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Abstract

We consider a general multi-principal multi-agent contracting game in a complete-information
supply-chain setting and determine coordinating equilibrium transfer schedules in closed form.
The resulting contracts manage to align incentives for decentralized decision-making and achieve
first-best channel solutions. We allow for multidimensional actions and arbitrary payoff exter-
nalities between all members of the supply chain. For the coordinating contracts to exist it
suffices that all payoff functions are continuous on the compact action sets in a general sense
that accommodates discrete action sets. Our approach unifies and generalizes a significant por-
tion of the extant supply-chain literature. It can be applied to a very large class of many-to-many
supply-chain settings.
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1 Introduction

In most modern supply chains a number of different organizations (“firms”) contribute to the mak-
ing and selling of products and services. In the eyes of the end consumers some of these products and
services may be substitutes and others complements, which naturally leads to payoff interdepen-
dencies, at least for the competing firms downstream in the supply chain. Payoff interdependencies
can also exist further upstream as a result of the firms’ interactions on intermediate component
markets. Due to legal restrictions of “anticompetitive behavior,” horizontal interactions between
different upstream or different downstream firms are typically confined to noncooperative market
transactions, limiting the possibilities for explicit interfirm coordination. In contrast to this, many
vertical relations in a supply chain are governed by nonmarket contractual mechanisms which by
their very nature allow a high degree of interfirm coordination. Coordination in a supply chain is
important, since it avoids efficiency losses due to double marginalization, which Spengler (1950)
identified as a natural consequence of noncooperative behavior as long as the market price for end
consumers reflects some monopoly power. Indeed, a supply chain is said to be “coordinated” if
it maximizes the aggregate net payoffs of all firms involved. Our central research question is to
identify contractual mechanisms that can be used to coordinate multi-principal multi-agent supply
chains. The latter terminology suggests that supply chains – similar to firms (Jensen and Meck-
ling 1976) – can be viewed as a nexus of contracts in which principals (as the designers of the
contracts) propose appropriate individually rational and incentive-compatible mechanisms to their
common agents. To capture some of the existing payoff externalities in supply chains, our model
allows for a multitude of principals and agents, who engage in bilateral vertical contracting.

1.1 Literature

Fuelled by an increasing trend to outsource certain productive activities, contract design in supply
chains has attracted great interest from practitioners and scholars alike. Cachon (2003) provides
an excellent survey of the extant literature. The purpose of contract design generally consists in
specifying a contractual mechanism that coordinates a given supply chain while all involved firms
maintain control over their own actions. Most of the available results pertain to two-echelon single-
principal single-agent supply chains in which the agent makes a single-dimensional decision. Coor-
dinating solutions that have thus been proposed, including buy-back contracts (Pasternack 1985),
revenue-sharing contracts (Cachon and Lariviere 2005), quantity-flexibility contracts (Tsay 1999),
sales-rebate contracts (Taylor 2002), and quantity-discount contracts (Jeuland and Shugan 1983,
Moorthy 1987), generally consist of parameterized reward schedules relating to the agent’s action
(e.g., order quantity, price, effort), as long as the latter is observable.1 Here, in addition to ad-
mitting multiple principals and multiple agents, which can be either upstream or downstream in

1In models with asymmetric information the agent’s action may be hidden (“moral hazard”) or either party may

possess some private information (“hidden information”). We assume here that outcomes are contractible in the

sense that they are both observable and verifiable by a third party. This presupposes a sufficiently high level of

transparency in industries. It can be achieved (at least approximately) if monitoring costs are sufficiently low or if

the contractual output can be sufficiently well specified and measured between parties.
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a two-echelon supply chain, we adopt a largely nonparametric approach with multidimensional
actions.

In addition to the literature on serial two-echelon supply chains, there is some work in operations
management dealing with multiple upstream firms and a single downstream firm (an “assembly sys-
tem”), or, conversely, one upstream firm and multiple downstream firms (a “distribution system”).
Carr and Karmarkar (2005) study competition in multi-echelon supply chains with an assembly
system structure. They apply price-only contracts to achieve quantity coordination, i.e., the pro-
duction quantity of each supplier (upstream firm) equals that of the manufacturer (downstream
firm) who uses the suppliers’ outputs as its own input in fixed proportions. However, their quan-
tity coordination contract cannot achieve channel coordination. In a similar spirit, Majumder and
Srinivasan (2003) consider competing supply chains each with a single supplier and multiple buyers
(“supply trees”). The authors show that it is possible to coordinate the individual supply trees us-
ing two-part tariffs (i.e., a linear pricing schedule in addition to a fixed franchise fee). Bernstein and
Federgruen (2005) investigate a distribution system with competing retailers and random demand
and determine certain coordinating price-discount contracts. To the best of our knowledge, we are
the first to consider the contract-design problem in a multi-principal multi-agent framework in an
operations management setting. Indeed, as Cachon (2003) concludes, “[m]ore research is needed
on how multiple suppliers compete for the affection of multiple retailers, i.e., additional emphasis
is needed on many-to-one or many-to-many supply-chain structures.”

In economics there has been work in several directions on principal-agent games. Bernheim and
Whinston (1986) investigate a game of “common agency” (containing multiple principals and a
single agent) under complete information. They show coalition-proof self-enforcing equilibria can
be obtained by refining the set of Nash equilibria. Their “weakly truthful equilibria” are guaranteed
to exist and yield efficient outcomes. Segal (1999) considers a game with one principal and multiple
agents in which the agents’ payoffs are interdependent. The author shows that as a result of the
agents’ payoff externalities an efficient Nash equilibrium with action-contingent transfers may not
exist in this game. We show that Segal’s result does not carry over to settings with with outcome-
contingent transfers (cf. also footnote 12).

The more recent work by Prat and Rustichini (2003) (henceforth referred to as P&R) studies a
multi-principal multi-agent game (a “game played through agents”) in which agents do not care
about each others’ actions. In that setting they are able to characterize pure-strategy equilibria
of the contracting game and to provide a nonconstructive existence proof under the assumption
that all payoff functions are concave. However, in practical supply-chain applications agent payoff
externalities are ubiquitous and natural. For instance, manufacturers may contract with down-
stream retailers who compete in a common market and are thus affected by each others’ actions.
In addition, the retailers payoff functions may not necessarily be concave (e.g., when they face a
convex demand curve). Completely dispensing with such restrictive assumptions, our approach
generalizes the findings by P&R in several ways:

• First, we provide a characterization of weakly truthful equilibria allowing for externalities in
all participants’ payoffs. We show that any weakly truthful equilibrium outcome is efficient
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relative to its equilibrium transfer schedule, which does not imply the standard efficiency
result that obtains in the absence of agent-payoff externalities.

• Second, we constructively provide a large set of closed-form contracts that coordinate a two-
tier supply chain in the presence of externalities by implementing any given efficient outcome
as a weakly truthful equilibrium of the contracting game. The existence of these contracts
depends solely on the continuity of the participants’ payoff functions on the compact outcome
sets.2 The implementation is ‘strong’ (in the sense that agents strictly prefer efficient actions)
whenever the efficient outcome is unique. Due to the agent-payoff externalities an equilibrium
transfer schedule from a principal to an agent is outcome-contingent: it generally depends on
all agents’ actions, i.e., the full outcome of the game.

• Third, under the assumption that all participants’ payoffs are concave we constructively pro-
vide a set of coordinating contracts with action-contingent transfer schedules: each transfer
schedule proposed to an agent depends only on the action of that agent. We show that this
set of contracts exists whenever the agents’ aggregate ‘compliance cost’ is not too large. In
particular, in the absence of agent-payoff externalities, this set of contracts can be affine for all
principals except possibly one. We note that our results for that special case also generalize
earlier results obtained by the authors and by Strulovici and Weber (2004).

The closed-form expressions of the coordinating equilibrium contracts contain state-contingent
parameter functions that can be adjusted depending on the application at hand. In this paper
we aim to bridge the gap between a practically useful operations management framework and the
economics literature.

1.2 Outline

The rest of the paper is organized as follows. In Section 2 we first introduce the general model
and the underlying equilibrium concept. We then focus our discussion on weakly truthful equi-
libria which yield efficient outcomes and thus coordinating contracts. Based on P&R’s work we
characterize weakly truthful equilibria, discuss existence, and show that our framework applies to
two-echelon supply chains with either supplier control or buyer control equally well. In Section 3
we study efficient contract design. For this, it is sufficient to consider a reduced contract-design
problem any solution to which implies a solution to the original contract-design problem in terms
of excess measures. We provide solutions to the reduced contract-design problem, each of which
noncooperatively implements an efficient outcome using outcome-contingent transfer schedules. In
the special case where all payoff functions are concave we provide a sufficient condition for the
existence of a set of action-contingent transfer schedules that coordinate the supply chain. In Sec-
tion 4 we discuss the application of our general method to the coordination of supply chains and
compare the results to standard commercial contracts often used in practice. Finally, we conclude
in Section 5 with directions for future research.

2If all agents’ action sets are finite, then payoff continuity relative to these discrete sets is trivially satisfied and

our results do apply.

3



2 The Model

2.1 Preliminaries

Consider a setting in which principals can write outcome-contingent contracts with a number of
different agents. By outcome we mean a vector of actions taken by the agents.3 LetM = {1, . . . ,M}
and N = {1, . . . , N} denote the corresponding sets of M ≥ 2 principals and N ≥ 2 agents. After
each principal m ∈M (“she”) and each agent n ∈ N (“he”) signs contracts with each other,4 agents
noncooperatively implement an action (or “outcome”) x ∈ X = X1×· · ·×XN . The outcome vector
x = (xm

n )M,N
m,n=1 contains each agent n’s individual action vector xn = (x1

n, . . . , xM
n ) ∈ Xn ⊂ RML

+

which in turn is composed of M different L-dimensional actions xm
n . His action set Xn is thereby

a compact subset of RML
+ which contains at least one point to allow for the possibility of inaction.

In a supply-chain context it is useful to think of a “trade” xm
n as an L-dimensional vector of goods

and services flowing from agent n to principal m.

Each principal m designs a mapping tm : X → T m from outcomes x to transfer payments tmn (x)
directed at each agent n ∈ N . The choice of principal m’s transfer payment domain T m thereby
accommodates constraints reflecting the relationships between principals and agents, and we assume
that T m = T m

1 ×· · ·×T m
N , where each T m

n is either {0} or R+. If no contractual relationship exists
between principal m and agent n (cf. also Remark 2), then the n-th component of tm(x) could be
constrained to vanish, i.e., T m

n = {0}, otherwise T m
n = R+.

