't precise enough

and its update rate is too low.

Dubins' theory of optimal path is then used to

generate intermediate homing waypoints as

shown in fig 1, so that an arc-line-arc path

makes the MAV go from one waypoint to the

other. Trajectories obtained during navigation

tests are shown in fig 2.

Figure 1: Intermediate homing waypoints created to build a

path linking 3 waypoints.

Figure 2: Example of a trajectory of the MAV given by the

GPS. Sequence of 3 waypoints, with the intermediate Dubins

waypoints (dashed). The MAV always reaches the waypoints

with a precision lower than 10m, and the trajectory has a good

repeatability.

In addition to that, landing on a precise waypoint

was implemented. A line following is realized for a

straight landing. The plane’s waypoints can be

entirely programmed from the user interface on the

ground-station software to achieve autonomously a

certain trajectory, and then land at a pre-defined

spot. Navigation is also used in an emergency

mode, making the plane go back home in case of

loose of radio signal, occurring if the MAV goes

out of the radio receiver’s range.

Tests showed a 1s delay between the turning rate

command and the realization of this command,

because of the MAV’s inertia. This delay is

suspected to cause some oscillations. To cancel the

effects of this delay, an estimation of the position

1s later is performed, so that the command can be

done 1s in advance. Results are encouraging, but

the method has to be tuned for an even better

anticipation.

Acknowledgments
I first want to thank Prof. Dario Floreano for hosting this project
at the LIS. I want to sincerely thank Severin Leven, for his expert
advices, his devotion, and for his motivation he transmitted to
our team. I also wish to thank Jean-Christophe Zufferey for his
support, and for having encouraged the participation to a flying
robot competition. Without his impulsion, our team participat-
ing to the EMAV’08 competition would not have been created.
Thanks go to my team partners, Alex, David and Laurent, for
their enthusiasm, the great ambiance, and their advices concern-
ing this project. A special thank to Severin and Alex for piloting
the MAV, without their help and patience the numerous outdoor
tests would not have been possible. Thanks go to the LIS, for sup-
porting and sponsoring our team’s participation to the EMAV’08
competition, and to Anouk Hein, for helping us organizing the
trip to Germany. Finally, I want to thank the LIS members in
general for their friendship and the good atmosphere, that helped
me and motivated me during my project.

CONTENTS

Contents

1 Introduction 1

2 The Platform 3
2.1 Physical frame . 3
2.2 Low-level sensors . 3
2.3 GPS . 4
2.4 Communication . 4

3 Navigation 5
3.1 MAV control . 5
3.2 Trajectory control . 5
3.3 Use of GPS . 7
3.4 Homing solutions . 7

3.4.1 Heading along tangent . 8
3.4.2 Vector field . 8

3.5 Line following solution . 8
3.6 Waypoint navigation solutions . 10

3.6.1 The different approaches . 10
3.6.2 Shortpath and Lowturning . 12
3.6.3 Dubins’ solution . 13
3.6.4 Final solution . 13

3.7 Matlab implementation . 15

4 Embedded programming 17
4.1 Waypoint manager . 18
4.2 Navigation controller . 19
4.3 Dubins path planning . 20
4.4 Emergency mode . 21
4.5 Monitor add-ons . 22

5 Tests organization 24
5.1 Tests process . 24
5.2 Matlab GUI . 24

6 Results 26
6.1 Turning rate characterization . 26
6.2 Homing . 26

6.2.1 Choice of the homing radius . 26
6.2.2 Influence of wind and heading gain on homing 29

6.3 Waypoint navigation . 30
6.4 Landing . 30
6.5 Position prediction . 32

v

CONTENTS

7 Conclusion 34

8 Annexes 36
8.1 Trajectory control calculations . 36

8.1.1 Tangent direction calculation for circle following 36
8.1.2 Vector field calculation for circle following 36
8.1.3 Vector field calculation for line following 37
8.1.4 Coordinate change for the waypoint navigation problem 37
8.1.5 Shortpath and Lowturning waypoint navigation 37
8.1.6 Dubins’ optimal path . 38

8.2 Embedded code modifications . 40
8.2.1 Data transmission . 40
8.2.2 Trims management . 40

vi

1 Introduction

Micro Air Vehicles (MAVs) are used - or are to be used - in many applications, such as
terrain exploration, surveillance, or assistance during disasters. In many applications,
the MAVs tend to be autonomous so that many of them can be used simultaneously for
example. Of course, one of the key feature is here the management of where the plane
goes, that is to say: navigation.

Navigation can make the plane follow a particular way (follow waypoints for example),
or accomplish different behaviors (turn around a place, land,...). To achieve this, at least
one controller system’s inputs has to contain information about the plane’s position. The
goal of the present semester project is to implement a waypoint navigation using GPS
as the position input, for an outdoor MAV. A waypoint navigation allows an operator
to set a number of places (waypoints) where he wants the plane to pass (see fig 1). The
algorithms will be implemented and tested on the LIS’ platform used in the SMAVNET
project [6], and one application will be the use at the EMAV’08 competition.

Dealing with navigation for an MAV implies very different challenges from what one can
be used to with mobile ground-robots. For example, on the ground, navigation has a lot
to do with obstacle avoidance, or with terrain disturbances management. In the air, an
MAV is most of the time higher than any obstacle, but has to deal with wind. Another

Figure 1: Principle of waypoint navigation : a sequence of waypoints is set from the ground
station thanks to a wireless link, and the MAV follows the good path to reach the waypoints.
The waypoints are configured with heading commands, which means that the plane has to have
a certain heading when reaching the waypoint

1

1 INTRODUCTION

main difference is the dynamics of the plane, which is very important to be taken into
account: for example, an MAV has a turn radius limited by its geometry and by the
need to remain stable. Plus, an MAV of course cannot stop in the air, to turn on itself,
or while it’s taking a decision, but it is constantly flying at a typical speed of 10-15 m/s.

The waypoint navigation we want to implement for this project should allow the user
to fix a desired heading at every waypoint. This is useful in many situations, such as
when we want the MAV to be aligned in the good direction for a straight landing. Plus,
the possibility to fix a heading constraint on waypoints allows to program a trajectory
quite precisely, even if the user has not the possibility to draw the full trajectory.

2

2 The Platform

The platform used in this project for the implementation of navigation is briefly pre-
sented in the following sections. It is developed by Severin Leven for the SMAVNET
project [6].

2.1 Physical frame

The platform (see fig 2) is a 80cm fixed-wing plane, made of EPP. A Hyperion HP-Z2205
brushless motor drives the unique propeller, and two E-flight servos activate the ailerons
present on each side of the wing, for altitude and direction control. A 35 MHz radio
receiver on the plane permits the reception of signals from a remote controller. These
signals are treated by the flight controller (FC), and can be either transmitted directly
as commands to the actuators (motor and servos), so that the plane is commanded
manually, or the remote controller can activate an automatic mode so that the plane
is commanded by the FC. A switch on the remote controller can make the plane go
in manual or automatic mode, so that the pilot can command the plane manually at
anytime by actuating the switch.

