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Abstract. This paper presents a plastic hinge modelling approach for wall-type bridge piers with detailing 
deficiencies such as low transverse reinforcement ratios and lap splices in potential plastic hinge regions. 
Currently available plastic hinge length estimates and strain limits are validated against a series of seven large 
scale tests, representing poorly detailed bridge piers. Besides the flexural deformations, which are predicted with 
the plastic hinge approach, the shear deformations need to be taken into account due to the geometry and 
detailing of the considered piers. Shear-flexure interaction is accounted for by relating the shear distortion to the 
axial strains in the plastic hinge. Lap splices in potential plastic hinge regions have a significant influence on the 
displacement capacity of the structure as their degradation may lead to a nearly instant loss of lateral load 
bearing capacity. Hence, strain limits defining the onset of splice degradation are assessed using the 
experimental data. 
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1 INTRODUCTION 
 
Many bridges in Switzerland were built before modern seismic design provisions were introduced in 
design codes. Many of these bridges feature wall-type reinforced concrete (RC) piers that are prone to 
brittle shear failure under seismic loading if poorly detailed. Common detailing of these piers includes 
low transverse reinforcement ratios and a lack of confining reinforcement, which leads potentially to a 
non-ductile performance of the structure. Moreover, to facilitate construction, the longitudinal 
reinforcement is typically spliced right above the foundation of the pier, where a plastic hinge may 
develop. Retrofitting all bridges with the mentioned deficiencies to ensure a ductile behaviour when 
subjected to seismic loading or withstand the expected force demands in the elastic regime would be 
uneconomical. Instead, since the level of seismic hazard in Switzerland is only moderate, the 
displacement-capacity of these bridges should be assessed. However, easily applicable models with 
which the displacement capacity can efficiently be predicted are necessary in light of the large Swiss 
bridge stock. Even though the research presented in this paper stems from the need to establish such a 
modelling approach for the assessment of Swiss bridges, the situation is similar in other countries of 
moderate seismicity, where a significant amount of existing structures may not comply with modern 
seismic design requirements. 
 
This paper presents a plastic hinge modelling approach with which the force-displacement response of 
poorly detailed wall-type piers can be estimated. It is validated against a test series of seven large scale 
tests on such piers constructed with typical detailing deficiencies. Due to the geometry and the 
detailing of the reinforcement, shear deformations constitute a significant part of the total deformation 
for this type of piers and must hence be considered in the prediction of the force-displacement 
response. Furthermore,  the influence of lap splices in the plastic zone above the pier base must be 
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taken into account. The shear-flexure interaction is incorporated in the modelling approach by 
estimating the shear deformations as a function of the axial strains expected in the plastic hinge region. 
To account for the effect of the lap splices on the force-deformation behaviour, strain limits which 
define the curvature at which the onset of splice degradation is expected are employed. Firstly, the test 
series used for validation is introduced and some of the main results, which are needed for comparison 
with the model, are presented. 
 
 
2 EXPERIMENTAL DATABASE 
 
2.1 Overview of experimental campaign 
 
A series of seven large scale tests conducted at ETH Zurich, Switzerland (VK1-VK3: Bimschas 2010, 
VK4-VK7: Hannewald et al. 2013) is used for the validation of the plastic hinge modelling approach. 
The test units were constructed with detailing that represents the commonly found deficiencies in 
existing bridge piers in Switzerland. To identify a critical pier layout that represents actual 
construction practice, Bimschas (2010) evaluated the detailing and geometry of existing bridge 
structures. An intermediate aspect ratio, for which neither pure flexural behaviour nor a load transfer 
through direct strut action was expected, was deemed potentially shear critical. Furthermore, a small 
amount of stirrups that were not anchored in the concrete core was provided, according to common 
construction practice in the past, and the longitudinal reinforcement was not confined. Three out of the 
seven piers were constructed with lap splices in the longitudinal reinforcement right above the 
foundation. Their length corresponds to the minimum length that was required by the Swiss codes 
(SIA 162 1968) for splices with straight bars that are not subject to tension. It should thus constitute a 
lower bound for the splice lengths that are found in existing Swiss bridge piers.  
 
All piers had the same rectangular cross section with longitudinal reinforcement of diameter dl=14 mm 
that was evenly distributed along the circumference of the section. Steel type “topar S500” of ductility 
class C with a yield strength of 521 MPa (VK1-VK3: 515 MPa) was used for the longitudinal 
reinforcement and cold formed steel with an equivalent yield strength of 528 MPa (VK1-VK3: 
518 MPa) for the transverse reinforcement. Further material properties and characteristics of the test 
units are provided in Table 1. 
 