Symbol Explanation

M = {1, . . . ,M} Set of Principals

N = {1, . . . , N} Set of Agents

X = X1 × · · · × XN Set of Feasible Outcomes/Actions

T = T 1 × · · · × T M , T m = T m
1 × · · · × T m

N Set of Admissible Payments (T m
n ∈ {{0}, R+})

C(X , T ) Set of Continuous Functions f : X → T
x = (xm)M

m=1 = (xn)N
n=1 = (xm

n )M,N
m,n=1 Feasible Outcome/Action (x ∈ X )

t = (tm)M
m=1 = (tn)N

n=1 = (tmn )M,N
m,n=1 = (tmn , t−m

−n ) Transfer Schedule (t ∈ C(X , T ))

∆ = (∆m
n )M,N

m,n=1, ∆m =
∑

n ∆m
n , ∆n =

∑
m ∆m

n Excess Transfer Schedule

V m/vm/Fm Principal m’s Net/Gross/Excess Payoff

Un/un/Gn Agent n’s Net/Gross/Excess Payoff

W =
∑

m V m +
∑

n Un Total Surplus

Table 1: Some Notation.

Each agent n cares about his action xn ∈ Xn and the sum of all transfers he obtains in equilibrium.
His net payoff is given by

Un(x; t) = un(x) +
∑

m∈M
tmn (x), (1)

3We maintain the distinction between outcomes and actions throughout this paper.
4“Selective contracting,” where some principals do not sign contracts with some agents, is permitted.
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Figure 1: General Two-Echelon Supply-Chain Setup.

where un(x) is the gross payoff to agent n from the outcome x = (xn, x−n) when he takes action xn

and all other players implement x−n.

When selecting optimal remuneration schemes (contracts) for the different agents, each principal
cares about both her monetary payments and the agents’ actions. Let vm(x) be principal m’s
gross payoff if action x is taken. If she offers the transfer schedule tm = (tm1 , . . . , tmN ) and agents
implement the outcome x, her net payoff is

V m(x; tm) = vm(x)−
∑
n∈N

tmn (x). (2)

Our modelling framework is general enough to accommodate both positive and negative transfer
payments corresponding to what we refer to as bottom-up (principals downstream) or top-down
(principals upstream) contracting (cf. Section 2.5). In the terminology chosen by Grossman and
Hart (1986) we will also refer to bottom-up contracting as “buyer control” and to top-down con-
tracting as “supplier control.” In this context we consider as our leading example a two-echelon
supply chain consisting of S suppliers and R retailers (buyers) with retailers buying products from
their upstream suppliers (cf. Figure 1).5 Depending on the balance of bargaining power in the
supply chain, the retailers could act as either principals or agents. In bottom-up contracting, when
retailer m (as principal) buys the quantity xm

n of goods and services from supplier n (as agent), we
can expect tmn to be positive and our framework exactly applies. In top-down contracting, when
supplier m (as principal) sells a quantity vector xm

n > 0 to retailer n (as agent), we might expect
5If S = {1, . . . , S} is the set of suppliers and R = {1, . . . , R} is the set of retailers, then (S,R) = (M,N ) in the

case of top-down contracting, whereas (S,R) = (N ,M) in the case of bottom-up contracting.
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the transfer tmn from principal m to agent n to be negative, even though we earlier required that
the payment domain T m

n is a subset of R+. Nevertheless, we show in Section 2.5 that top-down
contracting can be simply accommodated in the given framework by converting transfers into non-
negative payments (“quantity discounts” or “rebates”) which are subtracted from a large enough
transfer (“undiscounted wholesale price”) in the opposite direction. Hence, the distinction between
buying and selling, between bottom-up or top-down contracting, will prove insignificant for the
results in this paper.

2.2 Equilibrium Concept

The sequence of events is as follows. First, each principal offers her vector of transfer-payment
schedules to all agents simultaneously and noncooperatively. The transfer-payment schedules are
publicly announced to all agents.6 Second, the agents noncooperatively implement their most
preferred actions. A pure-strategy equilibrium of the two-stage contracting game

Γ = {{M,N}, {V m(·), Un(·)}, {C(X , T m),Xn}} (3)

is a subgame-perfect Nash equilibrium in which all principals and agents use pure strategies.

Definition 1 A pure-strategy equilibrium of the game Γ is a pair (t̂, x̂) ∈ C(X , T ) × X in which
(i) for every n ∈ N given any t ∈ C(X , T ) it is

x̂n(t) ∈ arg max
xn∈Xn

Un(xn, x̂−n; t), (4)

and (ii) for every m ∈M given t̂−m ∈ C(X , T −m) the relation

t̂m ∈ arg max
tm∈C(X ,T m)

V m(x̂(tm, t̂−m); tm) (5)

holds.

We limit our analysis to pure-strategy equilibria of Γ. If the equilibrium contracts achieve coordi-
nation of the supply chain, they implement, by definition, an efficient outcome (Cachon 2003).

Definition 2 (i) The outcome x∗ ∈ X is efficient 7 if

W (x∗) ≥ W (x) (6)

for all x ∈ X , where W (x) =
∑

m∈M vm(x) +
∑

n∈N un(x) corresponds to the system welfare
contingent on outcome x. (ii) The outcome x◦ ∈ X is efficient relative to the transfer schedule t if

W (x◦) ≥
∑

m∈M
V m(x; t) +

∑
n∈N

Un(xn, x◦−n; t) (7)

for all x ∈ X .
6The case in which contracting is bilateral and each agent is only informed about his own contract terms with

a particular principal is more delicate (cf. Segal and Whinston (2003) for an analysis of such a situation with one

principal and n agents).
7By “efficient” we mean that the aggregate benefits of principals and agents (constituting the producer system)

are maximized excluding end consumers (on the product market) and further upstream suppliers (on the component

market) whose benefits we consider as exogenous to the principal-agent system.
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The set of all efficient outcomes for a given supply chain (i.e., given the principals’ and agents’
payoff functions) thus corresponds to the set of maximizers of the total surplus W on X . The
set of efficient outcomes relative to a transfer schedule contains all outcomes for which principals
and agents cannot do better in aggregate provided that (i) each agent takes the action of other
agents as given (“noncooperation”), and (ii) principals and agents must agree on the implemented
outcome (“fulfilled expectations”). Without externalities in the agents’ gross payoffs one can show
that principals have no interest in having transfers to any agent depend on anything other than
that agent’s action, so that there are also no externalities in the agents net payoffs.8 As a result,
in that situation the concepts of efficiency and relative efficiency coincide.

In what follows, we assume that there is a consensus about which particular efficient outcome x̂

is to be implemented. In other words, parties should be able to communicate about (i.e., coordi-
nate on) the outcome. In the special case when all parties’ payoff functions are strictly concave
(cf. Assumption 2 below) and the set of implementable outcomes X is convex, there exists a unique
efficient outcome x̂.

Since we are considering a game with multiple principals, it is necessary to take into account the
possibility of coalition formation among principals, since such coalitions may form noncoopera-
tively, i.e., without binding contracts between the principals. Such coalitional games have first
been considered by Von Neumann and Morgenstern (1944), who also coin the notion of a “stable
equilibrium,” which is such that all players want to join a coalition only if the resulting payoffs
are not dominated by any coalitional deviation. Bernheim et al. (1987) introduce (via a recur-
sive definition) the notion of coalition-proof Nash equilibrium, which is self-enforcing among the
members of any coalition. As Bernheim and Whinston (1986) demonstrate, to guarantee coalition
proofness of a Nash equilibrium (in a game with multiple principals and one agent), it is sufficient
to guarantee that there are no profitable coalitional deviations, which is achieved at what they
term truthful equilibria. P&R, while restricting attention to efficient outcomes, apply this notion
to a game played through agents with multiple principals, analogous to the one considered here. It
is the latter definition that we choose to adopt.

Definition 3 Principal m’s transfer tm ∈ C(X , T m) is weakly truthful relative to the outcome x̂ ∈
X if V m(x̂; tm) ≥ V m(x; tm) for all x ∈ X .

If the principals’ equilibrium transfers are all weakly truthful relative to the outcome x̂ (not nec-
essarily assumed to be efficient), then no principal would prefer to implement a different outcome
with her transfer. Correspondingly, an equilibrium where all the principals’ transfers are weakly
truthful with respect to the same outcome must be self-enforcing.

Definition 4 A weakly truthful equilibrium (WTE) of the game Γ is a pair (t̂, x̂) that is a pure-
strategy equilibrium of Γ with outcome x̂ and in which the transfer t̂m of every principal m ∈M is
weakly truthful relative to x̂.

8In an earlier version of this manuscript we have proved that this claim extends to the situation in which the

agents’ payoff externalities are additively separable, as then at the margin each agent is indifferent about any other

agent’s action.
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The notion of weak truthfulness is directly related to supply-chain coordination, since any outcome
that is part of a weakly truthful equilibrium must be efficient relative to the equilibrium transfer.
As pointed out earlier, the definitions of relative efficiency and efficiency coincide in the absence
of agent payoff externalities, and in that special case Lemma 1 coincides with an earlier result by
P&R (Proposition 3).

Lemma 1 The outcome x̂ of a weakly truthful equilibrium (t̂, x̂) is efficient relative to the equilib-
rium transfer schedule t̂.9

Since we are interested in supply-chain coordination, we limit our attention to weakly truthful
equilibria, for which – it turns out – there exists a simple and useful characterization.

2.3 Characterization of Weakly Truthful Equilibria

As Bernheim and Whinston (1986) and subsequently P&R indicate, it is sufficient to consider
nonnegative transfer payments when considering weakly truthful equilibria. Nonnegative transfer
payments are natural in a bottom-up contracting situation with buyer control, as then typically
positive payments are made for any goods flowing from suppliers to buyers. Nevertheless, by a
simple change of variables it is possible to equivalently formulate the contracting problem with
nonnegative transfers in a top-down contracting situation with supplier control, as is shown in
Section 2.5. The following characterization of WTEs, which generalizes P&R (in the sense that
we allow for arbitrary agent payoff externalities), is later used to find contracts that implement a
given efficient outcome x̂.

Theorem 1 (Characterization of a WTE) A pair (t̂, x̂) arises in a weakly truthful equilibrium
if and only if the following three conditions are satisfied:

vm(x̂)−
∑
n∈N

t̂mn (x̂) ≥ vm(x)−
∑
n∈N

t̂mn (x), (WT)

for every principal m ∈M and every outcome x ∈ X ;

un(x̂) +
∑

m∈M
t̂mn (x̂) ≥ un(xn, x̂−n) +

∑
m∈M

t̂mn (xn, x̂−n), (AM)

for every agent n ∈ N with arbitrary action xn ∈ Xn; and

un(x̂) +
∑
i∈M

t̂in(x̂) = max
xn∈Xn

un(xn, x̂−n) +
∑
i6=m

t̂in(xn, x̂−n)

 , (PM)

for every principal m ∈M and every agent n ∈ N .
9Actually, (t̂, x̂) a WTE implies that W (x̂) ≥

(∑
m∈Mmaxξ∈X V m(ξ; t)

)
+

(∑
n∈N maxξn∈Xn Un(ξn, x̂−n; t)

)
,

which implies relation (7). This stronger result is demonstrated in the proof of Lemma 1.
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The intuition of the equilibrium characterization in Theorem 1 is as follows. The weak truthfulness
requirement in Definition 3 can be rewritten in the form (WT). Given the principals’ equilib-
rium transfer schedules t̂1, . . . , t̂M , the agents implement a Nash equilibrium. In other words, the
outcome x̂ = (x̂1, . . . , x̂N ) must be composed of elements of the agents’ respective best-response
correspondences, which is equivalent to requiring that (AM) (“agent payoff maximization”) holds.
Finally, in equilibrium each principal chooses her transfer schedules such as to minimize the cost of
implementing the outcome x̂. In other words, since transfers are nonnegative by assumption, prin-
cipal m has to pay agent n not more than this agent would obtain by implementing his otherwise
optimal action given that tmn = 0 and all other principals’ reward functions stay in place. This is
principal m’s “cost minimization” condition (PM) with respect to agent n.

