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Simple models of distributed co-ordination

FRÉDÉRIC KAPLAN*

Sony CSL, 6 Rue Amyot, 75005 Paris, France

Distributed co-ordination is the result of dynamical processes enabling independent agents to co-
ordinate their actions without the need of a central co-ordinator. In the past few years, several
computational models have illustrated the role played by such dynamics for self-organizing com-
munication systems. In particular, it has been shown that agents could bootstrap shared convention
systems based on simple local adaptation rules. Such models have played a pivotal role for our under-
standing of emergent language processes. However, only few formal or theoretical results have been
published about such systems. Deliberately simple computational models are discussed in this paper
in order to make progress in understanding the underlying dynamics responsible for distributed co-
ordination and the scaling laws of such systems. In particular, the paper focuses on explaining the
convergence speed of those models, a largely under-investigated issue. Conjectures obtained through
empirical and qualitative studies of these simple models are compared with results of more complex
simulations and discussed in relation to theoretical models formalized using Markov chains, game
theory and Polya processes.

Keywords: Self-organizing communication stystems; Scaling laws; Markov chains; Stochastic games;
Polya processes

1. Introduction

‘Suppose you and I are rowing a boat together. If we row in rhythm, the boat goes smoothly forward; otherwise
the boat goes slowly and erratically, we waste effort, and we risk hitting things. We are always choosing whether
to row faster or slower; it matters little to either of us at what rate we row, provided we row in rhythm. So each
is constantly adjusting his rate to match the rate he expects the other to maintain.’ (Lewis 1969).

Linguistic dynamics involve many instances of co-ordination problems such as agreeing on
sound repertoires, word-meaning mappings or on the use of particular grammar constructions.
In the 1960s, Lewis made important steps in clarifying the processes underlying conventional
aspects of language and meaning, suggesting rephrasing them in a game theoretical framework
(Lewis 1969). Understanding the role played by co-ordination dynamics in the context of
language formation and evolution has been a crucial issue since then. In the mid-1990s,
first models of self-organizing lexicons (e.g. Hutchins and Hazlehurst 1995, Steels 1996)
showed that agents could collectively agree on a shared mapping between words and meaning
provided that they followed some well-chosen production and adaptation rules. Building on
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these pioneering approaches, self-organized communication systems have been successfully
bootstrapped in increasingly complex systems, including phonological simulations (De Boer
2001, Oudeyer 2005) and population of autonomous embodied agents (Steels and Kaplan
1999, Vogt 2000). However, despite an increased interest in these kinds of processes and a
large amount of empirical studies, only few formal approaches or theoretical results have been
published about such systems so far.

The sparseness of theoretical results about co-ordination dynamics for communication sys-
tems is probably related to the complexity of the models studied so far. Simple simulations
of self-organization lexicons are, for instance, often already too complex to be studied for-
mally (one interesting exception is given in De Jong and Steels (2003)). Other computational
approaches to language modelling can be considered to have been more successful in that
respect (see Cangelosi and Parisi (2002) and Kirby (2002) for general overviews of the field).
Generational models have led to interesting formal investigations (e.g. Smith et al. 2003).
They are based on the simplifying assumption that language transmission is a unilateral pro-
cess that goes from one generation to the next (with no generation overlap). In a similar manner,
models based on evolutionary algorithms have also been studied in a relatively well-defined
framework. Their dynamics rely on a fitness criterion stating that agents that communicate
best have a higher survival chance, leaving more offspring that can learn the language of their
parents (e.g. Nowak and Krakauer 1999, Cangelosi and Parisi 2004). From another perspec-
tive, progress has also been made on issues related to Zipf’s power law and the least effort
principle (e.g. Ferrer and Sole 2003, Vogt 2004). Unfortunately, these different approaches do
not address directly the central issues of co-ordination dynamics.

We shall call distributed co-ordination the result of dynamical processes enabling indepen-
dent agents to co-ordinate their actions without the need of a central co-ordinator. During such
processes, the behaviour of each agent is only the result of the history of its interaction. In
particular, agents have no direct access to global properties of the population. Nevertheless,
co-ordination arises as a result of collective dynamics depending on the adaptation rules used
by the agents, in a distributed self-organized manner.

Distributed co-ordination in itself is not specific to emergent communication systems. The
study of these dynamics is central to many disciplines such as economy, physics, chemistry,
ethology or sociology. This is particularly true for systems with self-reinforcing dynamics such
as auto-catalytic reactions, spin-glass systems, competition of norms, stigmergetic effects in
ant colonies, opinion dynamics, etc. Successful theoretical approaches of such systems are
usually based on abstract simplified models. Results obtained in these simple contexts can then
be empirically extended to describe more complex instances of the problems studied. Despite
apparent similarities between problems considered in the various disciplines, great care must
be taken before transferring results from one context to another. Assumptions underlying each
model are often specific to the field considered and may be revealed not to be relevant anymore
for another discipline. Models may generally deal with the same processes, but differ in the
details of dynamics.

In this article, simple models of distributed co-ordination will be discussed. The objective
is to progress in understanding: (1) the dynamics underlying distributed co-ordination in
the context of emergent communication systems; and (2) the scaling laws of such systems
regarding the number of agents involved in the co-ordination. Models much simpler than
most systems traditionally considered in this field are studied deliberately. We believe that
progress in understanding the formal properties of self-organizing lexicons will be difficult
without a finer characterization of the dynamics involved in simpler situations of competitions
between conventions. The next section presents an empirical study of three related models,
and focuses on explaining the convergence times of those models. Each model illustrates a
particular dynamics of distributed co-ordination. Experimental results show that only the first
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two lead to actual convergence towards the use of a unique convention. The first one ensures
a slow convergence, whereas the second one permits high coherence to be reached in a faster
way. This study suggests that fast convergence is in N · log(N) (where N is the number of
agents).A qualitative interpretation of this dependency is provided. Section 3 discusses various
theoretical frameworks for interpreting the empirical findings of section 2, including Markov
chains, models based on stochastic games and Polya processes. Finally, section 4 studies a
classic model of lexicon self-organization, showing that the conjectures about convergence
times resulting from simple models can scale to more complex ones.