The FC comprises a printed circuit board with a dsPIC33 microcontroller as the main
processor, to which a few sensors are connected (see 2.2). A 3 cell Lithium Polymer
battery powers all the components, and provides an autonomy of about 30 min. The
total weight of the plane is around 280g, depending on what component is added or not.

Figure 2: left: EPP flying wing, equipped with the actuators, all sensors, and the flight controller;
right: Flight controller with dsPIC.

2.2 Low-level sensors

The sensors used by the FC for the low-level control are the following: 2 gyroscopes for
the Y (pitch) and Z (yaw) axis, a static pressure sensor, and a dynamic pressure sensor.
Both gyroscopes are used for the turn control. The static pressure sensor is used for the

3

2 THE PLATFORM

altitude control, and the dynamic pressure sensor for the speed control. The altitude
and speed controls are PIDs, whose gains were tuned manually. The turn control is
more complex, and relies on the roll angle estimation.

2.3 GPS

The GPS module contains an U-blox Antaris LEA-4H, that can provide four position
messages per second. The GPS measures its position only once per second, and the 4Hz
rate is obtained by interpolation. The GPS is configured to send to the FC messages
providing information on position, speed and precision of measure. The GPS antenna
is a small 15x15mm ceramic patch.

2.4 Communication

The FC can communicate with a ground station thanks to a 2.4GHz Xbee module,
establishing a UART wireless link. A monitor, programmed in C++, provides a few
functionalities, such as the possibility to send commands to the FC or receive messages.
For example, a functionality activates the continuous sending of different values, so that
flight data can be logged on the computer and analyzed afterward. Or flight parameters
can be edited in the monitor, and uploaded to the FC, to test different settings.

Figure 3: Original ground station program, used to monitor and log the flight data, and to set
the low-level control parameters

4

3 Navigation

Before navigation is introduced, the general control of the MAV is described. Then,
solutions of basic navigation tasks are presented, and a navigation solution is described.
Finally the Matlab tool created to simulate the MAV control and test the navigation
algorithsm is presented.

3.1 MAV control

The control is separated in two types: low-level and high-level control. The role of
high-level control is to drive the plane from a place to another, make it land or achieve
a task. It sets the low-level’s commands in order to achieve these tasks. The available
low-level commands are the following:

- hc: altitude command (in m)

- vc: speed command (in m/s)

- Ψ̇c: turning rate command (in °/s)

The low-level control, which manages to make the plane reach these commands, is
already present on the platform and the present project mostly deals with the high-
level part. More precisely, the focus is really on navigation - the control of the plane’s
trajectory - although other high-level controls for different tasks (such as landing) are
demonstrated.

The navigation is achieved thanks to the command of the turning rate (Ψ̇) only, for the
trajectory control. To sum up, the navigation algorithm has the GPS data as input,
and must return Ψ̇c. Fig 4 shows the complete control loop.

3.2 Trajectory control

The trajectory of the MAV shown in fig 5 is constrained by the following equations,
describing the non-holonomic displacement:

ẋ = V · sin Ψ (3.1)

ẏ = V · cos Ψ (3.2)

ψ̇ = ω (3.3)

The turning rate ω is limited by the dynamic capability of the MAV. The turning rate
in function of the roll angle Φ and the speed V can be approximatively described by the
following formula:

ω =
g

V
· tan Φ (3.4)

5

3 NAVIGATION

Figure 4: Block-diagram of the control loop implemented in the flight controller. High-level
control comprises navigation, which calculates a turning rate command ψ̇c for trajectory control.
Speed and altitude commands (vc, hc) may be set as well. The commands are treated by the
low-level control.

Figure 5: The plane’s parameters for the trajectory’s dynamics are the position (x,y), the velocity
(V) and the heading (Ψ). The effect of wind is not developed here.

6

3.3 Use of GPS

And the turn radius is dependent on the turning rate in the following manner:

R =
V

ω
(3.5)

The combination of equations 3.4 and 3.5 gives:

R =
V 2

g · tan Φ
(3.6)

To maintain a good stability, the maximum acceptable roll angle Φ was determined to
be of about 45°. This allows a maximum turning rate of ωmax ∼= 56 ◦/s at V = 10m/s
or ωmax ∼= 37 ◦/s at V = 15m/s. The respective maximum turn radiuses are R ∼= 10m
at V = 10m/s or R ∼= 23m at V = 15m/s.

3.3 Use of GPS

A simple GPS module is used in navigation to provide the position (x,y) of the MAV
and its heading (Ψ). Another module providing such information could have been an
IMU (Inertial measurement unit). An IMU includes 9 sensors and often a GPS. It can
estimate much more precisely and faster the position, speed and orientation of the plane,
thanks to sensors fusion (often a Kalman filter). The biggest disadvantages of the IMU
are its cost and weight, and that is why only fewer sensors are used for this project’s
platform, and only GPS will be used for navigation. This choice implies a slower position
update (every 250ms), a precision of a few meters, and a certain delay (the provided
position and heading are the ones the plane had a few ms before). Therefore, the control
has to deal with these limitations, especially with the 0.25s sampling rate.

3.4 Homing solutions

Before the full waypoint navigation is presented, a few navigation functions are pre-
sented, like homing or line following. These simpler behaviors are useful in many cases,
for example homing can be used to make the plane stay on a certain place for obser-
vation or before it receives instructions. In addition to that, these basic functions are
important building blocks as they will be used to achieve more complex trajectories.

Homing is the action of turning in circles around a fixed point (or home). The navigation
has to make the MAV follow a circle of radius R. To achieve that goal, many control
strategies exist. The first one presented is simply computing a desired heading (Ψd)
for the plane, and the turning rate command (Ψ̇c) is proportional to the error with the
actual heading (Ψ), with a gain K that has to be tuned:

Ψ̇c = K · (Ψd −Ψ) (3.7)

The second solution presented computes a desired heading and a desired turning rate
(Ψ̇d). The turning rate command is calculated as follow:

Ψ̇c = Ψ̇d +K · (Ψd −Ψ) (3.8)

7

3 NAVIGATION

This last solution is a way to generate a kind of a priori control. For example, when
the plane is right on the circle, Ψ̇d is equal to V

R , and in theory, the plane will follow
the circle without the need of heading corrections from the K · (Ψd − Ψ) term. This
solution is useful in the case of circle following, because from the trajectory control point
of view, it is almost like receiving a ramp command, and without an a priori control a
steady-state error appears.

3.4.1 Heading along tangent

This first approach is an intuitive control, that calculates a desired heading for the
plane so that its direction is along the tangent of the circle to follow, as shown in fig 6.
Equations to calculate Ψd are described in annexe 8.1.1. Control law 3.7 is then used
to calculate the turning rate command.