2.4 Existence of an Efficient Weakly Truthful Equilibrium

We now discuss the existence of an efficient WTE with outcome-contingent and action-contingent
transfer schedules. Note first that an efficient WTE is a WTE (t̂, x̂) that implements an efficient
outcome x̂ ∈ arg maxx∈X W (x). The following assumption of continuous payoffs guarantees the
existence of an efficient outcome.10

Assumption 1 (Payoff Continuity) The payoff functions vm and un are continuous on the com-
pact set of outcomes X for all (m,n) ∈M×N .

By the Weierstrass theorem (Bertsekas 1995, p. 540) any continuous function on a compact set
has a nonempty set of maximizers; by Berge’s (1963, p. 116) maximum theorem this set is also
compact. When defining the contracting game Γ in (3) we restrict the choice of the principals’
transfer schedules to the set of continuous functions. Together with Assumption 1 this restriction
ensures that all participants’ net payoffs are continuous and therefore that given any transfer
schedule t and given all other agents’ actions, an optimal action xn in agent n’s second-stage
game (described by (4)) exists. Still, if agents’ net payoffs are nonconcave it may be the case that
their set of maximizers becomes nonconvex, so that the existence of an equilibrium is not implied
by Kakutani’s fixed-point theorem.

Let us now consider the question of the existence of a WTE that implements an efficient outcome
using general (continuous) outcome-contingent transfer schedules. It turns out that, as long as all
participants’ payoffs are continuous, our solution to the contracting game (cf. the next section)
resolves this question of existence in a positive, constructive and thus quite satisfying way.

If transfer schedules are restricted to be action-contingent, i.e., any contractual payment from a
principal to an agent can depend only on that agent’s action, then the existence of an efficient
WTE cannot be guaranteed. In Section 4 we provide one example where coordination of a supply
chain with action-contingent contracts is not possible, while it can naturally be coordinated using

10We use the following definition of (uniform) continuity on the compact set X ⊂ RMNL
+ : a function g : X → R is

continuous on X if, given any x ∈ X , for any ε > 0 there exists a δ = δ(ε) > 0 such that x̂ ∈ {ξ ∈ X : ‖ξ − x‖ <

δ} ⇒ |g(x̂) − g(x)| < ε, where ‖ · ‖ is a given norm on the Euclidean space RMNL. Note that according to this

definition any function is continuous whenever X is finite.
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outcome-contingent contracts.11 In the absence of externalities in the agents’ payoff functions
any WTE (t̂, x̂) is efficient (cf. P&R) and equilibrium transfer schedules are action-contingent.
Indeed, the equilibrium conditions (WT) and (AM) then immediately imply (6). However, this
result breaks down in the presence of payoff externalities: by Lemma 1 an efficient WTE with
action-contingent contracts does not exist whenever it is impossible to find a transfer t̂ for which
the resulting fixed-point problem (PM) has an efficient solution x̂ that also satisfies (7). The reason
for this is that for any given transfer schedule the set of outcomes x◦ ∈ X for which (7) holds might
not contain an efficient outcome that also satisfies (PM) for that transfer schedule.12

Since we are interested in the existence of an efficient WTE, let x̂ be any efficient outcome. The
following two assumptions are helpful in establishing the existence of a WTE (t̂, x̂) with action-
contingent transfer schedules in Section 3.3; they are not needed for the rest of our results.

Assumption 2 (Payoff Concavity) Given an efficient outcome x̂ ∈ X , principal m’s gross pay-
off vm(·) and agent n’s gross payoff un(·, x̂−n) are concave for all (m,n) ∈M×N .

Assumption 3 (Action-Set Convexity) The agents’ action sets X1, . . . ,XN are convex.

Under Assumption 2 and Assumption 3 P&R (Theorem 8) guarantee the existence of an effi-
cient WTE (in the absence of payoff externalities). We emphasize that their existence proof, based
on a Banach-space generalization of Farkas’ Lemma (Aubin and Ekeland 1984, p. 144), is highly
nonconstructive and therefore offers no insights as to how to actually design efficient contracts, the
question of central practical importance. In Section 3 we provide a simple explicit equilibrium con-
struction (in the presence of payoff externalities) and thus resolve the question of the existence of
action-contingent equilibrium contracts in a satisfying and direct way. In the presence of externali-
ties Assumption 2 requires only the agents’ payoff concavity with respect to their own actions, not
all other agents’ actions. We also note that the payoff concavity and action-set convexity, although
sufficient, are not at all necessary for the existence of an efficient WTE.

2.5 Standard Two-Echelon Supply-Chain Modelling

At the end of Section 2.1 we pointed out that our model directly applies to bottom-up contracting
and needs some slight modifications to accommodate top-down contracting. The reason for these
modifications is that our model assumes that the transfers from principals to agents are nonnegative
(since T ⊆ RML

+ ), so that the agents’ participation is guaranteed to be individually rational. It
is fairly straightforward to transform a top-down contracting situation (with arbitrary bounded
transfers from agents to principals) into our standard bottom-up contracting framework (with
nonnegative transfers from principals to agents) by interpreting outcome-contingent variations of a
transfer schedule from an agent to a principal as a nonnegative variable discount that the principal

11We are grateful to Hau Lee for his suggestion to distinguish action contingency and outcome contingency.
12In a simple model with one principal and multiple agents Segal (1999) shows that in the presence of payoff

externalities an efficient outcome may not be implemented as a consequence. His necessary and sufficient condition

for implementability (condition (5), ibid., p. 354) corresponds to our condition (7) in Definition 2.
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offers to the agent, off a sufficiently high outcome-contingent ‘base transfer schedule’ from that the
agent to the principal.

Consider a two-echelon supply chain with suppliers (upstream firms) as principals and the retailers
(downstream firms) as agents. Each seller offers a menu of contracts to each buyer. In a top-down
contracting game the transfer payment goes from the buyers to the sellers, i.e., from the agents to
the principals. We now modify the payoffs as follows. First, we choose for each agent n an arbitrary
reference point x̃n = (x̃1

n, . . . , x̃M
n ) ∈ Xn and let

ũn(x) = un(x)−
∑

m∈M
wm

n Λm
n (xm

n − x̃m
n ), (8)

where wm
n are appropriate nonnegative constants and each Λm

n ∈ C(RL
+, R) is convex and such that{

(xm
n , x−m

n ) ∈ Xn : Λm
n (xm

n − x̃m
n ) ≥ 0

}
= {x̃n} .

The functions Λm
n can be seen as functions that penalize deviations from the reference point. The

constants wm
n and functions Λm

n are chosen such that the slope around the reference point is large
enough (in absolute value) so that

x̃n = arg max
xn∈Xn

ũn(xn).

In other words, given no transfer from any principal, agent n chooses x̃n as his strictly preferred
action.13 Defining principal m’s modified payoff by

ṽm(x) = vm(x) +
∑
n∈N

wm
n Λm

n (xm
n − x̃m

n )

ensures strategic equivalence of the game Γ̃ in the modified payoffs with the original game Γ.
Indeed, note first that any efficient outcome x̂ of Γ is also an efficient outcome of Γ̃ and vice-versa,
since total surplus W remains unaffected by the changes. In addition, note that in the game with
modified payoffs each agent n requires a strictly positive transfer payment to implement any action
other than x̃n. Relation (8) together with the convexity of Λm

n implies that Λm
n (xm

n ) is nonnegative
for all feasible xm

n . If we then consider the modified transfer

t̃mn (x) = tmn (x) + wm
n Λm

n (xm
n − x̃m

n ) ≥ 0,

which is admissible (i.e., nonnegative) if wm
n is large enough, it is clear that the principals’ and the

agents’ net payoffs are identical in Γ̃ and Γ. Note that for wm
n large enough, despite the possible

negativity of tmn in the top-down contracting setting, the modified transfer t̃mn is always nonnegative
(and thus admissible) in equilibrium.

Remark 1 (Wholesale Discounts) If Xn = RML
+ , then with x̃ = 0 it is possible to choose

Λm
n (xm

n − x̃m
n ) = xm

n . The resulting linearly augmented modified transfer

t̃mn (x) = tmn (x) + wm
n xm

n

13For instance, if x̃m
n is an interior local maximizer of un on Xn, then one might choose Λm

n (xm
n −x̃m

n ) = ‖xm
n −x̃m

n ‖22.
In that case, if in addition the maximizer x̃n is global on Xn, then any positive constant wm

n > 0 ensures that the

maximizer becomes strict.
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can for a given x−n be interpreted as (negative) quantity discounts tmn (xn, x−n) being offered by
principal m to agent n relative to a sufficiently “expensive” wholesale price wm

n .

Remark 2 (Missing Links) If there is no interaction between principal m and agent n in the
two-tier supply chain (e.g., due to exogenous trade restrictions), i.e., when T m

n = {0}, then agent n

chooses his action xn independently of principal m. More specifically, he selects an action xn =
(x̂m

n , x−m
n ) that maximizes his own payoffs, given the proposed transfers by principals with trading

links to him. As a result, any efficient outcome x̂ contains the component x̂m
n (x̂−m

n ) so chosen;
moreover, by principal m’s cost minimization (i.e., condition (PM)) her transfer t̂mn will vanish in
equilibrium. We therefore do not have to pay special attention to missing trading links, as they
can be accommodated quite naturally in our framework.

3 Efficient Contract Design

In this section we study how efficient outcomes can be implemented in a supply chain or other
setting by an appropriate contract design. Our approach is nonparametric and we are looking for a
set of (nonlinear) transfers t̂ = [t̂mn ] that implement (t̂, x̂) as a WTE. To accomplish this, it is useful
first to simplify the problem of solving the system (WT),(AM),(PM), which leads to a much simpler
“reduced contract-design problem” based on (WT) and (AM). Any solution to the latter problem
can then be mapped to a solution of the original problem by adding appropriate constant transfers,
such that the resulting equilibrium payment schedules satisfy the nonnegativity constraint as well
as (PM). In all of this section we maintain Assumption 1 (payoff continuity). With the exception
of the results on action-contingent contracts in Section 3.3, payoff continuity is all that is needed
to provide a constructive solution to the general contract-design problem with payoff externalities.