2. Three simple models

Let us consider a population of N agents where each agent can choose a particular conventional
name among a convention set C = {c1, c2, . . . , c‖C‖}, where ‖C‖ is he cardinal of C. This
section will be restricted to the particular case of a set containing only two elements C =
{c1, c2}. Each agent a is characterized by a preference vector Va , whose components are
different depending on the models. The preference vector Va of an agent cannot be inspected
by another agent. At each time step, two agents are chosen randomly. Agent a1 produces a
convention ck according to a production rule P(Va1) = ck and agent a2 updates its vector
Va2 with an update rule U . Let N1(t) be the number of agents producing convention c1 and
N2(t) = N(t) − N1(t) the number of agents producing convention c2. We can define the
coherence level at time t as:

CL(t) = max(N1(t), N2(t))

N
. (1)

Co-ordination is said to be complete when CL = 1. This means that all the agents of the
population have converged to a consensus.

Three simple models are discussed successively in this model: an imitation-based model
(mode1 A) and two frequency-based models (models B and C). They are representative of
many more complex ones studied in the field. Each model is defined as a couple of production
and update rules (P, U). The rules used are always based on local interaction and are functions
of the agent’s personal history. They can be interpreted intuitively as different strategies of
production and interpretation during interaction between agents. In model A, the speaker
simply produces the convention he heard last as a listener. In model B, the speaker produces
the convention that he has heard most frequently as a listener. In model C, the speaker produces
a convention with a probability proportional to the frequency that he has heard as a listener.
These intuitive interpretations are summarized in table 1. However, it should be noted that,
given the simplicity of the models, other types of interpretations can be considered.

Table 1. Intuitive interpretation of the three models.

Model Intuitive interpretation in terms of communication interaction

Model A Imitation-based model: the speaker simply produces the convention he
heard last as a listener

Model B Frequency-based model: the speaker produces the convention that he has
heard most frequently as a listener

Model C Frequency-based model: the speaker produces a convention with a
probability proportional to the frequency that he has heard as a listener
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2.1 Imitation-based model A

Model A. In this first model, Va can only have two values: V1 and V2. Agent a1 produces
convention c using the following PA rule:

PA(Va1) = ck =
{
c1 if Va1 = V1

c2 if Va1 = V2

}
. (2)

Agent a2 updates its vector by adopting immediately the convention use of a1, using the
following rule:

UA :
{

Va2 = V1 if ck = c1

Va2 = V2 if ck = c2

}
. (3)

Starting with N1(0) = N/2 (agents with Va = V1) and N2(0) = N/2 (agents with Va = V2),
what kind of evolution will be observed?

Experiment A.a (N = 100, N1(0) = N/2, N2(0) = N/2; end criteria: CL = 1, 4 runs).
Figure 1 shows four sample evolutions for 100 agents. The population eventually converges
to a state of complete co-ordination (CL = 1). However, convergence happens only after a
long series of oscillations.

Experiment A.b (N = 100, N1(0) = N/8, N2(0) = 7N/8, end criteria: CL = 1, 4 runs).
Figure 2 shows four sample evolutions for 100 agents for a different initial configuration.
In all the cases, the population eventually converges to a state of complete co-ordination
(CL = 1), but not necessarily towards the convention initially preferred.

The dynamics associated with this model A can be better understood if we consider the
different probabilities of evolution at time t .

• Probability to choose an agent using convention c1: p1(t) = N1(t)/N .
• Probability to choose an agent using convention c2: p2(t) = N2(t)/N .
• Probability that an agent using c1 is chosen as speaker, and an agent using c2 is chosen as

hearer (and therefore adopts convention c1): p1(t) · p2(t).

Figure 1. Competition between two conventions c1 and c2 in a population of 100 agents. Initially, 50 agents chose
c1 and 50 other agents chose c2. Several oscillations we observed before convergence (experiment A.a).
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Figure 2. Competition between two conventions c1 and c2 in a population of 100 agents in a biased initial config-
uration. The population eventually converges to a state of complete co-ordination, but not necessarily towards the
convention initially preferred (experiment A.b).

• Probability that an agent using c2 is chosen as speaker, and an agent using c1 is chosen as
hearer (and therefore adopts convention c2): p2(t) · p1(t).

• Probability that an agent interacts with an agent using the same convention p2
1(t) + p2

2(t).

With this model, at any time t , it is equally probable that N1(t) or N2(t) increases. This
means that no dynamics drive the population towards co-ordination. However, after some time
convergence occurs and the population ends up in using only c1 or c2. How is this possible?
This situation is similar to a random walk or Brownian movement. A random walk corresponds
to the path of someone that would choose randomly at each step whether to go forward or
backward. Such a walker would, on average, oscillate around its starting position, but from
time to time it would get away from it. During a random walk, the quadratic average distance
of the walker is σ = √

nstep where nstep is the number of steps taken by the walker. This means
that as the walker takes more steps, the probability of being far from the centre increases
(figure 3). Suppose that we want to be sure at 99% that the walker has at least been once
at a certain distance d from the starting position. This should be true if σ is sufficiently big
compared with d (in a ratio that remains to be defined). To get the same certainty for a distance
4 · d, we would have to wait 16 times longer.