Figure 6: Ψd is the desired heading, directed along the tangent of the homing circle

3.4.2 Vector field

This method, described in [1], calculates a vector field in the whole space, giving a
desired heading (Ψd) for the MAV so that it asymptotically reaches the circle and stays
on it. In addition to that, the desired heading field is derived on the whole space to give
a desired turning rate (Ψ̇d) for the plane. The formulas are presented in annexe 8.1.2.
Figure 7 shows the resulting vector field, and figure 8 shows the a priori turning rate
(Ψ̇d), in function of the distance from circle’s center.

3.5 Line following solution

When the plane has to fly along straight lines, a line following algorithm is used. For
example, it is useful for the approach phase of a straight landing.

8

3.5 Line following solution

Figure 7: Vector field indicating the desired heading of the plane for every point of the space,
to make the trajectory tend to a circle

Figure 8: A priori desired turning rate |Ψ̇d| in function of distance D from center of circle of
radius R, calculated by derivating the vector field shown in fig 7. Ψ̇d is positive for a clockwise
turn, and negative for a counter-clockwise turn. We remark that when the MAV is on the circle
(d = R), the desired turning rate is fracV R.

9

3 NAVIGATION

Like for homing (see §3.4.2), an algorithm generating a vector field, described in [1], is
used. It makes the plane asymptotically fly along the line. The formulas are presented
in annexe 8.1.3 and fig 9 shows the resulting vector field.

Figure 9: Vector field indicating the desired heading of the plane for every point of the space,
to make the trajectory of the MAV tend to a line

3.6 Waypoint navigation solutions

The waypoint navigation we decided to implement in this project implies to find a
trajectory so that the plane has a predetermined heading when passing on the waypoint.
To synthesize, a coordinate change is realized to have only three variables describing the
problem. The coordinate change is described in annexe 8.1.4, and fig 10(b) shows the
new situation. The problem is therefore described by:

� L: Distance between the waypoints

� Ψ0: Heading of waypoint 0, relatively to the line between both waypoints

� ΨF : Heading of waypoint F, relatively to the line between both waypoints

3.6.1 The different approaches

To make the MAV go from one waypoint to another, many different approaches exist.
They can usually be classified into two categories

1. The computation of the command is made in function of the instantaneous position
and condition

2. An initial trajectory planning is done, then the commands try to achieve the
trajectory following

10

3.6 Waypoint navigation solutions

(a) General case (b) Three variables problem, after coordinate change

Figure 10: Example of a trajectory, linking two waypoints (A and B) having pre-defined headings
(ψA, ψB)

The first category can be qualified of behavior-based control, because these are often
simple rules that determine which direction (or behavior) has to be taken. For example,
[2] describes a control strategy choosing between turning right or left, in function of the
waypoint’s position relatively to the MAV, as described in fig 11. The advantage of the
behavior-based approach is its robustness, because it can adapt to any situation, and
accept strong disturbance. Indeed, if wind pushes the MAV further than anticipated,
the plane reacts with a behavior adapted to its new position, since the control is done
only thanks to the immediate inputs. The counter part is a sometimes unpredictable
comportment, and therefore a loss of control for the user.

The second category is more complicated to implement, because a feasible path from the
plane to the waypoint has first to be computed and stored in memory. Then the control
has to determine where on the path is the MAV, and compute the commands so that it
follows the path. This way of doing is more complicated, but probably more powerful,
in the sense it allows to create more complex trajectories than the first approach. Often,
more constraints than in the simple case shown in fig 11 are present, and slightly complex
trajectories are pretty hard to be achieved with only simple rules based on the direct
inputs whereas, in some cases, using path planning is easier.

A way of mixing the advantage of both approaches is a constant re-calculation of the
path, to account for the disturbances endured by the plane and therefore have a good
robustness, with a still high level of complexity possible for the trajectory. In this case,
Wpt 0 of fig 10(b) represents the plane, and the trajectory is constantly planned so that
it links the plane to the next waypoint.

For the waypoint navigation implemented in this project, because of the heading con-
straints fixed at each waypoint, the best approach is path planning. Indeed, it is very
difficult to classify different situations and find rules for each combination of the three
variables shown in fig 10(b) (assuming that Wpt 0 represents the plane).

11

3 NAVIGATION

Figure 11: Phase portrait of the control strategy found in [2]. In function of the waypoint
position (coordinates P, Q) relatively to the plane (center of figure, heading directed upward),
the turn direction is chosen (R for right, L for left), to make the plane eventually reach the
waypoint.

To find the best path linking two waypoints with heading constraints, a few solutions
exist and are presented in the next sections.

3.6.2 Shortpath and Lowturning

Paper [3] proposes an approach limiting the path’s length as well as the turning am-
plitude. For this, a trajectory formed by one line and one arc is calculated. Detailed
forumlas are described in annexe 8.1.5, and examples of trajectories are shown in fig 12.

Figure 12: Examples of arc-line and line-arc trajectories, using theory of [3]

12

3.6 Waypoint navigation solutions

3.6.3 Dubins’ solution

Dubins’ theorem [5] establishes that the minimum time optimal path is either an arc-line-
arc, either an arc-arc-arc solution. In [4], this theory is used to construct the optimal
path. The idea is to build two pairs of circles tangent to the waypoints’ directions,
with acceptable circle radiuses for a good flight dynamic (see §3.2). Z0 and Y0 are the
counterclockwise and clockwise oriented circles tangent to first waypoint’s direction, and
ZF and YF are the counterclockwise and clockwise oriented circles tangent to second
waypoint’s direction. Then, 2 to 4 solutions for trajectories linking Z0 or Y0 to ZF or
YF exist, and the optimal path is the shortest of these solutions, as shown in fig 13.

In some particular cases when the waypoints are quite close from each other, the optimal
path is an arc-arc-arc solution (as in fig 14 for example). These cases are not treated
here, because the arc-line-arc solution is most of the time optimal, and always provides at
least one solution. The equations used to calculate the optimal trajectory are described
in annexe 8.1.6.

Figure 13: Example of the 4 arc-line-arc solutions for one configuration of waypoints (Ψ0 =
70◦,ΨF = −90◦, L = 120m), with optimal path corresponding to the shortest solution
(clockwise-clockwise in this example)

3.6.4 Final solution

Initially, the Shortpath and Lowturning approach described in section 3.6.2 was chosen
for it’s simpleness. But in many cases, bad trajectories are proposed because this solution

13

3 NAVIGATION

Figure 14: Image taken from [4]: example of arc-arc-arc optimal solution

is limited to certain placements of waypoints, as it can be seen in fig 15. An adaptation is
proposed in [3] to treat the down-left example of fig 15, but other improvements should
have been realized to treat correctly all cases.

On the other hand, Dubins’ solution always shows good and feasible trajectories. This
is why this solution was finally chosen and implemented for the waypoint navigation.
Homing solutions presented in section 3.4 can be used to achieve the circular parts of
the trajectory, as well as the line following solution of section 3.5 for the straight part.

Figure 15: Comparison between waypoint navigation solutions 3.6.2 and 3.6.3. The Shortpath
and Lowturning solution (dashed lines) shows appropriate results in both first examples (top),
but a too small radius is generated for third case (down left) and the path’s length of last example
(down right) is really not optimal. We can see that Dubins’ solution (continuous line) shows
good results in all cases.