3.1 The Reduced Contract-Design Problem

Based on the characterization of weakly truthful equilibria in Theorem 1, we now turn to the
practical problem of designing contracts that implement an efficient outcome.14 For this we consider
a reduced contract-design problem first, the solution to which can be directly mapped to a solution
of the original efficient contract-design problem. Given an efficient outcome x̂ ∈ X , let

Fm(x) = vm(x)− vm(x̂) (9)

denote principal m’s excess revenue from implementing x instead of x̂, and let

Gn(x) = un(x̂)− un(x) (10)

denote agent n’s excess cost from taking an action xn instead of x̂n given the other agents’ ac-
tions x̂−n. If tmn (xn) represents a direct transfer from principal m to agent n contingent on his
taking action xn ∈ Xn, then it is useful to consider the excess transfer,

∆m
n (x) = tmn (x)− tmn (x̂), (11)

14Any such outcome can be determined as a maximizer of W on X (cf. Definition 2).
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relative to agent n’s efficient action x̂n. Thus, by only looking at deviations from the efficient
outcome x̂ we can rewrite conditions (WT) and (AM) equivalently in terms of excess measures,
which yields

Fm(x) ≤
∑
n∈N

∆m
n (x), (WT’)

for any principal m ∈M, and

Gn(xn, x̂−n) ≥
∑

m∈M
∆m

n (xn, x̂−n), (AM’)

for any agent n ∈ N . In other words, at any efficient equilibrium of the underlying game Γ there
does not exist a more profitable outcome than x̂ for any principal, and any agent’s excess cost of
implementing any action different from x̂n outweighs the excess transfer he could obtain, which
thus keeps him from deviating. To obtain a solution to the system of inequalities (WT’),(AM’) it
is useful to find a matrix function

∆ = [∆m
n ] ∈ C(X , RM×N ),

which solves the following stronger reduced contract-design problem (RCDP),

Fm(x)−
∑
j∈N

∆m
j (x) ≤ 0 ≤ Gn(x)−

∑
i∈M

∆i
n(x), (R)

for all (m,n) ∈ M × N and all x ∈ X . The first inequality in (R) is equivalent to (WT’) while
the second inequality in (R) implies (AM’) for any given outcome x̂ ∈ X . The following result
describes a class of solutions up to a constant matrix (at x̂), so that without loss of generality it
is possible to restrict attention to solutions of the RCDP that also satisfy ∆(x̂) = 0, a necessary
condition for representing excess transfers in the form (11).

Lemma 2 (i) Any solution ∆ to the reduced contract-design problem (R) satisfies∑
i∈M

∆i
n(x̂) =

∑
j∈N

∆m
j (x̂) = 0, (12)

for all (m,n) ∈ M × N . (ii) If ∆ is a solution to (R) and δ ∈ RM×N is a constant matrix,
then ∆ + δ also solves the reduced contract-design problem if and only if∑

i∈M
δi
n =

∑
j∈N

δm
j = 0, (13)

for all (m,n) ∈M×N .

Lemma 2 implies that the excess transfer ∆̄(x) = ∆(x)−∆(x̂) (satisfying ∆̄(x̂) = 0) is a solution
to the reduced contract-design problem, if only ∆ solves the system of inequalities (R).15 Thus,
in everything that follows we consider only solutions to the reduced contract-design problem that
satisfy ∆(x̂) = 0 without having to impose this condition as an extra constraint in the search for a

15Note that δ = −∆(x̂) satisfies (13) as a direct consequence of (12).
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solution. If such an excess-transfer matrix ∆ has been found, then as a consequence of Theorem 1
the function

tmn (xn) = ∆m
n (xn) + αm

n ,

with αm
n ∈ R+ some appropriate nonnegative constant, is a candidate equilibrium transfer from

principal m to agent n. The constant αm
n thereby corresponds to the payment contingent on the

equilibrium outcome, i.e., tmn (x̂n) = αm
n .

In addition to the reduction of the solution space to solutions that vanish at the efficient outcome
we also obtain that the set of solutions to the reduced contract-design problem is convex.

Lemma 3 Given any two solutions ∆, ∆̃ to the reduced contract-design problem (R), the convex
combination λ∆ + (1− λ)∆̃ is also a solution, for any λ ∈ (0, 1).

The preceding results provide some properties of the class of solutions to the RCDP. Clearly, this
class can be expected to contain more than one solution, since the N + M inequalities in (R) are
not enough to pin down an N×M solution matrix ∆. To obtain a set of solutions to (R) it is in fact
fully sufficient to specify only the row sums Rm =

∑
j∈N ∆m

j and column sums Cn =
∑

i∈M∆i
n

that solve the system {
Fm(x)−Rm(x) ≤ 0 ≤ Gn(x)− Cn(x),∑

i∈MRi =
∑

j∈N Cj ,
(R’)

for all (m,n) ∈M×N , which is equivalent to (R). We now provide an explicit solution to (R’).

Theorem 2 (Solution to the Reduced Contract-Design Problem) Let x̂ ∈ X be an effi-
cient outcome. The functions (R1, . . . , RM ), (C1, . . . , CN ) with Rm, Cn ∈ C(X , R) constitute a
solution to (R’) if and only if {

Rm(x; fm) = Fm(x) + fm(x),
Cn(x; gn) = Gn(x) − gn(x),

(14)

for all (m, n) ∈M×N and all x ∈ X , where the functions fm, gn ∈ C(X , R+) are such that fm(x̂) =
gn(x̂) = 0 and ∑

i∈M
f i(x) +

∑
j∈N

gj(x) = W (x̂)−W (x) (15)

on X .

Corollary 1 (Existence) (i) A continuous solution to (R’) exists. (ii) The functions (R1, . . . , RM ),
(C1, . . . , CN ) with {

Rm(x) = Fm(x) + ϕm(x)(W (x̂)−W (x)),
Cn(x) = Gn(x) − γn(x)(W (x̂)−W (x)),

(16)

for all (m,n) ∈M×N and all x ∈ X constitute a solution to (R’) as long as the functions ϕm, γn ∈
C(X , R+) are such that

∑
i∈M ϕi +

∑
j∈N γj = 1.
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Proof. (ii) By setting fm(x) ≡ ϕm(x)(W (x̂)−W (x)) ≥ 0 and gn(x) ≡ γn(x)(W (x̂)−W (x)) ≥ 0
on X we obtain, by applying Theorem 2, that the functions (R1, . . . , RM ), (C1, . . . , Cn) constitute
a solution to (R’). (i) The existence of a solution to (R’) follows immediately by setting ϕm = 1/M

and γn = 0 for all (m,n) ∈M×N . �

Note that the solution to (R’) exists, independently of any assumptions about the participants’
payoff functions. It depends solely on the existence of an efficient outcome x̂ ∈ X . The solution (14)
is such that the sum of the principals’ excess transfers to a given agent n at least compensates for
that agent’s excess cost Gn(x) of implementing the efficient outcome x̂ instead of x. Similarly, the
sum of all excess transfers that originate from a given principal m needs to (at least weakly) exceed
that principal’s excess payoff Fm(x) from implementing the outcome x instead of the efficient
outcome x̂. Corollary 1 shows these requirements can be met by simply allocating a fraction of
the nonnegative surplus difference W (x̂) − W (x) to each principal and each agent. Corollary 2
shows that all solutions to the reduced contract-design problem (R) can be characterized in terms
of solutions to (R’).

Corollary 2 (Characterization) The excess-transfer matrix ∆ solves the reduced contract-design
problem (R) if and only if it is such that{

∆M
n = Cn −

∑M−1
i=1 ∆i

n,

∆m
N = Rm −

∑N−1
j=1 ∆m

j ,
(17)

for all (m,n) ∈ M × N , where ∆−M
−N = [∆i

j ]
M−1,N−1
i,j=1 is any continuous excess-transfer matrix

with ∆−M
−N (x̂) = 0, and (R1, . . . , RM ), (C1, . . . , CN ) is a solution to (R’).

Proof. From (17) it is evident that
∑

i∈M∆i
n = Cn and

∑
j∈N ∆m

j = Rm for all (m,n) ∈
{1, . . . ,M−1}×{1, . . . , N−1}. Consider now ∆M

N = CN−
∑M−1

i=1 ∆i
N = CN−

∑M−1
i=1

(
Ri −

∑N−1
j=1 ∆i

j

)
.

If we set R =
∑

m∈MRm and C =
∑

n∈N Cn, then by (R’) it is R = C and thus ∆M
N = CN +

RM −R +
∑M−1,N−1

i,j=1 ∆i
j = CN +RM −C +

∑M−1,N−1
i,j=1 ∆i

j . In other words, both equations in (17)
provide the same specification for ∆M

N . In addition, it is
∑

i∈M∆i
N = CN and

∑
j∈N ∆m

j = RM ,
so that (17) indeed describes a solution to the reduced contract-design problem (R). �

Note that by re-indexing the principals and agents one can replace ∆−M
−N in Corollary 2 by ∆−k

−l for
any given (k, l) ∈ M×N . That means that one can use any principal and any agent as residual
recipient (or “buffer”) for excess payoffs, provided that excess transfers for the other principals
and agents have been fixed. We emphasize the fundamental flexibility the characterization of
the solution to the RCDP in (17) provides. By leaving the excess transfers of ∆m

n for (m,n) ∈
{1, . . . ,M − 1}× {1, . . . , N − 1} free for design, it is possible to coordinate a multi-principal multi-
agent supply chain using many different transfer schemes (including revenue sharing, cost sharing,
or surplus sharing) for almost all principals and almost all agents. The contract-design example in
Section 4.1 helps to clarify this point.
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Symmetric Solutions. From our preceding discussion it becomes clear that the buffer principal
and/or the buffer agent generally bear the asymmetries resulting from particular design choices.
It is therefore natural to ask under what conditions coordinating contracts (in terms of solutions
to the RCDP) can be symmetric across the supply chain, and one naturally obtains the existence
of a symmetric solution, if the payoff structure is symmetric in a general sense. We say that the
contract design game Γ in (3) has a symmetric payoff structure if (i) X1 = · · · = XN , and (ii) there
exist gross payoff functions u, v ∈ C(X , R) such that{

vm(xm, x−m) = v(π(xm
1 , . . . , xm

N ), π(x−m)),
un(xn, x−n) = u(π(x1

n, . . . , xM
n ), π(x−n))

(18)

for all (m,n) ∈M×N , where π(x) denotes a permutation of (possibly vector-valued) elements of
a vector x = (x1

1, . . . , x
1
N ;x2

1, . . . , x
2
N ; . . . ;xM

1 , . . . , xM
N ).16 In other words, if the contracting game

has a symmetric payoff structure, then by (18) the principals care about outcomes but not who
exactly implements them. In addition, any agent cares about his own action and the other agents’
actions, but is indifferent about changing the labels of the other agents.

