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Abstract. With the introduction of higher seismic design forces in the Swiss loading standard of 2003 most 

unreinforced masonry (URM) buildings failed to satisfy the seismic design check. For this reason, in new 

construction projects, a number of URM walls are nowadays replaced by reinforced concrete (RC) walls. The 

lateral bracing system of the resulting structure consists therefore of URM walls and some RC walls which are 

coupled by RC slabs and masonry spandrels. Within the scope of a FP7-Series project a four-storey RC-URM 

wall structure is tested on the shake-table at the TREES laboratory of the EUCENTRE in Pavia (Italy). The test 

is conducted at half-scale and is part of a larger research initiative on mixed RC-URM wall systems initiated at 

EPFL. The key objective of the test is to gain insights into the dynamic behaviour of RC-URM wall structures 

and to provide input for the definition of a performance-based design approach of such mixed structural system. 

This paper presents details on the structural system, the instrumentation and the selected ground motion and 

discusses preliminary results of the shake-table test. 
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1 INTRODUCTION 

 

In many countries, existing URM structures are reinforced by adding RC walls or by replacing 

selected URM walls by RC walls. In Switzerland, new residential buildings are often directly 

constructed as mixed RC-URM wall structures (Figure 1) with RC slabs. Although such structures are 

very common in design and retrofit practice their seismic behaviour is, at present, not well understood 

and they have never been tested before under seismic loading.  

 

  

Figure 1. 3- and 6-storey residential buildings with RC wall and URM walls (Photos: Thomas Wenk).  

 

Design codes themselves present lack of guidance for such structures; neither Eurocode 8 nor the 

Swiss design codes provide indications on the choice of the force reduction factor q or on the 
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definition of appropriate deformation limits. As a consequence, the current design practice in 

Switzerland is to neglect the effect of the URM walls on the seismic behaviour of the structure, to 

assign all forces to the RC walls and adopt q-factors applicable to RC walls while limiting the average 

interstorey drift to 0.5% in order to control the damage on the URM walls. Numerical studies on 

mixed RC-URM wall structures have also shown that the numerical results concerning, for example, 

the base shear distribution between the walls are very sensitive to the modelling assumptions and 

experimental results for the validation of such models are therefore needed (Paparo and Beyer, 2013). 

In addition, the out-of-plane vulnerability of URM piers could be the Achilles’s heel of typical Swiss 

URM structures. Recent studies on this topic (Dazio, 2008) showed that most Swiss URM walls do 

not fulfil the out-of-plane slenderness criteria in Eurocode 8. It was also showed that the slenderness 

criteria in all international building codes fail to capture the influence of the boundary conditions on 

the out-of-plane seismic behaviour of URM walls. 

 

The objective of the shake-table test is to study the seismic behaviour of mixed RC-URM buildings 

and particularly address several issues such as: definition and associated drift limits of different 

performance states, information on the stiffness degradation and damage evolution, understanding of 

lateral force distribution and redistribution of forces among the different structural elements, insights 

into displacement and acceleration profile, influence of boundary conditions on the out-of-plane 

behaviour of URM walls. This paper presents the characteristics of the test unit and of the applied 

ground motion as well as the dynamic response of the structure observed during the shake-table test. 

 

 

2 TEST SET-UP AND DETAILS 

 

2.1 Test unit 

 

The test unit was a four-storey structure built at half-scale representing a modern residential building 

where most walls are constructed as URM walls and some as RC walls and where the two systems are 

coupled by RC slabs. The test specimen, shown in Figure 2, was composed by two RC walls and six 

URM walls; four of which were loaded in-plane and two out-of-plane.  

 

 

Figure 2. Transverse (North) and longitudinal (West) views of the test unit, dimensions are in mm. 
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URM walls were built using half-scale clay brick units (width 9.5 cm, length 15 cm, height 9.5 cm) 

produced by the Swiss brick manufacturer “Morandi Frère SA” and using a standard mortar M15. The 

masonry unit that were used to build the URM piers were selected after a large experimental campaign 

performed before the shake-table test intended to investigate the effect of scaling on the properties of 

the masonry. In fact while it could be shown that concrete elements, when scaled properly, show 

similar behaviour at reduced scale, this is often not the case for masonry elements. The experimental 

campaign included material tests as well as quasi-static cyclic tests on half- and full-scale masonry 

piers to compare their behaviour (Petry and Beyer, 2013a,b). The tests could show that a very 

satisfactory correspondence between half- and full-scale masonry was obtained in terms of force and 

deformation capacity. RC walls (thickness 10 cm) were built with a concrete of class C28/35 and the 

reinforcement consisted of a double layer of longitudinal steel bars of class B450C. The RC slabs 

(thickness 15 cm) presented a double layer of steel net reinforcement; both concrete and steel of the 

same class of the RC walls. 