14

3.7 Matlab implementation

3.7 Matlab implementation

All solutions implemented in the flight controller for navigation were first tested in
Matlab. The first reason is because debugging is much easier on a PC than on the
microcontroller, the second reason is for the possibility to visualize the generated vector
fields or trajectories, to see if the algorithms really match the initial idea. The figures of
the present chapter showing the algorithm’s generated vector fields, or generated paths
demonstrate the use of a Matlab implementation for visualization purposes.

Efforts were done so that a very simple transition was possible from Matlab to the C
program running the flight controller. For example, the functions generating the path
are tested in Matlab by plotting the intermediate waypoints in many configurations, and
the same functions are then used in the flight controller. The same variable names are
used, and the algorithms written in Matlab have to suffer of only little changes to be
C-compatible. For example, accolades have to be added to if/else loops, variables have
to be declared, and cos() functions transform into cosf() functions. This way of doing
could limit the flight controller debug time.

In addition to that, a small Matlab program was developed to simulate the trajectory
of the MAV, in function of the turning rate command and the wind (Wx and Wy). The
simulation is based on the following equations :

Ψ = Ψ + Ψ̇c∆t (3.9)

x = x+ V sin(Ψ)∆t+Wx (3.10)

y = y + V cos(Ψ)∆t+Wy (3.11)

With ∆t a small time period. Fig 16 shows examples of simulations that can be done,
to test algorithms, or to understand effects of parameters.

15

3 NAVIGATION

(a) Homing without the a priori Ψ̇d command. The steady state error is visible, and it is easy to understand

the role of the a priori term

(b) Homing with the a priori Ψ̇d command, and 3m/s wind in East direction.

Figure 16: Example of trajectory simulation with different parameters or algorithms, with plot
of the commanded turning rate. These simulations allow to understand quickly the effect of
different configurations.

16

4 Embedded programming

The navigation had to be integrated in the existing flight controller, which had to be
modified in some points. One important aspect of navigation is of course the user
input, when one wants to set the waypoints for example. This is why modifications
relative to communication between the flight controller and the ground station had to
be realized, involving the modules usart1.c and dma.c (see annexe 8.2.1). Configuration
of navigation’s algorithms and the sending of flight data for navigation debug were also
made easier. The high-level control (in navigation.c) is called just before the low-level
control (in flightcontrol.c) and sets the desired commands at every GPS update (4Hz).
For clarity, separated modules were created to manage the waypoints (waypoint.c) and
Dubins’ path planning (Dubins.c). Figure 17 sums up the program’s organization.

Navigation’s main objective is to achieve the route by going through all waypoints.
Standard waypoints are of type ”pass” or ”homing”, which are used to realize the
trajectories (passing over or turning around a waypoint). But some more functionalities
were implemented as well, such as landing on a specific location, realizing an action
when arriving on the waypoint (dropping an object), or an emergency mode where the
plane comes back home if no more radio signal is received.

Figure 17: Diagram showing the hierarchical organization of the flight controller’s software. The
navigation blocks (with the *) were added to the original architecture. Mainly the blue blocks
were modified during integration.

17

4 EMBEDDED PROGRAMMING

4.1 Waypoint manager

The waypoints are stored in structures, which can be modified thanks to the ground
station interface. A table of 10 waypoint structures is stored in the flight controller, since
it is not possible to allocate memory dynamically for a variable number of waypoints.
The structure’s variables are mainly the waypoints’ parameters, which are modified by
the user. The parameters of the main waypoint structure are the following:

� id, nb wpts: The id and total number of waypoints, used to identify a waypoint
when it is transmitted from or to ground station

� type: Indicates the type of waypoint:

- homing: The waypoint is the center of a circle along which the MAV has to
fly

- pass: The waypoint has to be passed over by the MAV, with a given heading
on waypoint

- land: The waypoint is the place where the MAV has to land

- drop: An object has to be dropped when the waypoint is passed over

� alt act, speed act: Tells if the values given for altitude and speed have to be
commanded when the MAV is flying to the waypoint

� turndir: In case of homing, indicates the turning direction

� wpt act: Tells if the waypoint is enabled or not (if it is included in the route or
not)

� next auto: Tells if the MAV should go to next waypoint automatically when this
waypoint is achieved

� Longitude, Latitude. Coordinates of the waypoint

� altitude, speed: If activated (see param), these values are altitude or speed
commands

� radius: In case of homing, gives the radius of the circle the plane should follow.
In the other cases, this value gives the precision with which the plane should reach
the waypoint.

� heading: This value gives the heading the plane should have when passing over
the waypoint, landing or dropping the object (value not used in case of homing)

The configuration options offer quite a large customization, and an interface on the
ground station was created so that waypoint edition could be achieved during flight (see
section 4.5).

An internal variable of the waypoint manager indicates the id of the active waypoint,
the one the MAV has to reach. At the beginning of the navigation process, the function

18

4.2 Navigation controller

Wpt update status() is called. It checks how far the MAV is from the waypoint, and if
it has reached it. Then, it decides if the MAV has to go to next waypoint. To decide
when to go to next waypoint if the actual waypoint is homing, the heading that the
next waypoint would command is computed. Next waypoint is activated only when the
actual heading of the MAV is close to the computed ”next” command, otherwise the
plane keeps homing (see fig 18). If actual waypoint is not homing, next waypoint is
activated as soon as the MAV has reached the waypoint.

Figure 18: The MAV changes of homing waypoint when next commanded direction (blue vector
field) fits the actual MAV direction

4.2 Navigation controller

The navigation controller’s task is to set the variable dpsi c, used afterward by the low-
level control to achieve the desired turning rate. The computation of dpsi c is realized
in navigation commands() and depends on the type of the waypoint the plane is flying
to (the active waypoint is given by the waypoint manager):

� homing: The command is calculated using the vector field method, described in
section 3.4.2, with the a priori term. The gain K of formula (3.8) can be set from
the ground station, and is typically 0.75.

� pass: The command is calculated so that the plane follows Dubins’ path, generated
at waypoint activation (see section 4.3).

� land, drop: The command is calculated to achieve a line following, with the
vector field method described in section 3.5.

An altitude command h c is also generated, in function of the waypoint type:

19

4 EMBEDDED PROGRAMMING

� homing, pass, drop: (function Nav altitude controller()) If the waypoint’s pa-
rameters indicate an altitude to respect at waypoint (alt act is on), the commanded
altitude is increased or decreased till the desired altitude is reached. The altitude
variation rate can be set from the ground station, and is typically of 2m/s for a
smooth ramp.

� land: (function Nav landing controller()) To land, a descending altitude is com-
manded. The altitude is computed in function of the distance to landing point,
projected on the line to follow. This permits to set an angle of descent for a linear
descent (see fig 19), but other curves could be used (with a stronger slope at the
beginning, and a lighter just before landing for example). The typical approach
angle is around 12.5◦. For a smooth landing, the control is a bit tuned in the last
10 meters: the thrust is cut totally, and the altitude command is not decreased
as long as the speed is not lower than a certain threshold, which makes the MAV
glide at low speed during the last meters.