Table 1. Overview of analysed test units (Bimschas 2010, Hannewald et al. 2013) 

Test unit VK1 VK2 VK3 VK4 VK5 VK6 VK7 

Shear span Ls [m] 3.30 3.30 3.30 3.30 4.50 4.50 3.30 
Aspect ratio Ls/lw [-] 2.20 2.20 2.20 2.20 3.0 3.0 2.20 
Concrete strength fc [MPa]  35.0  39.0 34.0 34.6 35.2 44.4 30.0 
Axial load ratio n=P/(b lw fc) 0.064 0.071 0.073 0.072 0.070 0.056 0.083 
Longitudinal / transverse 
reinforcement ratio [%] 

0.82 / 
0.08 

0.82 / 
0.08 

1.23 / 
0.08 

1.23 / 
0.08 

1.23 / 
0.08 

1.23 / 
0.08 

1.23 / 
0.22 

Lap splice length ls  - 43dl - 43dl 43dl - - 
 
A cyclic load history with two cycles at each load level and small intermediate cycles in the inelastic 
range was applied. The axial load was kept constant throughout the test. The elongation of the wall 
along the narrow faces was measured with LVDTs and the in-plane deformations of the wall surface 
were measured along a square grid of Demec or LED targets, respectively. In the following section, 
the results required for evaluating the performance of the plastic hinge model will be presented. For 
further results and information on the tests, the reader is referred to Bimschas (2010) and Hannewald 
et al. (2013). 
 
2.2 Results 
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Besides the force-displacement response of the pier, the flexural and shear deformation components as 
well as the maximum strains at the bottom of the pier are of interest for the validation of the plastic 
hinge model. Figure 1a shows the backbone curves of the force-displacement response of all seven test 
units which were constructed from the first cycles in the positive loading direction. One can note that 
up to the peak response, the force-displacement response of the test units with spliced reinforcement 
(plotted with hollow markers) are almost equal to the corresponding ones with continuous 
reinforcement (plotted with filled markers). At the peak response, the degradation of the lap splice and 
thus the degradation of the shear resistance initiates. Generally, the resistance of the units with splices 
is degrading much faster from then on, except for the pair VK3 & VK4. Test unit VK3, which did not 
feature a lap slice, degrades with about the same rate at a slightly higher drift due to a relatively brittle 
shear failure mode. However, the residual resistance of these two test units and that of all other 
corresponding pairs differs. While the end of the plotted response marks the axial failure of all test 
units with continuous reinforcement, the tests of the piers with the lap splices were stopped when the 
lateral resistance hardly degraded further. From then on, the lateral resistance stemmed from the 
eccentricity of the axial force, which the piers were still able to sustain.  
 

Figure 1. Force-displacement response and shear to flexure ratios of considered test units 
 
Besides the force-displacement response, Figure 1 also shows the average shear to flexural 
deformation ratios obtained from the measurements at the peak displacements of each cycle in positive 
and negative loading direction. Both deformation components in this plot were calculated from Demec 
(VK1-3) and optical measurements (VK4-7), respectively. The shear deformation contains base-
sliding deformation and the flexural deformation contains fixed-end rotation due to strain penetration. 
As it is assumed that the ratios will be related in the inelastic range, where they have been previously 
observed to be approximately constant for flexure controlled walls (e.g. Dazio et al. 2009), the ratios 
are here plotted for displacement ductilities larger than ≈1.0. The plot shows that the ratios of the 
slender test units VK5 & VK6 are indeed approximately constant whereas this does not apply to the 
other walls. Furthermore, it is also evident that shear deformations can constitute a significant part of 
the total deformation, especially if the transverse reinforcement ratio and slenderness are not high. 
 