Corollary 3 (Symmetric Solution) If the contract design game Γ has a symmetric payoff struc-
ture, then the excess-transfer matrix ∆ = [∆m

n ] with

∆m
n (x;λ) =

1− λ

M

(
u(x̂)− u(xn, x−n)

)
+

λ

N

(
v(xm, x−m)− v(x̂)

)
(19)

for all (m,n) ∈ M × N , all x ∈ X , and some λ ∈ [0, 1] solves the reduced contract-design prob-
lem (R), as long as

1− λ

M
(µ̄− ŵ) ≤ 0 ≤ λ

N

(
ŵ − µ

¯

)
, (20)

where ŵ ≡ Mv(x̂) + Nu(x̂) denotes the total welfare at the efficient outcome, and 17

µ
¯
≡ max

x∈X

{∑
i∈M

v(xi, x−i) + Nu(xn, x−n)

}
, µ̄ ≡ max

x∈X

∑
j∈N

u(xj , x−j) + Mv(xm, x−m)

 .

Proof. Instead of relying on the characterization of solutions to the equivalent reformulation (R’)
of the RCDP, it is more convenient to verify directly that the reduced transfers defined by (19)
satisfy (R). Using (18) and (20) we have that

Gn(xn, x−n)−
∑
i∈M

∆i
n(xn, x−n) =

λŵ

N
− λu(xn, x−n)− λ

N

∑
i∈M

v((xi
n, xi

−n), (x−i
n , x−i

−n))

=
λ

N

(
ŵ −Nu(xn, x−n)−

∑
i∈M

v(xi, x−i)

)
≥ λ

N

(
ŵ − µ

¯

)
≥ 0

16The L-dimensional elements xi
j remain unaffected by the permutation.

17The constants µ
¯

and µ̄ are well defined (for the maxima do indeed exist) and are independent of n and m

respectively (for the payoff structure is by assumption symmetric).
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for all n ∈ N and all x ∈ X . Similarly, from (18) and (20) we also obtain that

Fm(xm, x−m)−
∑
j∈N

∆m
j (xm, x−m) =

1− λ

M

∑
j∈N

u((xm
j , x−m

j ), (xm
−j , x

−m
−j )) + Mv(xm, x−m)− ŵ


=

1− λ

M

∑
j∈N

u(xj , x−j) + Mv(xm, x−m)− ŵ

 ≤ 1− λ

M
(µ̄− ŵ)

≤ 0

for all m ∈M and all x ∈ X , which completes our proof. �

A symmetric solution is extremely useful for examining the comparative statics of complex supply
chains with respect to a change in the number of principals and/or the number of agents. The sym-
metric solution is also desirable in situations which exhibit a symmetric payoff structure. However,
an examination of the proof to Corollary 3 shows that, in order for a symmetric solution of the
form (19) to exist, it is necessary that relation (20) hold for at least one λ ∈ [0, 1]. The additional
condition requires that, first, any principal’s payoffs plus the average of the agents’ payoffs shall
not exceed the average of the system surplus split evenly among principals, and, second, that any
agent’s payoffs plus the average of the principals’ payoffs shall not exceed the average of the system
surplus split among the agents. In other words, to interpret condition (20), replicating any single
agent or principal while shutting all other not replicated parties down does not make it possible to
increase surplus beyond the efficient system surplus ŵ.

3.2 Solving the General Contract-Design Problem

We are now ready to state the key result for the design of efficient multi-principal multi-agent
contracts, given any solution to the reduced contract-design problem.

Theorem 3 (Efficient Contract Design) If the excess-transfer matrix ∆ = [∆m
n ] solves the re-

duced contract-design problem (R) implementing the efficient outcome x̂, then (t̂, x̂) with

t̂mn (x;ϑm
n , θn) = ∆̂m

n (x;ϑm
n , θn)− min

xn∈Xn

{
∆̂m

n (xn, x̂−n;ϑm
n + θn, ϑm

n θn/(ϑm
n + θn))

}
(21)

and

∆̂m
n (x;ϑm

n , θn) = ∆m
n (x) + ϑm

n (x)
(
1− θn(x)

)(
Gn(x)−

∑
i∈M

∆i
n(x)

)
(22)

for all (m,n) ∈ M×N , θn ∈ C(Xn, [0, θ̄n]) with θ̄n = sup
{

θ̂n ∈ [0, 1] : mini∈M t̂in(x̂;ϑi
n, θ̂n) ≥ 0

}
and arbitrary ϑm

n ∈ C(Xn, [0, 1]) satisfying
∑

i∈M ϑi
n(x) ≡ 1, is a WTE of Γ.

The last result is essential for specifying coordinating contracts implementing a given efficient
outcome x̂: any solution ∆ of the RCDP can be mapped to a solution of the original contract-design
problem (WT),(AM),(PM) by the outcome-contingent transformation (21)–(22). The modified

17



transfer matrix ∆̂ = [∆̂m
n ] also satisfies the reduced contract-design problem (R). The constant

nonnegative shifts

αm
n (ϑm

n , θn) = − min
xn∈Xn

{
∆̂m

n (xn, x̂−n;ϑm
n + θn, ϑm

n θn/(ϑm
n + θn))

}
≥ 0 (23)

of the modified excess transfers ∆̂m
n correspond exactly to the amounts transferred from principal m

to agent n in equilibrium. These amounts generally depend on the outcome-contingent convex
combination selected in (22). Generally, for each agent n ∈ N the principals are in a conflict
about who should pay him less, since the higher ϑm

n , the lower principal m’s transfer to agent n in
equilibrium. If for principal m the weight ϑm

n = 1, her equilibrium transfer to agent n is indeed as
small as possible, given the solution ∆ to the reduced contract-design problem (R). This conflict of
interest is not resolved as part of the game; it is a consequence of the multiplicity of coordinating
equilibria. The multiplicity can be resolved using pre-play communication including a cooperative
bargaining procedure, which is beyond the scope of this paper. The function θn can be interpreted as
a perturbation of the contracts which reflects the “strength” of the implementation from the agents’
point of view. For θn = 0, which is always feasible, the implementation of the efficient outcome
is weak in the sense that all agents are indifferent between implementing any action xn ∈ Xn.18

Such a weak implementation of the coordinating outcome is not robust and thus not particularly
desirable. The implementation can be strengthened for agent n if θ̄n > 0.

Corollary 4 (Strong Implementation) If in addition to the assumptions in Theorem 3 we have
that (i) there is only one efficient outcome x̂ in X , and (ii) θ̄n > 0, then there exists a transfer
matrix t̂ = [t̂mn ] such that (t̂, x̂) is a WTE, and

un(x̂) +
∑
i∈M

t̂in(x̂) > un(xn, x̂−n) +
∑
i∈M

t̂in(xn, x̂−n) (24)

for all xn ∈ Xn \ {x̂n}.

Proof. Since by assumption W (x̂) > W (x) for all x ∈ X \ {x̂}, we have by Corollary 1 that
the functions (R1, . . . , RM ), (C1, . . . , CN ) with Rm(x) = Fm(x) and Cn(x) = Gn(x) − (W (x̂) −
W (x))/N < Gn(x) for all (m,n) ∈M×N and all x ∈ X \ {x̂} constitute a solution to (R’). If we
set ϑm

n = 1/M and θn = θ̄n/2 > 0, then

Gn(xn, x̂n)−
∑
i∈M

∆̂i
n(xn, x̂n;ϑi

n, θn) =
θ̄n

2
(Gn(xn, x̂−n)− Cn(xn, x̂−n)) > 0

for all xn ∈ Xn \ {x̂n}, which (using the equivalence of (AM’) with (AM)) completes our proof. �

The general result in Corollary 4 is of significant practical importance: as long as the efficient
outcome x̂ is unique and the equilibrium transfer to an agent n is nonzero (which implies that θ̄n >

0), it is possible to implement the efficient outcome strongly in the sense that agent n in equilibrium
strictly prefers the efficient action x̂n to all other feasible actions xn 6= x̂n. It is important to note

18The notion of weak implementation is well-established in the mechanism-design literature (Palfrey 2002).
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that for this result to hold no special regularity assumptions on either the principals’ or the agents’
payoff functions are needed. The requirement that equilibrium transfers are nonzero expresses the
fact that the problem is of some importance to the agents and in exchange for the efficient action
something of consideration is exchanged. The latter is by the “Peppercorn Theory” (Bagwell 1995,
p. 242) a prerequisite for a contract to be court enforceable.

3.3 Action-Contingent Coordinating Contracts

A potential drawback of the general solution to the contract-design problem of noncooperatively
implementing an efficient outcome is that the equilibrium transfer schedules are generally outcome-
contingent. However, we now show that under somewhat more stringent reasonable assumptions
(cf. Section 2.4) on the participants’ payoff functions (such as concavity) and the agents’ action sets
(such as convexity), supply-chain coordination may sometimes be achieved using action-contingent
transfer schedules.

Theorem 4 (Action-Contingent Solution to the RCDP) Let x̂ ∈ X be an efficient outcome
and let all principals’ and all agents’ payoff functions be differentiable. Then, provided that As-
sumption 2 and Assumption 3 are satisfied, the action-contingent excess-transfer matrix ∆ = [∆m

n ]
with

∆m
n (xn) =

∂Fm(x̂)
∂xn

· (xn − x̂n)− λm
n (xn)

∑
j 6=n

Gj(xn, x̂−n) (25)

solves the reduced contract-design problem (R) on X for all (m,n) ∈ M × N , as long as the
functions λm

n ∈ C(Xn, R), given any outcome x ∈ X , are such that∑
m∈M

λm
n (xn) = 1 (26)

for all n ∈ N , and

−
∑
n∈N

λm
n (xn)

∑
j 6=n

Gj(xn, x̂−n)

 ≥ Fm(x)−

∑
j∈N

∂Fm(x̂)
∂xj

· (xj − x̂j)

 (27)

for all m ∈M.

The differentiability assumption in Theorem 4 can be relaxed, since by the Rademacher theorem
(Magaril-Il’yaev and Tikhomirov 2003, p. 160) payoff concavity (i.e., Assumption 2) already im-
plies differentiability of the principals’ and agents’ payoffs almost everywhere. Thus, to guarantee
that (25) is well defined, differentiability of the principals’ payoffs is needed only at the efficient
outcome x̂ (along a path to the boundary of X if x̂ ∈ ∂X , so that X needs to be locally path-
connected in that case).19 The solution (25) to the reduced contract-design problem in conjunction
with Theorem 3 allows implementing any efficient outcome of the general multi-principal multi-
agent game Γ as a WTE. Which particular WTE (in terms of the equilibrium transfer schedules)

19Even if a principal’s payoff is not differentiable at the efficient outcome, it is always possible to select an appro-

priate element of the corresponding subdifferential.
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is chosen, influences the distribution of surplus in the supply chain. There is thus some interest in
finding all possible solutions to the reduced contract-design problem.