Figure 19: Up: shows the projection p of the distance to waypoint. Down: generated altitude
command h c in function of the projected distance to landing waypoint for a linear descent

4.3 Dubins path planning

Dubins path planning is used when the next waypoint is a ”pass” waypoint. To generate
Dubins’ trajectory described in section 3.6.3, intermediate waypoints are created to
achieve the arc-line-arc path. Two homing waypoints are used, with the same transition
rule as explained in fig 18. In a sense, navigation is therefore realized thanks to a
succession of homing waypoints well positioned.

The function Dubins init path() in Dubins.c creates these two intermediate waypoints.
Two cases can occur:

1. The path is initialized when the navigation is launched. In this case, the function
creates the path with the starting point being the actual position of the MAV.

20

4.4 Emergency mode

2. The path is initialized because a ”pass” waypoint was just reached, and next
waypoint is activated. In this case, the function creates the path with the starting
point being the previous waypoint.

Both situations are shown in fig 20. The function Dubins update status() then checks
if second intermediate waypoint should be activated, with the rule described in fig 18.
The ”pass” waypoint is achieved when the desired precision of position and heading are
accomplished. If these conditions are not respected, the second intermediate homing
waypoint stays active and the MAV turns around it till the conditions are respected.

Figure 20: Dubins’ path to Waypoint A is achieved thanks to intermediate waypoints A0 and
A1. The path is generated with the starting point being the position of the MAV at navigation
initialization. The path to Waypoint B is generated with the starting point being waypoint A.

4.4 Emergency mode

The emergency mode is activated when the MAV is flown in manual mode, and that the
radio signal is lost. This can arrive if the pilot flies out of the radio controller’s range, or
if there is a problem with the radio controller. When in automatic mode, the emergency
mode is not activated, because a route can possibly be programmed out of range, which
is not a problem as long as the route is well programmed. The emergency mode, when
activated, enables navigation and makes the MAV fly back home (home is by definition
the first waypoint of the table), and homing around the home waypoint is realized. For
proper work of the emergency mode, a modification concerning the trims management
was realized (see annexe 8.2.2).

21

4 EMBEDDED PROGRAMMING

4.5 Monitor add-ons

To monitor the new modules, the initial ground-station software was extended (see fig
21). Almost the whole data transfer happens from the plane to the ground-station,
for data logging and debug. Therefore the monitor extensions are mainly for display
purposes, and most of the values received by the monitor are saved in the log file. Data
is sent to the plane for configuration purposes, when uploading parameters, sending
actions or editing waypoints. Waypoint edition is possible thanks to the id present in
the structure, and one waypoint can be edited at a time. A drop-down menu allows to
choose which waypoint to edit or delete.

When the appropriate option is enabled on the monitor (Autocapture ON), the flight
controller sends 10 times per second to the ground station the data in different structures
:

� fdata : (already on original platform) The sensors’ values, the RC signals, the
commands to the actuators, ...

� navdata : Some navigation values (generated commands, etc...), navigation status

� curwpt : Parameters of the waypoint the MAV is flying to

� curpath : Infos about the active Dubins’ path (if next waypoint is of type ”pass”)

� dubinswpt : Parameters of the intermediate waypoint of Dubins’ path the MAV
is flying to

The transmission load could be lowered a bit, since some values do not change during
many seconds and do not need to be sent at 10 Hz (current waypoint, path data, etc...),
but enough bandwidth (56’000kbps) is provided by the Xbee, and a more powerful
software to monitor the MAV (Ishtar) is in development and is probably going to be
used in the future. However, some difficulties to upload data to the MAV were observed
when the download volume is high, especially when the distance between the ground
station and the MAV increases.

22

4.5 Monitor add-ons

Figure 21: Sections added to the original ground-station software, for navigation monitoring

23

5 TESTS ORGANIZATION

5 Tests organization

5.1 Tests process

As mentioned in the project description, this work is made of 40% of tests, because
practice never works as well as theory and adjustments are always needed to be done.
The flight tests are done in the following manner : Once all test parameters are set thanks
to the monitor, the plane is flown manually by a pilot, who drives it to a reasonable
altitude. Then, the pilot switches on the automatic mode. From there, the pilot does
not control the plane anymore and the navigation algorithms take the relay. There is
always a safety link, with the possibility for the pilot to take back control of the plane
at anytime, if he decides that the plane showed an abnormal behavior. During flight,
different navigation parameters or solutions can be changed from the ground-station
software (of course the pilot has to be warned when the plane will change its behavior,
to avoid surprises). When the tests are over, the pilot takes again control of the plane
to land it if no automatic landing was programmed.

A maximum of 1 or 2 different parameters/solutions are usually tested during one test
session, and most of the time, improvements cannot be realized immediately because
the flight has to be analyzed in details. It is important to evaluate subjectively the
attitude of the plane by looking at it, and determine if its behavior is good or a bit
unstable, etc... But the only efficient way to validate the control is by analyzing the logs
saved during flights. In the following section, the tool developed for the evaluation of
the plane’s navigation is presented.

5.2 Matlab GUI

Matlab is used to analyze the data saved during the flights. First, the file import log.m
is used to load the log file in a Matlab structure. A GUI (waypoint eval.m) was realized
so that the data in different places in the log can easily be accessed, thanks to the
scrollbars that allow to choose the part of the data that has to be plotted. The different
informations available in the GUI are presented in fig 22. A main advantage when
evaluating the navigation algorithms (and therefore evaluating the trajectory), is the
possibility to associate the commands (plotted on the right) with the effect on the
trajectory (plotted on the left), or the inverse (effect of plane position on the commands).

24

5.2 Matlab GUI

Figure 22: Matlab GUI for flight data analysis, and navigation algorithms evaluation. The plot
of the trajectory with the waypoints and the plot of the control commands (among other values)
can be played in real time or faster. Thanks to the scroll bar, it is possible to go backward or
forward to any position in the log, or make a pause.

25

6 RESULTS

6 Results

First, characterization of the low-level control used by navigation is realized. Then, the
results of the basic behavior tests are presented, and then the full waypoint navigation.
Finally, an attempt to improve the navigation precision is presented.

6.1 Turning rate characterization

Navigation entirely relies on the low-level turning rate control to achieve the desired
trajectory. It is therefore important to understand its mechanisms an its limits. It
is also important to be sure that the commanded turning rate is really accomplished.
No sensor available on the platform can directly return the turning rate of the plane,
however, it can be inferred from the trajectory given by the GPS by looking at the
radius of the circle the plane is making when flying at a constant turning rate. To go
further, the heading of the plane is provided by the GPS as well, therefore it is possible
to infer the turning rate by derivating the heading. Since the GPS update is of course
discrete (4Hz), the derivate is done by subtracting all values by their preceding values.
The derivative is very noisy, and a moving average on 4 values is realized to smooth the
curve. This method to measure the turning rate showed good results, and can be used
to characterize the turning rate control.