 
3 FLEXURAL DEFORMATION 
 
3.1 Computation of flexural deformation 
 
The plastic hinge modelling approach is based on integration of a simplified curvature profile and 
hence employable to predict the flexural deformations of a structure. The curvature profile is 
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simplified in the sense that the inelastic curvature profile, which increases towards the base, is 
replaced by a curvature profile that comprises a constant curvature along the plastic hinge length. 
Above the plastic hinge, only elastic deformations are assumed to occur. This simplified treatment 
allows for an easy integration of the curvature as well as for estimating the post-peak response of a 
member. The quality of the prediction made with the plastic hinge approach strongly depends on the 
chosen plastic hinge length and the moment-curvature analysis used to calculate the base curvatures. 
Previously, the plastic hinge length Lp suggested by Bohl and Adebar (2011) was identified to yield 
good results for the walls investigated here, see Hannewald and Beyer (2012). This Lp was established 
based on the results of a numerical study on walls with varying cross section and aspect ratio: 
 
௣ܮ ൌ ሺ0.2݈௪ ൅ ௦ሻሺ1ܮ0.05 െ 1.5݊ሻ 	൑ 0.8݈௪  (1) 
 
where Ls and lw are the shear span and the wall length, respectively, and n is the axial load ratio. To 
validate the choice of the plastic hinge length, an estimate of Lp can be calculated using the 
experimental data following a procedure suggested by Hines et al. (2004). According to this, Lp can be 
calculated from the experimentally determined plastic flexural deformation as follows: 
 

௣ܮ ൌ
୼೛,೑೗
థ೛௅ೞ

 (2) 

 
In this equation, ϕp is the plastic base curvature, which is not directly obtained from measurements but 
from extrapolation of the linearly approximated inelastic part of the curvature profile to the wall base. 
Thereby one obtains the total base curvature b, from which the elastic curvature can be subtracted to 
obtain the plastic curvature. This procedure provides an approximate correction of the curvature for 
strain penetration effects. The difference between the extrapolated curvature and the curvature 
obtained from the readings of the measurement devices covering the basecrack, ϕb,m, is interpreted as 
strain penetration influence. The strain penetration is hence included in the plastic hinge length itself 
and no additional fixed end rotation component needs to be considered to account for its influence.   
 
If the plastic hinge length is known, the flexural deformation can be computed according to a 
formulation suggested by Priestley et al. (2007), with which the entire load-deformation curve can be 
predicted: 
 

Δ௬ᇱ ൌ
థ೤ᇲ ௅ೞమ

ଷ
		 for	߶ ൑ 	߶௬ᇱ   (3a) 

Δ ൌ Δ௬ᇱ
ெ

ெ೤
ᇲ ൅ ൬߶ െ ߶௬ᇱ

ெ

ெ೤
ᇲ ൰ ߶	௦ forܮ௣ܮ ൐ ߶௬ᇱ 	 (3b) 

 
where ϕ’y and M’y are the curvature and corresponding moment at which the yield strain of the outer 
longitudinal reinforcement bars or a concrete peak compression strain of ߝ௖ ൌ  0.002 is reached, 
whichever occurs first. The above equation does not include the strain penetration length at yield 
displacement, which was included in the original formulation of the equation. All curvatures and 
corresponding moments are computed using a fibre-section analysis. For the one used in here, the 
confined concrete model according to Mander et al. (1988) and a bilinear stress-strain relationship for 
steel, including strain hardening, were used. Tension stiffening was not considered.  
 
3.2 Strain and curvature limits 
 
Usually, the displacement capacity of a structure is limited by local damage such as crushing of 
concrete, buckling or rupture of the reinforcing bars. Hence, strain limits, which indicate when the 
mentioned failure modes are expected to occur, are defined and used in conjunction with moment 
curvature analysis. In this study, proposals of strain limits by two different groups of researchers have 
been examined. Both suggest a limit strain for concrete as well as for steel for the failure modes 
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indicated in the respective paragraphs below, but since the concrete strains were decisive for the 
examined walls, only those are reported here for brevity. Priestley et al. (2007) suggest a “damage 
control compression strain” which indicates when the confining reinforcement is expected to rupture. 
It was derived based on the assumption that the ultimate strain of unconfined concrete can be 
estimated as ߝ௖ ൌ 0.004 using the confined concrete model by Mander et al. (1988). Equating the post-
peak strain energy of concrete with the strain energy of the reinforcement before rupture yields the 
following expression: 
 

௖௨ߝ ൌ 	0.004 ൅ 1.4
ఘೡ௙೤ೡఌೞೠ

௙೎೎
				 (4) 

 
where v, fyv and su are the ratio, yield strength and ultimate strain of the transverse reinforcement, 
respectively, and fcc is the confined concrete strength. Biskinis and Fardis (2010) used a 
comprehensive experimental database and considered the measured drifts at which the lateral 
resistance had dropped by 20% to deduce a strain limit. This strain limit does hence not define a local 
damage state, but is directly related to a global measure, i.e. the reduced shear capacity. Besides the 
effect of the confinement, the observation that the size of the confined area in compression has an 
influence is taken into account in their equation: 
 