Theorem 5 (Existence of an Action-Contingent Solution to the RCDP) Under the assump-
tions of Theorem 4 a solution of the form (25)–(27) to the reduced contract-design problem (R) exists
if and only if

max
x∈X

∑
m∈M

Fm(x)−
∑
j∈N

∂Fm(x̂)
∂xj

· (xj − x̂j)

+
∑
n∈N

∑
j 6=n

Gj(xn, x̂−n)

 ≤ 0. (28)

If we identify Fm(x) −
∑

j∈N
∂F m(x̂)

∂xj
· (xj − x̂j) as principal m’s ‘net affine excess payoff’ and the

term
∑

j 6=n Gj(xn, x̂−n) as the ‘excess compliance cost’ of all agents other than agent n if agent n

implements an action xn possibly different from x̂n, then condition (28) can be interpreted as
follows: the sum of the principals’ net affine excess payoff and the agents’ excess compliance cost
can never exceed zero. In other words, to remain implementable a solution to the reduced contract-
design problem should be such that there is no outcome at which the principals’ net affine excess
payoff strictly exceeds the agents’ compliance payoff (taken as negative compliance cost). Since
the former is always nonpositive (cf. relation (38) in the proof of Theorem 4), this condition may
be restrictive only for outcomes in which the agents’ aggregate compliance cost is positive, i.e.,
at which there might be a positive incentive to jointly deviate. Thus, nonpositivity of the agents’
excess compliance cost relative to all outcomes is sufficient for condition (28) to be satisfied. Note
that in the absence of agent payoff externalities this condition holds trivially.

Corollary 5 Under the assumptions of Theorem 4 an action-contingent solution to the reduced
contract-design problem (R) exists if

max
x∈X

{∑
n∈N

ū−n(xn, x̂−n)

}
≥
∑
n∈N

un(x̂), (29)

where ū−n(xn, x̂−n) = 1
N−1

∑
j 6=n uj(xn, x̂−n) is the average gross ‘compliance payoff’ of agents

other than agent n if agent n were to implement the action xn ∈ Xn while all other agents implement
the efficient action profile x̂−n.

Proof. By virtue of relation (38) in the proof of Theorem 4 condition (29) implies condition (28)
in Theorem 5. �

Given an action-contingent solution to the RCDP, Theorem 3 can be used as before to find a
solution to the original contract-design problem; as long as the parameter functions ϑm

n and θn are
action-contingent, the equilibrium transfer matrix t̂ is also action-contingent.

4 Supply-Chain Coordination

The general results obtained in Sections 2 and 3 can be used to construct coordinating contracts
in two-tier multi-principal multi-agent supply chains (cf. Figure 1). From our earlier discussions it
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is clear that the coordinating vertical contracts are such that the principals’ transfers to the agents
depend directly on the agents’ multidimensional actions. For instance, in top-down contracting
(cf. Section 2.5) a supplier’s transfer to a retailer generally depends on the product quantity ordered
(quantity-dependent pricing), possibly applying discounts across products and orders (“generalized
tying”), and may contain clauses on the retailer’s pricing policy (resale price maintenance) as well
as provisions pertaining to actions for other suppliers (such as exclusive dealing). To illustrate and
discuss the method, we first consider a concrete application by constructing coordinating contracts
in a standard supply-chain setting (Section 4.1). We then examine a number of standard contracts
often used in practical bilateral supply-chain contracting and relate them to our findings in the
more general multi-principal multi-agent setting (Section 4.2).

4.1 Application: Coordinating a Differentiated Cournot Oligopoly

We now illustrate how to obtain closed-form expressions of coordinating contracts in a setting
where M ≥ 2 manufacturers (principals) supply differentiated goods to N ≥ 2 retailers, who are
competing as Cournot oligopolists in a common market for end-products. This is an archetypical
supply-chain contracting problem of which many practical instances can be observed (such as
Coke and Pepsi supplying their products to a number of retail chains), and for which no general
solution is currently available in the supply-chain literature. For simplicity, we assume that each
manufacturer m produces its goods at a constant marginal cost c ≥ 0. Each retailer n sells the
quantities xm

n it orders from manufacturer m on a common market at the price

pm(x) = µ−
∑
j∈N

xm
j + β

∑
i6=m

xi
j

 .

The constant β ∈ (−1/(M−1), 1) indicates the degree to which the products are substitutes (β ≥ 0)
or complements (β ≤ 0), and the constant µ > c defines the market potential. Since this is
a top-down contracting problem, we can use our insights developed in Section 2.5 to transform
this problem into a form that guarantees that payments (discounts) from principals to agents are
nonnegative by introducing wholesale prices. Because of the symmetry in our example we can,
without any loss of generality, assume that the base wholesale price w ≥ c is the same for all
manufacturers. Manufacturer m’s gross payoff (before discounts) is thus

vm(x;w) = (w − c)
∑
j∈N

xm
j ,

while retailer n’s gross payoff (before discounts) is

un(x;w) =
∑
i∈M

(
pi(x)− w

)
xi

n.

Naturally, total surplus W (x) =
∑

i∈M vi(x;w) +
∑

j∈N uj(x;w) =
∑

i∈M
(
pi(x)− c

)∑
j∈N xi

j is
independent of w and is maximized at the efficient outcome x̂ with

x̂i
j =

µ− c

2N(1 + (M − 1)β)
,
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so that the optimal system payoff of the coordinated supply chain becomes

Ŵ = W (x̂) =
M(µ− c)2

4(1 + (M − 1)β)
.

Since demand is unaffected by the number of agents, the surplus of the coordinated supply chain
must be independent of N . The excess measures in (9) and (10) are thus

Fm(x;w) = (w − c)

∑
j∈N

xm
j − µ− c

2(1 + (M − 1)β)


and

Gn(x;w) =
M (µ + c− 2w) (µ− c)

4N(1 + (M − 1)β)
−
∑
i∈M

(
pi(x)− w

)
xi

n.

We obtain a general outcome-contingent20 solution to the RCDP from Corollary 1. For simplicity,
we set ϕm = τ/M and γn = (1 − τ)/N with τ ∈ C(X , [0, 1]) an arbitrary continuous function, so
that  Rm = Fm + τ

(
Ŵ −W

)
/M,

Cn = Gn − (1− τ)
(
Ŵ −W

)
/N,

with (m,n) ∈M×N , constitutes a solution to (R’). Using Corollary 2 it is now possible to choose
from a number of different contract designs to coordinate the multi-principal multi-agent supply
chain, since the choice of the excess-transfer matrix is free except for one row and column which have
to be chosen in accordance with our solution to (R’). Let (i, j) ∈ {1, . . . ,M − 1} × {1, . . . , N − 1}.
Then, setting ∆i

j = Ri/N corresponds to sharing the principals’ excess payoffs (on a per-agent
basis), setting ∆i

j = Cj/M corresponds to sharing the agents’ excess costs (on a per-principal basis),
and setting ∆i

j = λRi/N + (1 − λ)Cj/M with λ ∈ (0, 1) corresponds to a convex combination of
sharing the principals’ excess payoffs and the agents’ excess costs (on a per-supply-chain-member
basis).21 Clearly more contracting possibilities do exist, but for sake of discussion we opt in this
example for the third contracting option (by Lemma 3 it is also a solution), and find

∆m
n (x;w) = λ(w−c)

(
x̄i − x̂m

j

)
+(1−λ)

(
µ + c− 2w

2
x̂i

j −
∑
i∈M

pi(x)− w

M

(
xm

j − x̂m
j

))
+(λ+τ−1)

Ŵ −W

MN
,

for all (m,n) ∈ {1, . . . ,M −1}×{1, . . . , N −1}, where x̄i = (1/N)
∑

j∈N xi
j is the average quantity

ordered from principal i. The above excess transfers ∆m
n are nonzero, whenever the transaction

quantity between manufacturer m and retailer n deviates from the supply-chain average. The
missing excess transfers ∆M

n and ∆m
N for (m, n) ∈ M×N can be obtained from (17). In general,

those excess transfers will not be of exactly the same surplus-sharing form as the other excess
transfers; to coordinate the supply chain at least one principal and one agent are needed as a
“buffer” to balance out incentives across the supply chain. While our example exhibits a symmetric
payoff structure according to (18) (including symmetric independent action sets), condition (20) is
not satisfied, so that it is in fact impossible to find a completely symmetric contracting structure that
coordinates our multi-principal multi-agent supply chain (cf. our discussion following Corollary 3).

20Although assumptions 2 and 3 are satisfied, condition (28) is not, so that by Theorem 5 an implementation of

the efficient outcome with action-contingent contracts as in Theorem 4 is not possible.
21In our specific example, because of top-down contracting, the agents’ excess cost corresponds to minus the agents’

excess revenue, which can be interpreted as the agents’ opportunity cost when implementing inefficient actions.
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We are now ready to use Theorem 3 and specify a coordinating contracting structure. To simplify
expressions we set ϑm

n ≡ 1/M , and θn ≡ θ ∈ [0, 1] small enough, so that for (m,n) ∈ {1, . . . ,M −
1} × {1, . . . , N − 1}:

∆̂m
n (x;w) = λ(w−c)

(
x̄i − x̂m

j

)
+(1−λ)

(
µ + c− 2w

2
x̂i

j −
∑
i∈M

pi(x)− w

M

(
xm

j − x̂m
j

))
+(λ+τ−1+ξ)

Ŵ −W

MN
,

where ξ = (1 − τ)(1 − θ). The remaining elements of ∆̂ are ∆̂M
n = ∆M

n + ξ
(
Ŵ −W

)
/(MN)

and ∆̂m
N = ∆m

N +ξ
(
Ŵ −W

)
/(MN) for all (m, n) ∈M×N . Thus, using (21) a set of coordinating

contracts can be specified in the form

t̂mn (x;w) = ∆̂m
n (x;w)− min

xn∈Xn

{
∆̂m

n (xn, x̂−n;w)
}

,

where retailer n’s action set Xn can, without any loss in generality, be restricted to all nonnegative
order quantities that do not exceed the maximally plausible ‘monopolistic’ order quantity (µ −
c)/(2(1+(M−1)β)) when all other retailers order nothing.22 We obtain the in-equilibrium discounts,

αm
n (w) = − min

xn∈Xn

{
∆̂m

n (xn, x̂−n;w)
}
∈ [0, wx̂m

n ],

offered by manufacturer m to agent n, where we have set θ = 0 for simplicity and assumed that w is
chosen large enough, x̂m

n w ≥ αm
n (w), to provide the appropriate incentives through the nonnegative

discounts. By Corollary 4 one obtains a strong implementation for any arbitrarily small posi-
tive θ, so that it is possible to strongly implement the unique efficient outcome using in-equilibrium
discounts arbitrarily close to the above.