Fig 23 shows the measured turning rate and the commanded turning rate. One can see
that the commanded turning rate is quite well achieved, but with a certain delay. This
delay is around 1-1.3s, and is probably mainly due to the plane’s dynamic : from the
time the plane’s ailerons are activated for a turn, the MAV takes one second to get to
the commanded roll angle and turn because of its inertia. The observed delay may also
be, at lower scale, due to the small GPS’ delay.

In section 6.5, solutions to take this delay into account are proposed, but this ”turning
rate response” is good for navigation, since the commanded turning rate is well achieved.

6.2 Homing

6.2.1 Choice of the homing radius

Some open loop turning rate control tests were run (that is to say, without navigation,
only with automatic altitude and speed control, and with manual turning rate command)
with constant turning rates, and the MAV was capable to achieve circles of quite small
radiuses (around 10−15m). Of course, because no closed-loop corrections on the position
are done, the MAV rapidly goes away from its original position and draws spirals,
because of perturbations and wind. In closed loop navigation, such small radiuses are
not possible to be achieved. This is because the smaller the radius is (and the faster the
turning rate is), the faster the corrections have to be done, because the MAV changes

26

6.2 Homing

Figure 23: Data of a 200s flight with no wind. The first plot shows a delay between the
commanded turning rate (red) and the GPS-measured turning rate (blue). The second plot is
used to find the delay that exists between both curves, by finding the minimum error. The third
plot shows the turning rate curves that fit together when the command is delayed.

27

6 RESULTS

its position relatively to the waypoint quickly. Hence, limiting factors are here the GPS’
position update rate, and the delay existing between the command and the application
of the turning rate. In addition to that, the smaller the radius is, the more critical is
the position precision, because the commands vary a lot more in the space for small
radiuses. The limiting factor is here the GPS’s precision.

As we can see, the use of GPS is probably the most limiting factor for realizing small
circles, or any rapidly varying trajectory in general. It is difficult to evaluate analytically
the minimum radius that can be achieved, and homing was tested for different radiuses,
as shown in fig 24. As we can see, the implemented homing solution gives a good
result for a radius of 40m, and the trajectory has very well repeated by the MAV. More
important errors can be observed with a 30m radius, and the MAV sometimes goes really
far from the waypoint with the 20m radius. A different control would maybe achieve
better results for small circles, by relying less on the direct GPS data, that can induce
strong changes in the command because of its update rate an imprecisions. However,
there is not really a need for the MAV to be able to accomplish small radiuses, and
40m is chosen to be the standard homing radius. In Dubins’ waypoint navigation, a
small radius implies a smaller path, but the difference is little, and precision is more
important.

(a) R = 20m (b) R = 30m

(c) R = 40m

Figure 24: Results of homing, tested with different radiuses R, with almost no wind. The dashed
lines are the ±10m circles.

28

6.2 Homing

6.2.2 Influence of wind and heading gain on homing

In fig 25, the actions of the different terms of equation (3.8) can be observed. The
a priori command (Ψ̇d) gives a relatively constant term, to which the correction term
(K · (Ψd − Ψ)) is added. As we can see, the commanded turning rate is very different
from the a priori command, and the correction term is quite significant. It is essential
here to correct the disturbances due to the wind, and it is interesting to see that the
simulated turning rate command shows this same aspect.

(a) MAV’s trajectory, for a 40m radius in light

wind conditions (3-5 m/s)

(b) Commanded turning rate (in blue), and a

priori term (green)

(c) Left: simulated homing, with 3m/s wind in the East direction. Right: corre-

sponding turning rate command (blue) and a priori term (green)

Figure 25: Real and simulated case, for homing in light wind conditions. Similar turning rate
commands are generated (heading correction gain K = 0.75).

To illustrate the effect of mis tuning the gain K, figure 26 shows the result of a test in
windy conditions with a gain set too high (K = 1). The disturbances due to the wind
are causing strong deviations of trajectory and the corrections, amplified by the gain
K, are to high and oscillations are created. With no wind, such a gain induces almost
no oscillations, but a gain that can be used in most situations was chosen. Finally, a
gain of K = 0.75 was found after many tests to fit most situations (windy or not). The
oscillations are very limited, and the heading corrections are strong enough to achieve
a quite precise homing.

29

6 RESULTS

Figure 26: Homing with a 40m radius, windy conditions (> 5m/s). Oscillations are present in
the trajectory, because of a too high gain K equal to 1.

6.3 Waypoint navigation

From the moment that homing is well tuned, Dubins’ waypoint navigation is achieved
relatively precisely, since it only relies on homing waypoints (see section 4.3). Figure 27
shows the result of such a waypoint navigation, with all intermediate homing waypoints
set to make the MAV follow Dubins’path. The precision is always better than 10m when
passing over the waypoint, and the trajectory is followed with a good repeatability. If
a waypoint had been missed because of disturbances or wind, the MAV would have
realized more turns on the last homing circle till the waypoint would be reached. To
avoid a blocking situation where the waypoint is never reached (because of strong wind
for example), one could imagine a precision tolerance increasing with the number of
turns.

6.4 Landing

For landing, line following is used to align the MAV and then a gradual descent is
commanded (see sec 4.2). One can see in fig 28 that the line following gives good
results. The altitude control would make the plane land close to the waypoint if the
landing had not been smoothed at the end, to have a low-speed landing. The plane lands
always 10 to 20m after the waypoint, but since this is a repetitive behavior, navigation
can easily be adapted for a quite precise landing.

Since line following showed to be relatively precise, it could also be used for the ”pass”
waypoints : first Dubins’ path can be planned to make the MAV arrive 50m before the
waypoint, and then a line following can be realized during the last 50m for example.
If a good precision is needed when passing over the waypoint, this could be a solution,
because otherwise the waypoints are always reached when the plane is turning, which is
maybe less precise.

30

6.4 Landing

Figure 27: Two examples of tests with a sequence of 3 ”pass” waypoints, with the intermediate
Dubins waypoints (dashed). The circles around ”the pass” waypoints represent a 10m precision.
No wind during test.

31

6 RESULTS

Figure 28: Test result of a landing phase. Left: landing trajectory (line following during 150m).
Right: commanded altitude (red) and measured altitude (blue). At the end of the landing phase,
the command is not decreased any more, to let the plane slow down and realize a smooth landing.

Figure 29: Result of a simulation with a 1s delay before the turning rate command is effective
(K=1, wind = 1m/s)

6.5 Position prediction

The delay demonstrated in sec 6.1, between the commanded and the measured turning
rate, induces a delay in the MAV’s reactions. It is suspected to cause some oscillations,
that are also present in simulations when delay is introduced (see fig 29).

A solution to cancel this delay is proposed. Since it was calculated to be equal to about
1s, the idea is to estimate the MAV’s position 1 second later, and to apply the turning
rate command in function of the estimated position to cancel the delay. One second
represents four GPS position updates, and to estimate the position on second later, the
last four turning rate values are used to estimate the four following positions (see fig
30).