 

In order to enforce the scaling laws it was necessary to load the structure with additional masses, in the 

form of unreinforced concrete blocks, which were added directly on top of each slab. The structural 

masses are listed in Table 1. 

 
Table 1. Summary of structural masses 

Foundation 13.1 t  

Mass of the structure 34.9 t  

Additional masses 34.9 t  

Total mass 82.9 t  

Total mass without foundation 69.8 t  

Total mass during transportation 48.0 t  

 

The test unit was built outside the laboratory and was then lifted and pulled inside using hydraulic 

jacks and a slider system. For the transportation phase a prestress system was installed in order to 

assure the integrity of the structure during the transportation (Figure 3). 

 

  

Figure 3. Test specimen during transportation.  

 

2.2 Instrumentation 

 

The motion of the shaking table and the seismic response of the test unit were monitored through a 

dense network of instrumentation including 20 accelerometers, 49 displacement transducers, 24 omega 

gages and an optical measurement system. 
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Four accelerometers, two recording acceleration in the longitudinal direction and two in the transverse 

direction, were installed on each slab. Additional four accelerometers where used to control the 

acceleration of the building foundation and of the shake-table. 

 

Since the highest level of deformation was expected to concentrate at the first-storey a dense network 

of displacement transducers was installed there. The URM piers of the East side of the building were 

instrumented with wire potentiometers along the two diagonals, the potentiometers were installed in 

such a way to record both shear and rocking deformation of the piers. The RC pier of the same side 

was instrumented with wire potentiometers along the diagonal and additionally the two sides of the 

wall where instrumented with eight potentiometers covering the whole height of the pier.  

 

Each URM pier loaded out-of-plane was instrumented with five potentiometers, one measuring the 

out-of-plane deformation at the mid-height of the panel and two measuring the internal and external 

vertical displacement of the top and bottom row of bricks. The out-of-plane displacement of the first 

storey RC slab was monitored by means of 24 omega gages installed in two different locations both on 

the top and bottom face of the slab.  

 

An optical measurement system was used to measure the displacements of the West façade of the 

building. The motion of the structure was detected through reflecting markers glued onto the specimen 

whose movement is acquired by a high definition camera system. 

 

2.3 Input ground motion 

 

The source ground motion input selected for the shake-table test was the record of the Montenegro 

1979 earthquake (Herceg-Novi station). The accelerogram was applied in the longitudinal direction of 

the structure and to account that the test specimen was built at half-scale the record was scaled in time 

reducing the duration by a factor of √2. The record was then scaled to match different levels of peak 

ground acceleration (PGA) that were used as input signal for the shake-table test (ranging from 0.05 g 

to 0.9 g). Figure 4 shows the acceleration history for the record scaled to a maximum PGA of 1 m/s2. 

 

 

Figure 4. Input signal for shake-table test for a PGA of 1 m/s2.  

 

 

3 SHAKE-TABLE TEST 

 

The shake-table test was performed at the TREES laboratory of the European Centre for Training and 

Research in Earthquake Engineering (Pavia, Italy). The experimental program of testing subjected the 

specimen to nine shakings with different levels of intensity of the excitation (PGA); Table 2 

summarizes the testing chronology indicating for each test nominal values of PGA and testing dates. 
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Table 2. Summary of the nominal PGAs and testing dates 

Test Number Nominal PGA  Testing Date 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.05 g 

0.1 g 

0.2 g 

0.3 g 

0.4 g 

0.6 g 

0.4 g 

0.7 g 

0.9 g  

 18.12.2012 

18.12.2012 

19.12.2012 

19.12.2012 

19.12.2012 

20.12.2012 

20.12.2012 

20.12.2012 

21.12.2012 

 

3.1 Test results 

 

The experimental campaign required four days of testing; after each shake-table test a survey of the 

specimen was performed in order to report the evolution of the structural damage. Moreover before 

each test a structural identification was performed to estimate how the dynamic characteristics 

(fundamental period of vibration) of the structure changed after every single shaking. 

 

The first three tests, characterized by a low intensity of shaking, induced a very limited level of 

damage to the structure. The formation of residual hairline cracks in the URM piers of the first storey 

was observed; the latter were mainly concentrated at the corners of the panels. After test number 4 and 

5 the formation of first hairline cracks in the URM piers of the second storey and in the RC walls and 

slab of the first storey was observed. The URM panels of the first storey showed diagonal cracks along 

the whole height; however the level of residual deformation was still limited. 

 

The structure started showing a more severe level of damage after test number 6. At this point URM 

piers at all the storeys were showing diagonal cracks. At the first storey the pre-existing cracks started 

widening up to a crack width of 0.8 mm, nevertheless in the majority of cases crack widths were still 

less than 0.2 mm (Figure 5). 