௖௨ߝ ൌ 	0.0035 ൅ ൬ ଵ

௫೎,೎೚೙
൰
ଵ.ହ

൅ 0.4
௞೎೚೙ఘೡ௙೤ೡ

௙೎೎
				 (5) 

 
where xc,con is the depth of the confined part of the compression zone and kcon is a confinement 
effectiveness factor according to Sheikh and Uzumeri (1982), taking into account the spacing of the 
reinforcement in relation to the dimensions of the cross section. Kazaz et al. (2012) chose a different 
approach to obtain a limit measure for the ultimate state: Instead of strain limits, curvature limits were 
defined. These were obtained from strains of numerical models of a large set of walls. The curvatures 
were determined when the lateral load capacity of the model had either dropped by 15%, a maximum 
compression strain that caused spalling of concrete was reached or the maximum steel strain was 10%. 
A regression analysis on the curvatures which were obtained for these limit states for the walls with 
varying parameters, yielded the following expression for the limit curvature  of rectangular walls 
subjected to cyclic loading: 
 

߶௨ ൌ
଴.଼൉଴.଻ହ൉ଵ.଴

௟ೢ
ሺ1	௦௨ߝ െ 2.4݊ሻ ቀ1 െ 1.5	

௙೤ೡఘೡ
௙೎

ቁ ቀ௅ೞ
௟ೢ
ቁ
଴.ଶଽ

								 (6) 

 
Table 2 summarises the limit strains and curvatures according to Equations (4) – (6) for the test units 
with continuous reinforcement. Limit strains for test units with lap splices will be treated in Section 
5.1. 
 
Table 2. Strain and curvature limits defining the displacement capacity 

Test unit VK1 VK3 VK6 VK7 

Equation (4) cu,1 [‰] 5.39 5.43 4.95 7.85 
Equation (5) cu,2 [‰] 4.84 4.80 4.62 8.57 
Equation (6) u [1/m]  0.0517 0.0513 0.0517 0.0418 

 
3.3 Discussion of results 
 
Firstly, the quality of the plastic hinge length prediction is examined. To this end, the predicted length 
is compared to the one derived from the experimental data, as shown in Figure 2a. The experimental 
plastic hinge length was evaluated according to Equation (2) as outlined in the previous section. The 
difference between the extrapolated base curvature and the first yield curvature ϕ’y according to 
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moment curvature analysis was taken as the plastic base curvature in Eq. (2). By doing so, a plastic 
hinge length that provides the best link between the analytical curvature at first yield ϕ’y and the 
measured top displacement in the inelastic range is obtained. This is well comparable to the predicted 
plastic hinge lengths, which will be used to estimate a top displacement based on an analytical 
estimate of ’y. Figure 2a shows that, even though Equation (1) does not contain a strain penetration 
component, it provides a satisfactory estimate of the average experimental plastic hinge length of each 
test unit that was not corrected for strain penetration influence. The range of predicted plastic hinge 
lengths is shaded in grey with the lower and upper bound corresponding to the lowest and highest 
aspect ratio, respectively. Figure 2b shows that with this plastic hinge length and Equation (3) the 
flexural deformation is generally well predicted. In the predictions, the attainment of the limit strains 
and curvature according to Equation (4) (cu,1), Equation (5) (cu,2) and Equation (6) (ϕu) is marked. 
One can note that generally the strain limits correspond to a state right after the peak response. The 
values proposed for limit curvatures on the other hand correspond to large deformations which have 
not been reached in the experiments. This might be due to the fact that ϕu has been developed for walls 
with well confined boundary elements, whose resistance decreases to 85% of the peak value only at 
large ductility demands. 
 

 

Figure 2. Predicted plastic hinge lengths (shaded in grey) and predicted flexural response compared to 
experimental data. 