One difference between the dynamics of model A and the ones of a random walk is that the
probability of evolution in model A is a factor of p1 and p2 (whereas it is fixed in a classic
random walk). The expression p2

1 + p2
2 reaches its minimum 1/2 for p1 = p2 = 1/2. This

means that N1(t) and N2(t) change more rapidly when N1(t) is close to N2(t) than when they
are more different (figure 4).

Despite this difference, can we make hypotheses about the scaling law of model A based
on its analogy with a random walk? To enter in a state of complete co-ordination, the random
walk must reach distance d = N/2 (converting the other half of the population). This means
that convergence time Tc should increase in N2. The following experiments permit one to
verify this conjecture for model A.

Experiment A.c (different N , N1(0) = N/2, N2(0) = N/2, end criterion: CL = 1). Figure 5
shows a log–log plot of simulation results for various population sizes N. Each point
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Figure 3. Sample evolution for four random walks and associated values of the theoretical average distance
σ = √

nstep in the same initial condition as for experiment A.a.

corresponds to the number of time steps necessary to reach complete co-ordination. The
slope of the curve obtained by linear regression is 2.02. This is an experimental verification
of the expected quadratic dependency.

2.2 Frequency-based model B

Model B. In this model, each agent a is characterized by a preference vector Va of size 2
where each convention ci of C is associated with a score va,i .

Va =
{
va,1

va,2

}
. (4)

Figure 4. Probability of a proportion change in the population. This means that, in model A, N1(t) and N2(t)

change more rapidly when N1(t) is close to N2(t) than when they are more different.
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Figure 5. Log–log diagram comparing time of convergence Tc for different population sizes N . The slope obtained
by linear regression was 2.02. This suggests a quadratic dependency (experiment A.c).

Agent a1 produces convention ck using the following PB rule:

PB(Va1) = ck = cargmaxi
(va1,i ) =




c1 if va1,1 > va1,2

c2 if va1,2 > va1,1

random if va1,1 = va1,2


. (5)

Agent a2 updates its vector by increasing the score associated with the convention ck:

UB :
{
va2,1 ←− va2,1 + δ if ck = c1

va2,2 ←− va2,2 + δ if ck = c2

}
. (6)

At the beginning of the experiments, N/2 are initialized with (δ, 0) and the other half with
(0, δ).

Experiment B.a (N = 100, N1(0) = N/2 and N2(0) = N/2, end criteria: CL = 1, 4 runs).
Four sample evolutions for 100 agents are presented in figure 6. The oscillations observed
with model A are much smaller. As soon as one convention spreads more in the population
than the other, its domination seems to amplify even more over time.

There is a crucial difference between model B and model A. In model B, interactions between
agents already producing the same convention ck strengthen the tendency to produce ck in the
future. In model A, such interactions had no effect. This self-reinforcing dynamics result in a
positive feedback loop: as soon as one convention starts to spread more than the other in the
population, the probability that it wins the competition increases. The update rule UB performs
a form of statistical induction about the diffusion of the each convention in the population.
With this interpretation, production rule PB consists of choosing the most diffused convention
from the point of view of the agent.

Experiment B.b (different values of N , N1(0) = N/2, N2(0) = N/2 end criterion: CL = 1).
Figure 7 presents a log–log diagram of the time of convergence Tc for different population size
N . The slope of the linear regression is 1.30. As expected, convergence is much faster than for
model A. The value 1.30 being close to unity, we can test an N · log(N) law. Figure 8 plots the
average convergence time divided by the population size on a logarithmic scale. The number of
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Figure 6. Competition between two conventions c1 and c2 in a population of 100 agents. Initially, 50 agents chose
c1 and 50 other agents chose c2. Dominance of one convention tends to increase over time (experiment B.a).

steps necessary to reach complete consensus (CL = 1) and partial consensus (CL = 0.8) are
represented. Although the data are dispersed, a linear fit is possible, suggesting an N · log(N)

law.
A qualitative reasoning is now presented in order to interpret the N · log(N) conver-

gence empirically observed with model B. Consider a population of size N , where N1(t)

and N2(t) are, respectively, the number of agents using, c1 or c2 after t iterations. It is
assumed that, during the first N iterations, the positive feedback loop does not yet have
an important effect and that the system is comparable with a random walk. At iteration t = N ,
given that the agents are picked randomly, the number of agents using convention c1 and c2

should have changed slightly so that, for instance, N1(t) is a bit more important than N2(t).

Figure 7. log–log diagram comparing time of convergence Tc for different population sizes N . The slope obtained
by linear regression was 1.30 (experiment B.b).
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Figure 8. Ratio between convergence time Tc and population size N for different population sizes plotted on a
logarithmic x-axis. Cases of partial and complete consensus were considered. Although the data are dispersed, a
linear fit is possible, suggesting an N · log(N) law. The slopes obtained by linear regression were 16.0 (complete
consensus) and 9.1 (partial consensus) (experiment B.b).

Let us define ε so that:

N1(N)

N2(N)
= 1 + ε. (7)

A typical value of ε is ε = σ/N , where σ = √
N is the quadratic deviation of a random walk.

As a consequence, ε = √
N/N = 1/

√
N .

During the next cycle of N iterations, the evolution will not be a pure random walk any
more but biased towards convention c1. The positive feedback loop starts to have an effect.
After 2N iterations, on average, 1 + ε more agents using c1 have been selected.

N1(2N)

N2(2N)
= (1 + ε)

N1(N)

N2(N)
= (1 + ε)2. (8)

After 3N iterations, on average, (1 + ε)2 more agents using c1 have been picked.