It is important to note that it is impossible to coordinate the supply chain using wholesale prices
only (even when they vary with m and n). The nonlinearities in the above equilibrium discount
schedules are essential for the noncooperative provision of appropriate incentives for the retailers
to implement the efficient outcome.

4.2 Vertical Contracting Provisions

In his excellent review of vertical contracting, Katz (1989) outlines six functions of vertical contracts
including quantity-dependent pricing, ties, royalty schemes, requirements contracts, resale price
restraints, and resale customer restraints. We discuss how our framework can accommodate each
of these functions and examine practical complete-information contracts (“commercial contracts”)
that are often used in supply-chain settings (Cachon 2003).

Quantity-Dependent Pricing. Nonlinear transfer schedules can serve both to price discriminate
in situations with asymmetric information (screening contracts) and to coordinate a supply chain.
In our complete-information setting we naturally limit our attention to coordination. Oren et
al. (1982) demonstrated the powerful role of two-part tariffs in quantity-dependent pricing. In fact,
as a direct consequence of convex analysis, as long as a nonlinear pricing schedule is concave it
can be represented as the lower envelope of an indexed family of two-part tariffs. Jeuland and

22In a Cournot oligopoly the players’ actions are strategic substitutes.
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Shugan (1983) show that nonlinear pricing schemes can coordinate a channel, and Moorthy (1987)
points out that indeed this can be achieved using simple two-part tariffs. Our findings confirm
that Moorthy’s intuition carries over to multi-principal multi-agent environments as long as there
are no agent-payoff externalities and all payoff functions are concave. In that case, we obtain by
Theorem 4 and Theorem 5 action-contingent, affine contracts, corresponding to two-part tariffs.
However, when there are agent-payoff externalities the efficiency of two-part tariffs generally breaks
down, as our example in Section 4.1 shows. Similarly, when payoff functions are nonconcave, the
separating hyperplane theorem ceases to hold and it may become impossible to coordinate the
supply chain using two-part tariffs. In the general case a coordinating quantity-dependent pricing
contract becomes nonlinear.

Ties. Given that each agent’s action can be L-dimensional, it is possible for L > 1 that principal m’s
equilibrium transfers are not additively separable in the different components, xm

n,1, . . . , x
m
n,L, of

agent n’s action. In that case, the compensation for different components of an agent’s action is
linked, which amounts to a (generalized) tying arrangement. Tying arrangements in this sense may
arise naturally as a consequence of (anti-)complementarities in an agent’s cost structure, as can
easily be seen from the coordinating contracts in Theorem 3: tying can occur whenever Gn or Fm

lack additive separability, resulting in interdependencies of incentives at the margin. We emphasize
that tying arrangements under these circumstances are efficient in the sense of maximizing total
surplus of the supply chain.

Royalty Schemes. In contracts with royalty schemes, the transfer payment between a supplier
and a buyer is a function of the buyer’s sales in the final goods market rather than based on the
amount of intermediary goods exchanged. In that situation, some of the contractual provisions
may be contingent on the resolution of a random variable (such as demand). Although ex-post
provisions can be accommodated in our framework, we emphasize that at least in the absence of
renegotiation all the contractual terms are constructed based on all parties’ expected payoffs. Our
method yields certainty-equivalent contracts which are ex-ante coordinating and may without loss
of generality contain ex-post provisions.23 However, ex-post provisions that result in the same
expected payoffs (or expected utilities in the presence of risk aversion) are all equivalent, and
thus we cannot expect specific ex-post design statements from our theory, but we can nonetheless
integrate existing contractual schemes that contain ex-post provisions (such as quantity-flexibility
contracts) into a unifying framework. The following commercial contracts with royalty schemes are
commonly found in supply chains. These contracts tend to be used in markets for goods with a
relatively short shelf life, such as periodicals, baked goods, video rentals, or current car models.

• Pay-Back Contract. One possibility for a supplier to coordinate a one-to-many supply chain
recognized by Pasternack (1985) is the pay-back contract, in which retailer m pays supplier n

an amount of wm
n per unit purchased, plus bm

n per unit remaining at the end of the season in
order to incentivize the supplier’s capacity investment. This contract is essentially a two-part
tariff scheme and thus our earlier remarks on quantity-dependent pricing apply.

23If ω̃ is a random variable and τm
n (xn, ω̃) is an ex-post contingent contract between principal m and agent n, then

our theory makes statements about the certainty-equivalent contract tm
n (xn) = Eτm

n (xn, ω̃).
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• Revenue-Sharing Contract. Cachon and Lariviere (2005) discuss revenue sharing as a way to
coordinate supply chains in which reliable revenue monitoring is feasible, such as in the market
for video rentals. Under such a revenue-sharing scheme retailer m pays supplier n an amount
of wm

n per unit capacity installed, plus a fraction of his revenue. In our framework, revenue-
sharing, cost-sharing, or surplus sharing contracts arise naturally from the solution to the
reduced contract design problem in corollaries 1 and 2 (cf. also the example in Section 4.1).
From a coordination standpoint, the choice of the solution ∆−M

−N is essentially free, but it
critically influences the symmetry of transfer agreements across the supply chain. If action-
dependent contracts can be implemented in the multi-principal multi-agent supply chain
(using results from Section 3.3), the resulting contracts have the flavor of both sharing the
principals’ revenues linearly, and sharing the agents’ revenues as a function of the externalities
that agent n exerts on the other agents.

• Quantity-Flexibility Contract. Tsay (1999) studies supply chain coordination with quantity-
flexibility contracts. Under a quantity-flexibility contract mechanism, retailer m pays sup-
plier n an amount of wm

n per unit purchased and compensates the supplier for unused capacity
up to a fraction ρm

n ∈ [0, 1] of total capacity installed.

• Sales-Rebate Contract. Taylor (2002) considers a sales-rebate contract for supply-chain coor-
dination, under which retailer m pays supplier n an amount of wm

n per unit purchased and an
extra rebate rm

n per unit sold above a threshold qm
n . This corresponds to a quantity-dependent

transfer scheme which can naturally arise in our framework.

Requirements Contracts. Bilateral contracts that contain provisions which affect an agent’s
payoff with respect to his behavior across different principals are generally termed requirements
contracts. In the extreme, requirements contracts could involve exclusive dealing arrangements, in
which certain agents exclusively trade with certain principals and are compensated accordingly. In
cases where agents each implement multiple actions, such as capacity orders and pricing decisions,
requirements contracts may also include resale price restraints (e.g., to achieve a price mainte-
nance level) or resale customer restraints (e.g., to guarantee territoriality and thus restrict agent
competition detrimental to overall supply-chain profit). As a direct consequence of Theorem 3, to
implement efficient outcomes in multi-principal multi-agent supply chains, requirements contracts
are generally unavoidable (except possibly when assumptions 2 and 3 hold). These requirements
contracts, even though they arise noncooperatively, might be interpreted by a regulator as anti-
competitive behavior.

5 Conclusion

Supply chains with many participating firms are a ubiquitous reality. It may therefore seem sur-
prising that the coordination of such supply chains has received virtually no attention in the extant
literature. This lack of results is most likely not due to oversight but to the associated technical
difficulties which have been partially overcome by recent advances in the economics literature. Il-
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lustrating the additional complications, Cachon’s (2003) postulate that “[e]ach firm in a supply
chain must execute a precise set of actions to achieve optimal supply-chain performance” carries
a new meaning in multi-principal multi-agent supply chains, since maximizing the firms’ overall
surplus requires not only vertical coordination through contracts but also implicit horizontal co-
ordination, however without the use of anticompetitive practices. It is the noncooperative nature
of the principals’ contract design that introduces a number of technical difficulties which may ac-
count for the current lack of results in multi-principal multi-agent supply-chain contracting, a gap
which we hope to fill: as long as all payoffs are continuous (in a weak sense, allowing for discrete
action sets; cf. footnote 10) on compact action sets, we have provided a set of contracts that co-
ordinate any multi-principal multi-agent supply chain. More specifically, starting from a solution
to a “reduced contract-design problem” (Theorem 2), we have shown that it is possible to ob-
tain coordinating contracts which allocate surplus to the different participants in the supply chain
by assigning appropriate outcome-contingent weights in the simple transformation (Theorem 3)
leading to coordinating bilateral contracts in terms of (nonlinear) transfer-payment schedules. We
emphasize that in contrast to most of the available results, even in the literature on single-principal
single-agent supply-chain contracting, our approach is entirely nonparametric: weighting functions
are used solely to select particular elements from the set of coordinating contracts. In addition to
filling a void in the theoretical literature on supply-chain contracting, our results have a number of
interesting practical implications, of which we stress only two.

• First, virtually all known (and used) commercial contracts can be employed by (almost all)
principals to coordinate multi-principal multi-agent supply chains, since Corollary 2 provides
large flexibility in conjunction with Corollary 1 (e.g., by setting the γn’s to zero). To achieve
reasonably homogeneous contracting terms across the supply chain, however, the contracts
in general will contain a portion of surplus which translates nonlinearities in payoffs to non-
linearities in incentive payments. The results on single-principal single-agent supply chains
are thus naturally nested in our more general framework. However, our results imply that in
general, to coordinate a multi-principal multi-agent supply chain one principal and one agent
need to be used as a “buffer” to distribute incentives across all members of the supply chain
(cf. Corollary 2). If all payoffs are concave and all action sets are convex, it may be possible
to coordinate the supply chain using action-contingent contracts. The corresponding results
in Section 3.3 generalize earlier results by P&R and Strulovici and Weber (2004).

• Second, affine contracts – even though easy to write down – are generally not desirable to
principals: for any given agent n, the more a principal is able to promise out of equilibrium,
the less she has to pay this agent in equilibrium! In other words, in-equilibrium transfers
are dramatically related to the out-of-equilibrium contract design. However, since in order to
enable supply-chain coordination the total amount of out-of-equilibrium promises is limited for
each agent (to Gn), each principal has a vested interest to capture as much of these feasible
promises as possible. As a result, the allocation of the (outcome-contingent) weights ϑm

n

(which sum to one over all m ∈M) is most likely subject to negotiation, despite the fact that
the actual equilibrium implementation is by construction noncooperative and is thus not in
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conflict with anticompetitive clauses.