 
 
4 SHEAR DEFORMATION 
 
Since shear deformations constitute a significant portion of the total displacements (Figure 1b), they 
must be incorporated in the plastic hinge modelling approach. Shear-flexure interaction is accounted 
for through a relation between flexural deformations f and shear deformations s proposed by Beyer 
et al. (2011). In this approach, the ratio s/f is estimated as a function of the centroidal axial strain in 
the plastic hinge, which can be obtained from moment-curvature analysis. Besides the strains, the 
minimum angle of the shear cracks relative to the element axis  is necessary to relate the axial strain 
to the shear distortion according to Mohr’s circle. With the assumptions that the remaining strain 
components adding to shear distortion are negligible and that shear deformations mainly occur in the 
plastic hinge, the shear to flexural deformation ratio results as: 
 
୼ೞ
୼೑
ൌ ߙ

ఌೣ
థ ୲ୟ୬ఏ

ଵ

௅ೞ
				 (7) 
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where  is a correction factor. As evident in Figure 1b, the ratio s/f is not constant for the examined 
walls, which were not purely flexure controlled. The figure also shows that s/f decreases with the 
slenderness of the wall and increasing transverse reinforcement ratio. To take into account the latter 
and the general observation that walls with lower shear strengths have larger shear deformations, 
Hines et al. (2004) proposed the following correction factor: 
 

1.0 ൑ ߙ	 ൌ
௏

௏ೆ಴ೄವ
൅

௏

௏ೢ ೎
൑ 2.0				 (8) 

 
where VUCSD is the shear strength proposed by Kowalsky and Priestley (2000) which is regarded to be 
a measure for the diagonal tensile strength and Vwc is the web crushing strength. To compute the latter, 
the formulation for the compression strut capacity according Eurocode 2 (2004) was used. Equations 
(7) and (8) were used to calculate the ratio of shear to flexural deformation of each test unit for all 
inelastic top displacements based on the corresponding curvature and strain according to moment 
curvature analysis. To evaluate Equation (7), the axial strain and curvature corresponding to the 
maximum moment according to the moment curvature analysis were used and the crack angles were 
measured from photographs. Figure 3 compares the predictions to the experimentally determined s/f 
-ratios at peak load in positive and negative loading direction. One can see that the ratios are predicted 
reasonably well, also in light of the scatter associated with the experimental results. 
 

Figure 3. Predicted s/f ratios at peak load compared to experimental ones. 
 
 
5 LAP SPLICES 
 
5.1 Failure limit strains 
 
As outlined in Section 2 and shown in Figure 1a, the test units which were constructed with spliced 
reinforcement at the base showed the same behaviour as those without splices up to the point at which 
degradation of the splice set in. From this point onwards, a rapid degradation of the resistance was 
observed. Hence, to predict the force-displacement response of piers with lap splices, strain limits 
defining the onset of lap splice degradation are required.  
 
Priestley et al. (1996) argue that, if the splice is not well confined, its capacity under cyclic loading 
begins to drop when the confining concrete first cracks in compression. This limits the ability of the 
concrete to transfer the force from one bar to another after load reversal when the splice is in tension. 
Thus, Priestley et al. suggest to limit the concrete compression strain to c=0.002, corresponding to the 
strain at peak concrete strength. Biskinis and Fardis (2010) suggest a strain limit for the steel in 
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tension, which is a fraction of the limit strain proposed for continuous reinforcement related to the 
length of the splice:  
 

௦௨,௦ߝ ൌ ൬1.2
௟ೞ

௟ೞೠ,೘೔೙
െ 0.2൰

ଷ

଼
  (9a)				௦௨ߝ	

݈௦௨,௠௜௡ ൌ
ௗ೗௙ೞ೤

ଵ.଴ହାଵସ.ହቀଵି
బ.ఱೞ
೓೎೚೙

ቁቀଵି
బ.ఱೞ
್೎೚೙

ቁ
೙ೝ೐ೞ
೙೗

ഐೡ೑೤ೡ
೑೎

	ඥ௙೎
		 (9a) 

 
where lsu,min is the minimum splice length required for cyclic loading, which depends on the 
confinement conditions. The latter is taken into account through the transverse reinforcement ratio v, 
the number of restrained splices in relation to the number of total splices, nres/nl and the dimensions of 
the confined core, hcon and bcon. No compression strain limit which is explicitly derived for members 
with spliced reinforcement is provided. This leads to the conclusion that no refinement of the concrete 
limit strain was necessary and Equation (5), which defines the limit strain of concrete for members 
with continuous reinforcement, is still valid.  
 
Table 3. Strain and curvature limits for the onset of splice degradation 

Test unit VK2 VK4 VK5 

Priestley et al. c [‰] 2.00 2.00 2.00 
Equation (5) c [‰] 4.78 4.80 4.78 
Equation (9a) s [‰]  22.9 18.2 18.4 
Equation (9b) lsu,min [mm] 1051 1122 1113 
 
5.2 Discussion of results 
 
For each of the examined wall sections, the concrete limit strain was decisive because, according to 
the results of moment-curvature analyses, it was reached just prior to the steel limit strain. This 
corresponds well to the test results. Degradation of the lap splices of both VK2 and VK4 initiated 
when the concrete was crushed in compression at the outer edge of the section. Only the splice of VK5 
began to fail due to tensile splitting at the load step prior to the one for which damage of the concrete 
was expected in compression.  
 