The time is discretized with a period of 0.25s, hence the 1s delay between the command
and the effective turning rate can be written as :

Ψ̇k = Ψ̇c,k−4 (6.1)

Let x0, y0 and Ψ0 be the actual GPS position and heading, and xk, yk,Ψk the kth position

32

6.5 Position prediction

estimations. Every increment, for 0 < k 6 4 tries to estimate the next GPS position
0.25s later.

xk = xk−1 + 0.25 · V0 · sin(Ψk−1) (6.2)

yk = xk−1 + 0.25 · V0 · cos(Ψk−1) (6.3)

Ψk = Ψk−1 + 0.25 · Ψ̇k−1 = Ψk−1 + 0.25 · Ψ̇c,k−5 (6.4)

Figure 30: Estimation of the turning rate, heading and position of next four positions,

This estimation showed good results for tests without wind, and it was used for the
control, to set one second in advance the turning rate. The effect on the trajectory
(see fig 31) are interesting, even if it does not change radically the trajectory. The
MAV anticipated well two turns with the position estimation, and the corrections of
trajectory showed by the red arrows in fig 31(a) are not present in fig 31(b). This is
because the MAV anticipated that it would have to go straight, and reduced its turning
rate in advance. But both other turns were not as well anticipated, and corrections are
needed to be done in both cases.

This predictive control needs probably some more tuning, but it looks like it can improve
a bit the trajectory and remove partially the effect of the delay.

(a) no delay anticipation (b) with 1s delay anticipation

Figure 31: Comparison of trajectories for a 4 homing waypoints route, once without delay
anticipation, once with.

33

7 CONCLUSION

7 Conclusion

A complete and fully customizable waypoint navigation was developed in this project,
and showed relatively precise results for trajectories implying limited turning rates.
Indeed, as seen in section 6.2.1, the GPS limitations do not permit too high turning
rates in navigation. A solution to take into account the delay existing between the
command and the plane’s behavior is proposed, and could be a good way to deal with
the MAV’s inertia.

Landing at a pre-defined position was also demonstrated, and therefore the MAV can
be programmed to be fully autonomous from the initialization of navigation till the end
of the flight. In addition to that, an emergency mode uses navigation to make the MAV
go back home if the radio controller’s signal is lost.

A future work could study in more details the effect of wind, and an estimation of the
wind’s amplitude and direction could be imagined. The a priori control could then
take the wind into account to achieve a more precise trajectory in windy conditions.
Improvements could also be done to increase the maximum turning rate acceptable in
navigation, by trying to improve the GPS position precision thanks to interpolation or
thanks to fusion with other sensors.

This project was a good example of the challenges one has to face when programming
an autonomous robot: First, debugging is difficult, because only limited information is
available to help to solve problems occurring in a microcontroller. This is why the nav-
igation algorithms were implemented first in Matlab, and then transferred on the flight
controller. It is also important to have an efficient way to understand what happens
during the experiences, this is why a Matlab GUI was realized for the logs analysis.
Secondly, the tests can never be realized in the same conditions (especially with out-
door tests), and different problems can happen almost randomly. For example, it was
discovered after many weeks that in function of the sun’s exposition of the MAV, the
pressure sensor is altered, which resulted in very strange flight behaviors.

Finally, the project goal is achieved, and one can program any desired sequence of
waypoints, so that the MAV autonomously flies to the desired places and lands at the
desired point.

Lausanne, 6th of June 2008

Adrien Briod

34

REFERENCES

References

[1] Derek R. Nelson, D. Blake Barber, Timothy W. McLain, Randal W. Beard, Vector
Field Path Following for Small Unmanned Air Vehicles

[2] Sanjay P. Bhat, Pradeep Kumar, A Feedback Guidance Strategy for an Autonomous
Mini-Air-Vehicle

[3] R. Zhu, D. Sun, Z. Zhou, Integrated design of trajectory planning and control for
micro air vehicles

[4] R. L. McNeely, Trajectory planning for Micro Air Vehicles in the presence of wind

[5] L. E. Dubins, On curves of minimal length with a constraint on average curva-ture
and with prescribed initial and terminal positions and tangents, in AmericanJournal
of Mathematics, vol. 79, 1954, pp 497-516

[6] Sabine Hauert and Severin Leven, Swarming MAVs for communication relay,
http://lis.epfl.ch/research/projects/SwarmingMAVs/, EPFL-STI-I2S-LIS, Switzer-
land, 2008

35

8 Annexes

8.1 Trajectory control calculations

8.1.1 Tangent direction calculation for circle following

The following equations are used to calculate Ψd so that the desired direction is along
the tangent of the homing circle. See figure 6 for symbols’ signification :

D =
√
Dx2 +Dy2 (8.1)

α = atan2(Dx,Dy) (8.2)

β = asin(
R

D
) (8.3)

Ψd =

{
α− β for clockwise turn
α+ β for counter-clockwise turn

(8.4)

8.1.2 Vector field calculation for circle following

The following equations, found in [1], are used to calculate Ψd to generate the vector
field shown in fig 7, and the a priori desired turning rate |Ψ̇d| plotted in fig 8 :

For D > 2 ·R :

Ψd = α+ t · atan2(
R

D
) (8.5)

|Ψ̇d| = V ·R · R2 + 2 ·D2

D · (R2 +D2)3/2
(8.6)

For R < D < 2 ·R :

Ψd = α+ t · (π
6

+
π

3
· r) (8.7)

|Ψ̇d| =
V

D
· sin(

π

6
+
π

3
· r) + r · (

π
3 · V · cos(

π
6 + π

3 · r)
R

) (8.8)

With :

r = (1− D −R
R

) (8.9)

For D < R :

Ψd = α− t · (π
6

+ π +
π

3
· D
R

) (8.10)

|Ψ̇d| =
V

D
· sin(

π

6
+
π

3
· D
R

)− D

R
· π

3
· cos(π

6
+
π

3
· D
R

) (8.11)

36

8.1 Trajectory control calculations

8.1.3 Vector field calculation for line following

The following equations, found in [1], refer to fig 32 and calculate the vector field for a
line following shown in fig 9. The line is fully described by a point (Waypoint A) and
an angle (heading of Waypoint ΨA):

ε = cos ΨA ·Dx− sin ΨA ·Dy (8.12)

Ψd =

{
ΨA + sign(ε)Ψe for |ε| > τ

ΨA + ε
τΨe for |ε| > τ

(8.13)

Ψe and τ are parameters. Ψe is the entry heading angle and τ is the transition region
boundary distance. Ψe = π/4 and τ = 20m were chosen for implementation.