N1(3N)

N2(3N)
= (1 + ε)2 N1(2N)

N2(2N)
= (1 + ε)4. (9)

Therefore, in general after the mN first interations

N1(mN)

N2(mN)
= (1 + ε)2m

. (10)

Note that equation (10) is supposed to be valid only at the beginning of the evolution, but may
not still be true at the end of the experiment, as the rate of increase of the ratio should slow
down as fewer and fewer agents producing the least frequent convention are chosen during
the random selection process.
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Let us define A as the proportion [N1(mN)]/[N2(mN)] corresponding to a partial
consensus. Using logarithms the expression (1 + ε)2m = A◦ is equivalent to:

2m · log(1 + ε) = log A. (11)

For N sufficiently big, log(1 + (1/
√

N)) ≈ 1/
√

N . As a consequence:

2m

√
N

= log A = K. (12)

Taking the logarithm, this gives:

m = log2(K · √
N) = log2(K) + 1

2
log2(N) ∝ log(log A)) + 1

2
log(N). (13)

When N is sufficiently big, the first term can be neglected. For instance, to reach a 90%
consensus (CL = 0.9), A = 9 and log(log 9) = −0.022. For N = 100, log(N) is 100 times
bigger. This means that if N and A are sufficiently big, m is proportional to log(N):

m ∝ log(N). (14)

The most important part of the convergence is achieved in N · m iterations, so for Tc(A) the
number of iterations necessary to reach a partial convergence defined by A:

tc(A) ∝ N · log N. (15)

We have observed experimentally (slopes of figure 8) that the ratio between the time to reach
a partial convergence at 80% and a complete convergence at 100% stays constant for the
different population sizes we considered. Our result can therefore be extrapolated to the case
of complete convergence;

Tc ∝ N · log N. (16)

2.3 Frequency-based model C

Model C. This model is very similar to model B, apart from the production rule PC , which
corresponds now to a probabilistic choice. The probability of choosing ck is proportional to
the relative score of this convention compared with the other.

PC(Va1) = ck :




P(c1) = va1,1

va1,1 + va1,2

P(c2) = 1 − P(c1) = va1,2

va1,1 + va1,2


. (17)

Agent a2 updates its vector following rule UB . Changing the production rule from a greedy
winner-take-all strategy to a probabilistic one has an important effect on the dynamics. We can
draw from the following experimental results that complete co-ordination cannot be obtained
with such a production rule.

Experiment C.a (N = 100, N1(0) = N/2 and N2(0) = N/2, end criteria: T = 600, 4
runs). This experiment starts with the same initial conditions as those considered for model
B: N/2 agents are initialized with (δ, 0) and the other half with (0, δ). Figure 9 presents four
sample evolutions. After an initial drift, dynamics tend to maintain the distribution of c1 and c2

over time. The production rule PC reinforces the relative distribution of the two conventions
as they are induced using the update rule. The system is stationary.
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Figure 9. Competition between two conventions c1 and c2 in a population of 100 agents. Initially, 50 agents had a
bias toward c1 and 50 others a bias toward c2. After an initial drift period, the distribution tended to be maintained
(experiment C.a).

Table 2. Conjectures based on empirical results with simple models.

Model Distributed co-ordination Convergence time

Model A Convergence towards a single convention N2

Model B Convergence towards a single convention N · log(N)

Model C Stabilization of the current distribution ∞

2.4 Conjectures

Two conjectures can be made based on the experiments conducted in this section with simple
models.

• Conjecture 1. Among the three models studied, only model B (self-reinforcing dynamics)
permits a fast co-ordination of the entire population towards the use of a single convention.
Model A is similar to a random walk, converging in quadratic time. On the contrary, the
dynamics of mode C tend to maintain the distribution of the convention at a fixed level.

• Conjecture 2. Experimental results and qualitative interpretations suggest that self-
reinforcing dynamics of model B converge in N · log(N), where N is the population
size.

These results are summarized in table 2. Several theoretical framework to interpret conjec-
tures 1 and 2 will be discussed in section 3. In section 4, results are presented that corroborate
the N · log(N) conjecture for more complex models.

3. Theoretical frameworks

Can the empirical results of the models studied in the previous section be studied from a more
theoretical point of view? Phenomena related to distributed co-ordination have been studied in
many disciplines under various frameworks ranging from mathematical economics to statisti-
cal physics. In various contexts, global co-ordination emerges out of a set of simple elements
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(e.g. particles, individuals, agents, cells) that undergo simple repetitive local changes. How-
ever, not all these framework are adapted to the interpretation of the models that interest us.
For instance, in physics, Ising models (which can be considered as a particular case of Markov
random fields (Kinderman and Snell (1980)) are concerned with sets of spins that can take
binary states −1, 1, a situation that bears some resemblance to the models of competition
described in the last section. Such models have been used to study spontaneous magnetiza-
tion of spins, but have also been extended to more abstract cases involving the dynamics of
consensus in quantitative sociology (Weidlich and Haag 1983) and computational ecology
(Huberman and Hagg 1988). However, as most of these models focus on the dynamics of par-
ticular statistics over the population rather than on the particular update and production rules
used by the agent, results obtained in such frameworks cannot be easily adapted to our own.
Other types of formal modelling are more promising. In this section, the relative advantage of
formalism based on Markov chains, stochastic games and Polya processes will be reviewed
to progress the understanding of the dynamics of models A–C.