 

  

Figure 5. Crack propagation on the URM piers of the first storey after test number 6.  

 

Test number 7, performed with a lower level of intensity with respect to the previous, was meant to 

simulate a possible aftershock during an earthquake event. The survey of pre-existing cracks and their 

width indicated that the aftershock provoked a very little additional damage to the specimen.   
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The structure showed a severe level of damage after test number 8 as the deformations in the URM 

piers of the first and second storey started concentrating in a single diagonal with an average crack 

residual deformation around 0.8 mm. Additionally for the first time cracks passing through bricks and 

not only in the mortar joints were observed. 

 

The final test at 0.9 g brought the structure rather close to its collapse limit state as the four in-plane 

loaded URM piers of the first and second storey lost their axial load bearing capacity. The axial load 

was finally carried by the URM piers in the out-of-plane direction and by the two RC walls. 

Immediately after the test it was necessary to install steel props to support the first storey slab to 

prevent the collapse of the structure (Figure 6).  

 

   

Figure 6. Different views of the structure after test number 9.  

 

An interesting feature showed by the specimen was that the two lower storeys experienced the same 

level of damage (Figure 7), differently from what is expectable for a URM structure were the damage 

is mainly concentrated at the first storey. This showed how the addition of RC walls to the URM 

structure influenced the seismic behaviour as similar levels of drift were attained for the two lower 

storeys. 

 

  

Figure 7. URM piers of the first and second storey after test number 9.  

 

The failure mechanism of the URM piers was characterized by the crushing of the compressed 

diagonal at the corners and at the mid height where the two diagonals intersected. Large residual 

deformations were observed which were associated with the sliding down of the top part of the piers 
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along the diagonal cracks (Figure 8). Differently from the URM piers the spandrels at all storeys 

remained uncracked. 

 

  

Figure 8. Residual deformations of one URM piers after test number 9.  

 

RC walls had a different behaviour depending on the loading direction, when the structure was pushed 

toward North the walls were in tension and therefore the South side of the walls developed horizontal 

flexural cracks along all the height. The latter showed a residual width of approximately 1 mm 

indicating that the longitudinal reinforcement had yielded (Figure 9). When the structure was instead 

pushed in the South direction the RC walls were in compression and remained largely uncracked; the 

few cracks which developed had a residual width close to zero indicating that in this direction the 

longitudinal reinforcement did not yield. 

 

  

Figure 9. Cracking patter of the RC wall of the East façade after test number 9.  

 

During the last test, for the first time, a clear out-of-plane movement of one of the URM piers in the 

transverse direction was observed. The fourth storey panel of the North face of the building showed a 

large deformation during the shaking and touched the steel beams which had been installed to prevent 

a possible out-of-plane collapse. After the test clear cracks over the entire pier length were observed at 

midheight and at the top and bottom of the panel (Figure 10). As expected the boundary conditions 

provided by the RC slab and lateral walls influenced the seismic behaviour of the out-of-plane wall 

since the transverse wall of the opposite façade did not show any type of out-of-plane deformation and 

no cracks in the horizontal joints after the test. For the future numerical investigations of the boundary 

conditions of out-of-plane loaded URM walls are planned.  
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Figure 10. Out-of-plane failure of URM wall: horizontal cracks at mid height and on top of the wall.  

 

 

4 CONCLUSIONS 

 

The shake-table test on the four storey mixed RC-URM wall structure constructed at half-scale 

allowed investigating the performances of such a structure for a large range of ground motion 

intensities. The first runs with small peak ground accelerations caused only a limited level of damage 

in the structure mainly concentrated in URM piers of the first storey. The final run on contrary, 

brought the structure very close to collapse as the in-plane loaded URM piers of the bottom two 

storeys lost their axial bearing capacity. During all the tests about 90 hard-wired instruments were 

recorded measuring local and global quantities. Additionally an optical measurement system was 

employed allowing the possibility of tracking the position of approximately 300 points on the URM 

piers of the West face of the structure. During the shaking the structure showed that the presence of 

RC walls highly influences the performances of URM walls. While in a masonry building the damage 

would be mainly concentrated in the first storey the mixed structure has shown a more evenly spread 

level of damage as the two lowest storeys were subjected to a similar drift demand. The drift demand 

in the two higher storeys was significantly lower but anyway sufficient to cause cracks. The last test 

also allowed to observe the out-of-plane failure of one URM pier in the transverse direction 

underlining the influence of boundary conditions on seismic behaviour of out-of-plane loaded piers. 

The data recorded during the test will help addressing different open issues related to the seismic 

behaviour of mixed RC-URM buildings. 
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