Figure 32: Ψd is the desired heading for the MAV, calculated at every point of the space to form
a vector field for line following. The line is described by Waypoint A and heading ΨA

8.1.4 Coordinate change for the waypoint navigation problem

The general case where two waypoints having fixed orientations are disposed in the
space (fig 10(a)) can be transformed with different coordinates, so that all situations
can be described by 3 parameters (fig 10(b)). The coordinate change is described by
the following equations :

L =
√
Dx2 +Dy2 (8.14)

α = atan2(Dx,Dy) (8.15)

Ψ0 = α−ΨA (8.16)

ΨF = α−ΨB (8.17)

8.1.5 Shortpath and Lowturning waypoint navigation

This method, to create a trajectory linking two waypoints with heading constraints,
looks for the circle tangent to both lines formed by both waypoints, as shown in fig 33.

37

8.1 Trajectory control calculations

Figure 33: Circle tangent to both lines and having one of the waypoints on it. An arc-line or
line-arc trajectory is then created in function of the waypoints disposition.

The following equations, partially found in [3], are used to determine if the trajectory
is an arc-line or a line-arc configuration, and the radius of the arc is calculated.

la =
Dx cos ΨB −Dy sin ΨB

sin(ΨA −ΨB)
(8.18)

lb =
Dy sin ΨA −Dx cos ΨA

sin(ΨA −ΨB)
(8.19)

if la > lb, it’s a line-arc configuration with :

R =
Dy sin ΨA −Dx cos ΨA

1− cos(ΨA −ΨB)
(8.20)

if la < lb, it’s an arc-line configuration with :

R =
Dx cos ΨB −Dy sin ΨB

1− cos(ΨA −ΨB)
(8.21)

8.1.6 Dubins’ optimal path

To find the optimal path of Dubins’ solution (see §3.6.3), the centers of Z0, Y0, ZF and
YF are first computed. Then, the length of the four possible paths are calculated. To
find the length of the path, 3 values are calculated : the angle φ0 during which the MAV
flies along circle 0, the length l of the tangent line to both circles, and the angle φF
during which the MAV flies along circle F. Angles φ0 and φF are in the range [0, 2π[.
The total length is then easily calculated thanks to this formula :

ltot = φ0R+ l + φFR (8.22)

The following formulas refer to fig 34, and calculate the length of a Y0LZF path, knowing
the distance C between both circles and the angle β.

α = arccos(
2R
C

) (8.23)

l =
√
C2 − 4R2 (8.24)

φ0 = π − β − α−Ψ0; (8.25)

φF = π − β − α−ΨF ; (8.26)

38

8.1 Trajectory control calculations

Figure 34: Values needed to calculate the length of a Y0LZF path (clockwise, then counter-
clockwise)

The other cases are similar and the formulas are the following : Z0LYF (counter-
clockwise, then clockwise) :

α = arccos(
2R
C

) (8.27)

l =
√
C2 − 4R2 (8.28)

φ0 = β − α+ Ψ0 (8.29)

φF = β − α+ ΨF (8.30)

Z0LZF (twice counter-clockwise) :

l = C (8.31)

φ0 = β − π

2
+ Ψ0 (8.32)

φF =
π

2
−ΨF − β (8.33)

Y0LYF (twice clockwise) :

l = C (8.34)

φ0 = −β +
π

2
−Ψ0 (8.35)

φF = −π
2

+ ΨF + β (8.36)

Note : the Y0LZF and Z0LYF paths exist only if C > 2R.

39

8.2 Embedded code modifications

8.2 Embedded code modifications

Diverse modifications not related to navigation were realized in the flight controller’s
code for a proper operation of the new modules.

8.2.1 Data transmission

Data transmission with the ground-station software had to be made more modular,
since the sending of only one specified data structure was originally possible, and mes-
sage reception was not very modular. Data reception happens in usart1.c, and data
transmission in dma.c.

For data reception, each byte coming from the ground station is stored in a buffer, and
the function USART1 msg reception() checks when one complete message has arrived
(header + id + length + content + checksum). The received messages can be addressed
to diverse modules, and a function was created in each module that can potentially
receive a message. These functions are : FC msg in() in flightcontrol.c to deal with
the configuration messages of the flight controller (flight parameters), Nav msg in() in
navigation.c for navigation configuration and Wpt msg in() in waypoint.c for waypoint
configuration.

For data transmission, DMA is used, so that the sending of data is non-blocking. One
just has to write the data to send in the DMA RAM and configure the right length.
After many trials, it was discovered that problems were sometimes happening when more
than 128 bytes are sent in a row. Indeed, once over 20 to 50 times, checksum errors are
repeatedly occurring at reception on ground station. To avoid this, a ring buffer is used
to store everything that has to be sent, and then the DMA RAM is filled with 100 bytes
from this buffer every 25ms (sending these 100 bytes takes about 15ms). The data to
send is therefore cut in 100 bytes packets, which does not produce the checksum errors
observed earlier (But some transmission errors are always present when the Xbees are far
from each other during flights for example). The function dma send structure() copies
in the transmission buffer any sequence of bytes that have to be sent to the ground
station, and adds automatically the header and the checksum. This function allows to
send easily any data structure of any length, and is used to send the structures presented
in sec 4.5.

8.2.2 Trims management

When the plane is flying straight with no altitude change, the values of the motor and
servo commands are equal to the trims. The MAV’s low-level control returns correction
values for the motor and servos commands, and these values are added to the trims to
give the final commands. The problem here is to know when the flight controller has to
save these trims in its memory. Originally, they were saved at the moment when the pilot
switches on the automatic mode. This caused problems because the pilot sometimes is

40

8.2 Embedded code modifications

still actuating a command when it switches on the automatic mode, which induces then
a false offset when the commands to the servos are computed by the flight controller.
This even caused once the MAV to crash, and a more reliable solution had to be found.

The new idea is to save the trims at the start of the flight, at the same time as when the
sensor bias are done. A quick manual flight before saving the trims can be achieved to
ensure that good values for the trims will be saved. Saving the trims at the beginning
of the flight is also obligatory for the emergency mode. Indeed, when the radio signal is
lost by the plane, it is important that the trims were saved before the RC signal loose.
The trims are saved by calling the function RC save fail safe().

41

	Introduction
	The Platform
	Physical frame
	Low-level sensors
	GPS
	Communication

	Navigation
	MAV control
	Trajectory control
	Use of GPS
	Homing solutions
	Heading along tangent
	Vector field

	Line following solution
	Waypoint navigation solutions
	The different approaches
	Shortpath and Lowturning
	Dubins' solution
	Final solution

	Matlab implementation

	Embedded programming
	Waypoint manager
	Navigation controller
	Dubins path planning
	Emergency mode
	Monitor add-ons

	Tests organization
	Tests process
	Matlab GUI

	Results
	Turning rate characterization
	Homing
	Choice of the homing radius
	Influence of wind and heading gain on homing

	Waypoint navigation
	Landing
	Position prediction

	Conclusion
	Annexes
	Trajectory control calculations
	Tangent direction calculation for circle following
	Vector field calculation for circle following
	Vector field calculation for line following
	Coordinate change for the waypoint navigation problem
	Shortpath and Lowturning waypoint navigation
	Dubins' optimal path

	Embedded code modifications
	Data transmission
	Trims management