3.1 Interpretation of model A with Markov chains

Ke et al. (2002) have conducted interesting research concerning the use of a Markov chain
formalism to study emergent communication systems. The dynamics of model A can be studied
in such a framework. Each state of the Markov chain corresponds to a particular proportion
of agents using convention c1. At any time t , there is a certain probability that the population
changes to an adjacent state where the population of agents using convention c1 would have
either increased or decreased by one. In model A, this probability depends only on the current
proportion of agents using the convention, thus respecting the Markov property:

Pr(Xt+1 = k|X0 = h, . . . , Xt = j) = Pr(Xt+1 = k|Xt = j). (18)

Therefore, the dynamics can be captured using a single transition matrix P of size
(N + 1) · (N + 1). Here is an example of such a matrix for N = 6:

P =




1 0 0 0 0 0 0
c(1) d(1) c(1) 0 0 0 0

0 c(2) d(2) c(2) 0 0 0
0 0 c(3) d(3) c(3) 0 0
0 0 0 c(4) d(4) c(4) 0
0 0 0 0 c(5) d(5) c(5)

0 0 0 0 0 0 1




. (19)

For model A, c(j) and d(j) are defined as:

c(j) = c(N − j) = p1 · p2 = j · (N − j)

N2
(20)

d(j) = d(N − j) = p2
1 + p2

2 = j 2 + (N − j)2

N2
. (21)
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So, for N = 6

P =




1 0 0 0 0 0 0
5

36

26

36

5

36
0 0 0 0

0
8

36

20

36

8

36
0 0 0

0 0
9

36

18

36

9

36
0 0

0 0 0
8

36

20

36

8

36
0

0 0 0 0
5

36

26

36

5

36
0 0 0 0 0 0 1




. (22)

To study the convergence of such a system, the eigenvalues λi and corresponding left and right
eigenvectors xi and yi of P must be found.

xT
i P = λ · xT

i (23)

and

Pyi = λ · yi. (24)

The objective is to identify a number of closed states, any subset C of states so that there is
no arc from any of the states in C to any of the states not in C. The first and last states in
our case are clear examples of states where no transition to any other state is allowed any
more. This implies that the multiplicity the eigenvalue λ = 1 is 2. The two corresponding left
eigenvectors xi are straightforward to identify. For yi a system of equations must be solved. An
example of how to solve such a system is described by Ke et al. (2002) for a similar case. This
permits one to prove the convergence of systems using production and update rules similar to
the ones of model A. However, this framework does not seem to be adapted to the study of
models B and C. Other forms of modelling must therefore be considered.

3.2 Interpretation of model B in the framework of stochastic games

Shoham and Tennenholtz (1997) have argued convincingly that the framework of stochastic
games, popular for economic simulations, is relevant for the study of the emergence of social
conventions. By studying more formally the co-ordination game introduced by Lewis (1965),
they showed several important results about the dynamics of convention emergence. A typical
co-ordination game involved two players and is characterized by a payoff matrix like the
following

M =
{

1 0
0 1

}
. (25)

This means that both players received rewards only if they co-ordinated their action. The
problem is therefore very similar to the one studied in section 2, if we consider a population
of agents playing such a game and having to choose between two conventions c1 or c2. Such
forms of co-ordination games are said to have two kinds of Nash equilibria: joint strategies
that are stable in the sense that no single agent benefits from switching to another strategy if
all others remain unchanged. In our case, each Nash equilibrium corresponds to a situation in
which a single convention c1 or c2 is used by the entire population.
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Shoham and Tennenholtz demonstrated that a way to reach such a collective agreement is
to use a reward system called the highest cumulative reward rule. According to this rule, an
agent switches to a new action if and only if the total payoff obtained from that action in the
latest m iterations is greater than the payoff obtained from the currently chosen action in the
same time period. This rule bears important similarity with the update and production rules
of model B.

The authors not only prove that the highest cumulative reward rule guarantees eventual
emergence of co-ordination, but also study the number of iterations required to reach such
a Nash equilibrium. They present a general lower bound on the efficiency of convention
evolution. This lower bound is in N · log(N), where N is the population size.

These are important results, giving qualitative support to the empirical finding of the previous
section. However, the models studied here cannot be strictly assimilated with models based
on reinforcement like the ones studied by this kind of stochastic game framework. In models
B and C, agents do not adapt after receiving a co-ordination reward. Adaptation takes place
while agents are listeners, observing the convention produced by other agents. In the case of
the competition between two conventions, this difference may not play an important role, but
results may differ greatly when considering agreement for a larger number of conventions.
This difference invites us to consider another framework.

3.3 Interpretation of models B and C with Polya processes

Models B and C can be interpreted using the formalism of Polya’s urn problem. Polya pro-
cesses are simple to state and rigorously tractable, yet they lead to complex phenomena. They
have been applied mainly to model path-dependent processes in economical clustering (e.g.
Arthur et al. 1983, 1984, 1994). They have also been used as models for formal learning
(Iosifescu and Theodorescu 1969) and neural modelling (Khanin and Khanin 2000). The rele-
vance of this form of modelling for studying the emergence of shared conventions was initially
argued by Ferrer and Sole (1998).