Figure 4. Comparison of predicted and measured flexural responses of the test units with lap splices. 
 
Figure 4 shows the flexural response predicted for the test units with spliced reinforcement in 
comparison to the measured ones. The points at which the previously introduced concrete and steel 
limit strains are reached in the analysis are marked in each plot. All plots show that the lowest 
concrete strain limit of c=0.002 provides a very conservative limit for the onset of splice degradation. 
The confined concrete strain limit on the other hand is reached just before the splice starts degrading 

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

600

700
εc =
0.002 εs = 0.0229

εc = 0.00478

Fr

VK2

Flexural drift Δf/Ls [%]

H
or

iz
on

ta
l
fo

rc
e

[k
N

]

 

 

pos. first loading
prediction

0 0.5 1 1.5 2 2.5
0

200

400

600

800 εc =
0.002

εs = 0.0182
εc = 0.00480

Fr

VK4

Flexural drift Δf/Ls [%]

 

 

pos. loading
prediction

0 0.5 1 1.5 2 2.5
0

100

200

300

400

500

600

700 εc =
0.002

εs =
0.0184

εc = 0.00478

Fr

VK5

Flexural drift Δf/Ls [%]

 

 

pos. loading
prediction



P. Hannewald, K. Beyer / VEESD 2013  9

in case of VK2 and VK4, while it slightly overestimates the drift capacity of VK5. But, as VK5 did 
not degrade due to concrete crushing, this could be expected. With the concrete strain according to 
Equation (5) on the contrary, the drift at which splice failure occurs is slightly overestimated. The 
limit strain for the steel is reached at about the same curvature as the concrete limit strain (VK2) or at 
a higher curvature (VK4 & VK6) and hence not decisive here. 
 
As degradation progresses very rapidly once it was initiated, it is deemed reasonable to assume that 
the lateral load capacity will immediately drop to a residual value. This residual value depends on the 
maximum eccentricity of the axial load within the confined section and is indicated with a dashed line 
in Figure 4. Comparison with Figure 1a shows that the resistance  actually continues to decrease a bit 
further, as the concrete within the confined area is increasingly crushed which reduces the eccentricity 
of the axial load. However, for modelling purposes, the simplifying assumption that the resistance 
immediately drops to a constant residual value once the concrete limit strain is reached may be made. 
 
 
6 CONCLUSIONS 
 
In this paper, a plastic hinge modelling approach that is applicable to wall-type piers with structural 
deficiencies is defined and validated against a series of seven large scale tests. It is shown that the 
flexural deformations can be well predicted with the plastic hinge length estimates for structural walls 
suggested by Bohl and Adebar (2011) in combination with a refined modelling approach proposed by 
Priestley et al. (2007). Currently available strain limits yield deformation capacities that correspond 
approximately to the peak-strength of a structureand are hence somewhat conservative. However, in 
light of the fact that the walls may exhibit brittle shear failure at slightly larger drifts, these 
conservative strain limits may be considered as reasonable estimates of the drift capacity. 
 
The prediction of the shear deformation is associated with a larger variation than the flexural 
deformation. Nevertheless, satisfactory results are obtained with the approach suggested by Beyer et 
al. (2011), if the increased shear deformation of piers with low transverse reinforcement, and hence 
low diagonal tensile strength, is taken into account. To improve the shear deformation predictions, 
further investigations will be made using a larger database of shear walls. The reduced drift capacity 
of piers with spliced reinforcement could be estimated using the concrete limit strain by Biskinis and 
Fardis (20110). However, especially the drift of the pier whose capacity dropped before the concrete 
was crushed in compression was slightly overestimated with this limit. Experimental research is 
currently underway to examine the behaviour of splices under reversed cyclic loading in more detail 
with the aim to investigate which loading conditions and strains might, besides a large concrete 
compression strain, trigger splice failure, see Angeli et al. (2013). Furthermore, strain limits for the 
concrete will be investigated in more detail.  Based on the test data considered here, it is recommended 
to assume an immediate drop of capacity to the residual capacity determined by the eccentricity of the 
axial load. 
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