Let us consider an infinite urn that can contain red balls and white balls. Polya processes
correspond to situations where the probability of adding a red or white ball depends on the
current proportion of these balls in the urn. The following formalism can be used to model such
a path-dependent process in the general case of an urn that can contain K kinds of balls (Arthur
et al. 1983, 1984, 1994). Suppose vector Xt = (X1

t , X
2
t , . . . , X

K
t ) describes the proportion of

colour type 1 to K after n iterations. For n = 1 the initial vector of the urn present in the urn
is b1 = (b1

1, b
2
1, . . . , b

K
1 ). A new ball is added after each iteration. Let us define a sequence of

continuous functions {qn} from the space of colour proportion to the space of probabilities (to
add at each iteration a ball of a particular kind). The probability at iteration t of adding a ball
of colour i is {qi

t (Xt )}. Let w
∑K

i=1 bi
1 be the initial number of balls in the urn. We can define

at iteration t for i = 1, . . . , K the following random variable:

βi
t (x) =

{
1 with a probability qi

t (x)

0 with a probability 1 − qi
t (x)

}
. (26)

The number of balls of colour i at the next iteration is described by:

bi
t+1 = bi

t + βi
t (Xt ). (27)

The total number of balls at time t is (w + t − 1). As a consequence, the proportion Xi
t is:

Xi
t = bi

t

w + t − 1
. (28)
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Equation (27) can be written:

Xi
t+1 · (w + t) = Xi

t · (w + t − 1) + βi
t (Xt ) (29)

Xi
t+1 · (w + t) = Xi

t · (w + t) + βi
t (Xt ) − Xi

t (30)

Xi
t+1 = Xi

t + 1

w + t
[βi

t (Xt ) − Xi
t ]. (31)

This last equation can be rewritten in the following way:

Xi
t+1 = Xi

t + 1

w + t
[qi

t (Xt ) − Xi
t ]︸ ︷︷ ︸

governing part

+ 1

w + t
[βi

t (Xt ) − qi
t (Xt )]︸ ︷︷ ︸

perturbation
.

(32)

This equation captures the basic dynamics of such kind of systems. The governing part is
responsible for the overall evolution of the system and it can be shown that:

E[βi
t (Xt ) − qi

t (Xt )|Xt ] = 0. (33)

As a consequence:

E[Xi
t+1|Xt ] = Xi

t + 1

w + t
[qi

t (Xt ) − Xi
t ]. (34)

The two particular cases that we have studied in section 2 correspond to two urn functions
qi

n(Xt ) that are indepedent from n: max and id (Ferrer and Sole 1998).

• Function max consists of systematically choosing one kind of ball if the corresponding
proportion in the population is higher than the others (max(Xi

t ) = 1) when Xi
t is the maximal

value and zero otherwise). In the case of more than one maximum value, one of them is
chosen at random. This is similar to the greedy production rule PB .

• Function id corresponds to a probabilistic choice proportional to the current proportion of
balls in the urn (id(Xi

t ) = Xi
t ). This is similar to the production rule PC .

The convergence of such a system towards a fixed distribution is formally demonstrated by
Arthur et al. (1983, 1984) in the case of the id function. Ferrer and Sole (1998) introduced
the idea of using the max function to model situations involving positive reinforcement and
showed that an extreme consensus is reached in such a situation. With the max function,
dynamics lead to the rapid domination of a single ball colour over the other ones. With the
id function, dynamics corresponds to a stabilization of the relative proportion of the different
balls in the urn.

Another general formulation can be obtained if we consider qi
t (Xt ) = (Xt)

γ . Chung
et al. (2003) demonstrated that the system converges towards the use of a single ball when
γ > 1 (positive reinforcement), maintains existing proportion when γ = 1 and tends to
equalize the different proportions when γ < 1 (negative reinforcement).

Can we directly extend results obtained in the framework of Polya processes to the models
B and C studied in the previous section? Polya processes are models of a system interacting
with itself. In that sense, distributed systems like the ones studied in section 2 are not, strictly
speaking, Polya processes. A heuristic argument for the equivalence with such systems has
been presented by Ferrer and Sole (1998).

In their model of a distributed Polya process, each urn corresponds to one agent in a
population of N agents. At time t , the interaction between the agents is modelled using a
Boolean connectivity matrix �

ij
t , with �

ij
t = 1 if the ith agent is connected to the j th agent

at time t and zero otherwise. �t is symmetric and, to avoid self-reinforcement, �ii
t = 0. An
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additional constraint is that all agents are always connected to the same number of agents C.
As a consequence,

∑N
j=1 �

ij
t = C. For instance, the following matrix is compatible with this

constraint with N = 4 and C = 1.

�t =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


. (35)

A random matrix of this kind is generated at each step.
An additional index i is now needed for vectors Xt and bt , as every agent has its own urn.

At time t , the proportion and the number of balls of type 1, . . . , K, are now, respectively
Xi

t = (Xi1
t , Xi2

t , . . . , XiK
t ) and bt = (b1

t , b
2
t , . . . , b

K
t ). In the same manner, the probability at

time t that agent i adds a ball of colour j is defined by a sequence of continuous function
{qij

t }.
Ferrer and Sole defined the aggregation function �

ij
t (for agent i and ball colour j ), which

combines the probabilistic choices of all agents connected to the ith agent, in the following
way:

�
ij
t (Xt ) =

N∑
k=1

�ik
t β

kj
t (Xk

t ), (36)

where

β
ij
t (x) =

{
1 with a probability q

ij

i (x)

0 with a probability 1 − q
ij
t (x)

}
. (37)

At time t , if agent i is chosen, the dynamics of the number of balls of type j , b
ij
t , and of the

number of time T i
t the agent i has been selected until time t , are the following:

b
ij

t+1 = b
ij
t + �

ij
t (Xt ) (38)

T i
t+1 = T i

t + 1; (39)

and if the agent i has not been chosen:

b
ij

t+1 = b
ij
t (40)

T i
t+1 = T i

t . (41)

At time t , the number of balls contained in the urn of agent i is w + T i
t · C and the proportion

of balls of colour j for agent i is the following

X
ij
t = b

ij
t

w + T i
t · C

. (42)

In order rewrite equation (42) like equation (28), let us define T ∗i
t as:

T ∗i
t = T i

t + 1 (43)

X
ij
t

b
ij
t

w + (T ∗i
t − 1) · C

. (44)

If agent i has not been selected,

X
ij

t+1 = X
ij
t . (45)
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If agent i has been selected at time t , equation (38) can be rewritten as:

X
ij

t+1 · (w + (T ∗i
t+1 − 1) · C) = X

ij
t · (w + (T ∗i

t − 1) · C) + �
ij
t (Xt ) (46)

X
ij

t+1 · (w + T ∗i
t · C) = X

ij
t · (w + T ∗i

t · C − C) + �
ij
t (Xt ) (47)

X
ij

t+1 · (w + T ∗i
t · C) = X

ij
t · (w + T ∗i

t · C) + �
ij
t (Xt ) − C · X

ij
t (48)

X
ij

t+1 = X
ij
t + �

ij
t (Xt ) − C · X

ij
t

w + T ∗i
t · C

. (49)

This equation can be rewritten in a form similar to the fundamental equation (32) by defining

	
ij
t (Xt ) =

N∑
k=1

�ik
t q

kj
t (Xk

t ) (50)

Xi
t+1 = Xi

t + 1

w + T ∗i
t · C

[	ij
t (Xt ) − C · Xi

t ]︸ ︷︷ ︸
first part

+ 1

w + T ∗i
t · C

[�ij
t (Xt ) − 	

ij
t (Xt )]︸ ︷︷ ︸

second part

(51)

as

E[�ij
t (Xt ) − 	

ij
t (Xt )|Xt ] = 0. (52)

Only the first part of the equation directs the dynamics.
The formulation of equation (51) is not strictly equivalent to equation (32) as the denomi-

nator of the first part now depends not only of t but also of i, with the term T ∗i
t . Based on this

formulation, Ferrer and Sole (1998) studied the conditions for spontaneous consensus in the
case of the max and id urn functions. Their conclusion supports the experimental findings of
section 2.

4. A more complex model

Most of the distributed co-ordination systems studied so far in the context of emergent language
processes are self-organizing lexicons (Hutchins and Hazlehurst 1995, Steels 1996, Oliphant
1997, Arita and Koyama 1998, Cangelosi and Parisi 1998, Steels and Kaplan 1998a, b, Kaplan
1998, 2000, 2001, Dircks and Stoness 1999, Livingstone and Fyfe 1999, Oudeyer 1999,
De Jong and Steels 2003, Smith 2004). In this section, we shall discuss how the properties
characterized for simple models of distributed co-ordination scale to a classic model of self-
organizing lexicon.

Model D. Each agent is now equipped with an associative memory where associations
between a convention set C = {c1, c2 · · · c|C|} and a set of states S = {s1, s2 · · · s|S|} are stored.
In classic models of self-organizing lexicons, states are often referred to as meanings, objects or
referents and conventions as words or signals. We prefer to use the terms states and conventions
as they are more neutral and account for more diverse interpretations of the dynamics studied.
In the matrix Ma, ma,i,j is the score of the association between the state si and the con-
vention cj .

Ma =




ma,1,1 · · · ma,1,|S|
ma,2,1 · · · ma,2,|S|

· · · · · · · · ·
ma,|C|,1 · · · ma,|C|,|S|


. (53)
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As in the other models, two agents are picked at random in the population at each iteration. A
state sh is also chosen a random.Agent a1 produces a convention ck by choosing the convention
associated with the biggest score in the column h.

PD(Ma1 : sh) = cargmaxi
(ma1,i,h) = ck. (54)

Agent a2 uses an interpretation rule ID to decode ck into a possible state using its own matrix. It
chooses the state sl corresponding to the strongest association with the convention ck (highest
score of line k).

ID(Ma2 , ck) = sargmaxj
(ma2,k,j ) = sl. (55)

If l = h the communication is a success, otherwise it is a failure. In this model, different rules of
adaptation are used depending on the cases. If communication is a success, agent a2 increases
the winning association (k, l) and decreases competition associations (this rule is called lateral
inhibition by Oliphant (1997) and Steels and Kaplan (2002)). If the communication is a failure
association (k, l) is decreased and association (k, h) is increased (this supposes the existence
of another type of signalling permitting agent a2 to have access to the intended state sl). Most
models use adaptation rules similar to these ones. Some do not use different adaptation rules
for success and failure and assume that (state, convention) pairs can be systematically observed
by agent a2 (e.g. Smith 2004). The choice of the particular rules used in model D is motivated
by empirical investigations conducted by Kaplan (2001).

UD,l 	=h:



ma2,i,j ←− ma2,i,j + δ if i = k and j = l

ma2,i,j ←− ma2,i,j − δ if i = k and j 	= l

ma2,i,j ←− ma2,i,j − δ if i 	= k and j = l


 (56)

UD,l 	=h:
{

ma2,k,l ←− ma2,k,l + δ

ma2,k,h ←− ma2,k,h − δ

}
. (57)

Initially, each agent has no preferences (all ma,i,j = 0). Let us assume that the number of
possible conventions is much bigger than the number of states: |C| 
 |S|. This is equivalent
to systems in which words are created on the wing (e.g. Steels 1996). This permits one to
ensure that the population converges towards a shared coding (Kaplan 2001).

We can describe the overall behaviour of the population by defining a probabilistic function
p(ci |sj ), giving the probability of using convention ci for state sj . In the same manner, the
probabilistic function i(si |cj ) can be used for the interpretation of convention cj as state
si . Both functions can be obtained by averaging the production and interpretation behaviour
resulting from the set of matrix {Ma} at a given point in the evolution. We can thus define
formally the communication accuracy ca of the population in the following way (see also
Oliphant (1997), Nowak and Krakauer (1999), De Jong and Steels (2003) and Smith (2004)
for similar definitions):

ca = 1

|S|
|S|∑
i=1

|C|∑
j=1

p(cj |si) · i(si |cj ). (58)

By similarity with our previous definition of the coherence level, coherence level in production
for state sj can be defined as:

CLP(sj ) = max
i=1···|C|

(p(ci |sj )). (59)
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By averaging over the different possible states, we can define the global coherence level in
production:

CLP
1

|S|
|S|∑
j=1

CLP(sj ). (60)

Similarly, we can define the coherence level in interpretation for convention ci and global
coherence level in interpretation.

CLI(cj ) = max
j=1···|S|

(i(sj |ci)) (61)

CLI = 1

|C|
|C|∑
i=1

CLI(ci). (62)

When ca = 1, all communication interactions between agents are successful. This implies
neither CLI = 1 nor CLP = 1. A partial coherence in interpretation is possible as long as the
co-ordination is complete for the convention actually produced. It does not matter, for instance,
that agents give different interpretations of convention c1 if this convention is never produced
by any of the agents. In the same manner, a partial coherence in production (CLP < 1) is
possible if the different conventions used for the same state are systematically interpreted
in the same manner. In an inverse manner, CLI = 1 and CLP = 1 does not impose ca = 1.
For instance, s1 and s2 can be associated with the same convention c, c being systematically
decoded into s3 different from s1, and s2. In such a case, co-ordination of the system is complete
but communication is impossible. This is why ca = 1 is usually chosen as the end criterion
for simulations about the self-organization of conventional communication systems (see De
Jong and Steels (2003) for a related discussion about perfect communication systems).

Experiment D.a (N = 10, |S| = 10, |C| = 100 end criteria: ca = 1, 1 run). Figure 10
shows a sample evolution of ca, CLI and CLP for 10 agents and 10 states. An efficient
conventional communication system is established around iteration 1600. In the course of the
evolution, co-ordinated interpretation arises before co-ordinated production.

Figure 10. Lexicon self-organization. Evolution of the communicative accuracy ca, coherence level in production
and interpretation CLP and CLI. Ten agents have to agree on shared mapping for 10 states, using a set of 100
conventions. An efficient conventional communication system is established around iteration 1600 (experiment D.a).
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Figure 11. Convergence time Tc, compared with population size N and with the size of the state space |S|. Results
suggest that in first approximation Tc increases in |S| · N · log(N) (experiment D.b).

Experiment D.b (different N and |S|, end criterion: ca = 1). We can now study the depen-
dency of the convergence time Tc (time to reach ca = 1) on the population size N and the
number of states |S|. Figure 11 plots Tc divided by N · |S| for different values of N and |S|.
In the various experiments ‖C‖ = N · |S|. Data suggest a linear dependency of Tc/N · |S| in
log(N) and |S| of the following type:

Tc

N · |S| ≈ k0 + k1 · log N + k2 · |S|. (63)

Values obtained by linear regression are k0 = −1.34, k1 = 16.0 and k2 = 1.17. The corre-
sponding plane is represented in figure 11.As k2 is 10 times smaller than k1, Tc is approximately
proportional to |S| · N · log N :

Tc ∝ |S| · N · log N. (64)

We can understand this finding intuitively. Because |C| 
 |S|, cases of competition of the
same convention ck for several different states are rare. The dynamics can be understood
as |S| parallel competitions with only a few interactions between them. This is similar to a
situation in which these competitions would be conducted one after another. Therefore, it is
natural to find again the N. log N dependency multiplied by the number of states |S|. However,
for situations in which the different competitions would have complex interferences, the linear
dependency in |S| may not be a good approximation any more.

Can model D be interpreted in one of the theoretical frameworks we considered in section 3?
Model D, like models B and C, does not respect the Markov property because of the historical
character of the update rules used. The complexity of the model also makes it difficult to
formulate in a stochastic game framework. Interpretation in terms of Polya processes is more
promising. As suggested by Ferrer and Sole (1998), extension of the model of equation (51) to
allow more than one urn per agent can be realized with just a syntactic improvement, adding
an additional index to distinguish the agent the urn belongs to. They established a series of
preliminary results in that direction. Working out the formal properties that can be drawn from
an interpretation of model D in such a framework will be the subject of future studies.
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5. General summary and conclusions

Simple models for distributed co-ordination have been studied in this paper from empirical,
formal and qualitative perspectives. The models were deliberately simplified compared with
architectures usually studied in research about self-organizing communication systems. The
results and conjectures that were drawn from these models are the following.

• Two kind of dynamics can lead to consensus. The slowest one has similar dynamics to a
random walk, the faster one (self-reinforcing dynamics) has dynamics similar to several
other systems with positive feedback loops.

• These models of distributed co-ordination can be interpreted using various formalisms
including Markov chains, stochastic games and Polya processes. The advantages and lim-
itations of formal interpretations within these different frameworks have been discussed.
This discussion suggests that Polya processes are the most promising models to address
formally distributed co-ordination in emergent communication systems.

• Both empirical results and qualitative interpretations suggest that convergence time of
models with self-reinforcing dynamics is proportional to N. log(N) where N is the popula-
tion size. This conjecture is experimentally verified with more complex models of lexicon
self-organization.

The following questions arise naturally from this preliminary study. How much of the
dynamics of more complex existing models described in the literature can be accounted with
results described in this article? Are empirically observed convergences in these systems due
to self-reinforcing dynamics (as it is in most of the cases assumed) or to dynamics similar
to random walks? Are there intermediate cases between self-reinforcing dynamics produced
by greedy production rules (like PB) and dynamics resulting of probabilistic rules (like PC)?
And finally: How general is the N · log N convergence?
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