The results obtained here are limited in the sense that it is critical that contracts can be made
contingent on all agents’ actions. It is thus important that these actions be observable by all
members of the supply chain and verifiable by an independent court of law, which guarantees timely
enforcement. Further research is needed to provide satisfying answers in more realistic settings.
Another limitation, and thus an opportunity for further research, lies in our nonexhaustive answer to
the question of selecting “appropriate” coordinating contracts out of the set of feasible coordinating
contracts. Depending on the situation, this selection might be guided by aspects such as revenue
extraction or practical implementability. For instance, under customary compliance regimes in a
certain industry some contracts might be preferred to others; or, some contracts (e.g., the ones
without requirements clauses) may allow for simpler monitoring given the industry specifics. The
last points us to another major research direction related to multi-principal multi-agent contracting
in which we foresee much activity: the relaxation of the full information (or full contractibility)
assumption, allowing for moral hazard and/or hidden information in supply-chain relationships, be
they vertical or horizontal.
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Appendix: Proofs

Proof of Lemma 1. Since t̂m is weakly truthful with respect to the equilibrium outcome x̂, we obtain by
Definition 3 that

vm(x̂)−
∑
n∈N

t̂mn (x̂) ≥ vm(x)−
∑
n∈N

t̂mn (x) (30)

for all x ∈ X and all m ∈ M. By virtue of the inclusion (4), which characterizes the second-stage pure-
strategy Nash equilibrium, we have that

un(x̂) +
∑

m∈M
t̂mn (x̂) ≥ un(xn, x̂−n) +

∑
m∈M

t̂mn (xn, x̂−n) (31)
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for all xn ∈ Xn and all n ∈ N . Hence, by summing up relation (30) over all m ∈ M and relation (31) over
all n ∈ N we obtain that relation (7) in Definition 2 holds, so that the outcome x̂ is efficient relative to the
equilibrium transfer schedule t̂.24 �

Proof of Theorem 1. The equilibrium condition (4) can be equivalently rewritten in the form (AM).
Principal m, given the other principals’ transfer vector t̂−m, can induce agents to implement any outcome x ∈
X , if only she promises each agent n a transfer that is larger than the difference the agent would obtain
by implementing his otherwise preferred action. In other words, to persuade agent n to implement the
outcome xn which is part of her desired overall outcome x = (x1, . . . , xN ), principal m’s transfer t̂mn (xn, x̂−n)
to agent n as a reward for action xn needs to satisfy

t̂mn (xn, x̂−n) ≥ max
ξn∈Xn

un(ξn, x̂−n) +
∑
i 6=m

t̂in(ξn, x̂−n)

−

un(xn, x̂−n) +
∑
i 6=m

t̂in(xn, x̂−n)


= Rm

n (x̂−n)−

un(xn, x̂−n) +
∑
i 6=m

t̂in(xn, x̂−n)

 ,

where

Rm
n (x̂−n) = max

ξn∈Xn

un(ξn, x̂−n) +
∑
i 6=m

t̂in(ξn, x̂−n)


is agent n’s highest incremental (i.e., over and above what he obtains by simply free-riding on the other agents’
actions) reward without principal m. As a consequence of the definition of weak truthfulness (Definition 3),
any equilibrium outcome x̂ needs to maximize principal m’s net payoff,

V m(x, t̂m) = vm(x)−
∑
n∈N

t̂mn (xn, x̂−n)

≥ vm(x)−
∑
n∈N

Rm
n (x̂−n)−

un(xn, x̂−n) +
∑
i 6=m

t̂in(xn, x̂−n)

 ,

so that x̂ solves the fixed-point problem

x̂ ∈ arg max
x∈X

vm(x) +
∑
n∈N

un(xn, x̂−n) +
∑
i 6=m

t̂in(xn, x̂−n)

 . (32)

Let us now consider principal m’s equivalent cost minimization problem. Given an outcome x̌ principal m
solves

min
tm∈C(X ,Tm)

∑
n∈N

tmn (x̌n, x̂−n), (33)

subject to

tn(x̌n, x̂−n) + un(x̌n, x̂−n) +
∑
i 6=m

tin(x̌n, x̂−n) ≥ tn(xn, x̂−n) + un(xn, x̂−n) +
∑
i 6=m

tin(xn, x̂−n), (34)

for all xn ∈ Xn and all n ∈ N . One can verify that any solution t̂m to the cost minimization problem (33)–(34)
is such that

t̂mn (x̌n, x̂−n) = Rm
n (x̂−n)−

un(x̌n, x̂−n) +
∑
i 6=m

t̂in(x̌n, x̂−n)


and

t̂mn (x̌n, x̂−n) ≤ Rm
n (x̂−n)−

un(x̌n, x̂−n) +
∑
i 6=m

t̂in(xn, x̂−n)


24This also implies the more restrictive inequality in footnote 9.
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for all xn ∈ Xn. By replacing (x̌n, x̂−n) with the equilibrium outcome x̂ we obtain

un(x̂) +
∑
i∈M

t̂in(x̂) = Rm
n (x̂−n)

and
un(xn, x̂−n) +

∑
i∈M

t̂in(xn, x̂−n) ≤ Rm
n (x̂−n)

for all xn ∈ Xn. The last two relations together are equivalent to (PM).

⇐: Let (t̂, x̂) ∈ C(X , T ) × X be a pair that satisfies (WT), (AM), (PM). The inequality (WT) implies by
Definition 3 that t̂m is weakly truthful for any principal m ∈ M. It is clear that (AM) is equivalent to (4),
i.e., given t̂ the action x̂n is a best response for any agent n ∈ N . By summing up (AM) over all n ∈ N and
adding (WT) we obtain

vm(x̂) +
∑
n∈N

un(x̂) +
∑
i 6=m

t̂in(x̂)

 ≥ vm(x) +
∑
n∈N

un(xn, x̂−n) +
∑
i 6=m

t̂in(xn, x̂−n)


for all principals m ∈ M and outcomes x ∈ X . The latter inequality is equivalent to (32), which in turn
implies (5). Thus, the pair (t̂, x̂) must be a WTE of the game Γ. �

Proof of Lemma 2. (i) At the efficient outcome x̂ we have that Fm(x̂) = Gn(x̂) = 0 for all (m,n) ∈M×N .
Hence, the matrix ∆(x̂) = [∆i

j(x̂)] must be such that∑
i∈M

∆i
n(x̂) ≤ 0 ≤

∑
j∈N

∆m
j (x̂),

for all (m,n) ∈ M × N . Assume that there exists an index m̂ ∈ M such that
∑

j∈N ∆m̂
j (x̂) > 0. By

separately summing up all the rows and summing up all the columns of ∆(x̂) we obtain∑
n∈N

∑
i∈M

∆i
n(x̂) ≤ 0 <

∑
m∈M

∑
j∈N

∆m
j (x̂),

a contradiction. As a result
∑

j∈N ∆m̂
j (x̂) = 0 for all m ∈ M. We can show in an analogous manner that

necessarily
∑

i∈M∆i
n(x̂) = 0, whence relation (12) obtains. (ii) ⇒: The continuous matrix function ∆

satisfies (R). Since in addition (12) holds at x̂ and δ is a constant matrix by assumption, it must be true
that ∑

i∈M
δi
n ≤ 0 ≤

∑
j∈N

δm
j

for all (m,n) ∈ M×N . Thus, as in part (i) we can conclude that relation (13) necessarily holds. ⇐: Sub-
stituting (13) into the reduced contract design inequalities for ∆+ δ yields the same inequalities as if we had
set δ = 0. Since ∆ solves the reduced contract-design problem (R) by assumption, the matrix function ∆+ δ
constitutes also a solution to the reduced contract-design problem. �

Proof of Lemma 3. Fix a λ ∈ (0, 1). Then any two solutions ∆ = [∆m
n ] and ∆̃ = [∆̃m

n ] to the reduced
contract-design problem (R) satisfy

λ

Fm −
∑
j∈N

∆m
j

+ (1− λ)

Fm −
∑
j∈N

∆̃m
j

 ≤ 0 ≤ λ

(
Gn −

∑
i∈M

∆i
n

)
+ (1− λ)

(
Gn −

∑
i∈M

∆̃i
n

)
,

for all (m,n) ∈M×N , which concludes our proof. �
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Proof of Theorem 2. Since the outcome x̂ ∈ X is by assumption efficient, the excess welfare W (x)−W (x̂)
relative to any outcome x ∈ X is nonpositive. On the other hand, problem (R’) can be equivalently rewritten
in the form 

fm(x) ≡ Rm(x)− Fm(x) ≥ 0,
gn(x) ≡ Gn(x)− Cn(x) ≥ 0,∑
i∈M f i(x) +

∑
j∈N gj(x) = W (x̂)−W (x),

(35)

for all (m,n) ∈M×N . Since the solution (R1, . . . , RM ), (C1, . . . , CN ) to (R’) is by assumption continuous,
the functions fm, gn defined in (35) are elements of C(X , R+), which concludes our proof. �

Proof of Theorem 3. Let x̂ ∈ arg maxx∈X W (x) be a given efficient outcome. By Theorem 1 the pair (t̂, x̂)
with t̂mn (x) as defined in (21)–(22) constitutes a WTE if and only if it satisfies the conditions (WT), (AM),
and (PM). Consider first (WT), which is equivalent to (WT’). Since ∆ by assumption satisfies (WT’), we
have by (22) that ∆̂m

n ≥ ∆m
n , so that

Fm(x)−
∑
j∈N

∆̂m
j (x;ϑm

n , θn) ≤ Fm(x)−
∑
j∈N

∆m
j (x) ≤ 0

for all m ∈M and all x ∈ X . Thus, ∆̂ satisfies (WT). To show that it also satisfies (AM), which is equivalent
to (AM’), we simply note that

Gn(xn, x̂n)−
∑
i∈M

∆̂i
n(xn, x̂n;ϑi

n, θn) =

(
1−

∑
i∈M

ηi
n(xn, x̂−n)

)(
Gn(xn, x̂−n)−

∑
i∈M

∆i
n(xn, x̂−n)

)
≥ 0

for all n ∈ N and all x ∈ X (where ηm
n = ϑm

n (1 − θn)), since ∆ satisfies (AM’) by hypothesis. Lastly, we
consider (PM), which can be rewritten in terms of excess measures as follows:

t̂mn (x̂) = max
xn∈Xn

−Gn(xn, x̂−n) +
∑
i 6=m

∆̂i
n(xn, x̂−n)

 . (PM’)

Note that by substituting (22) we have that

−Gn(x) +
∑
i 6=m

∆̂i
n(x;ϑm

n , θn) = −∆m
n (x)−

(∑
i∈M

ϑi
n(x)θn(x) + ϑm

n (x)(1− θn(x))

)(
Gn(x)−

∑
i∈M

∆i
n(x)

)

= −∆m
n (x)−

(
ϑm

n (x) + θn(x)− ϑm
n (x)θn(x)

)(
Gn(x)−

∑
i∈M

∆i
n(x)

)
(36)

= −∆̂m
n (x;ϑm

n + θn, ϑm
n θn/(ϑm

n + θn)) (37)

for all (m,n) ∈M×N and all x ∈ X .25 We therefore obtain that (PM’) is equivalent to

t̂mn (x̂;ϑm
n , θn) = − min

xn∈Xn

{
∆̂m

n (x;ϑm
n + θn, ϑm

n θn/(ϑm
n + θn))

}
,

an expression that always exists by the Weierstrass theorem (Bertsekas 1995, p. 540), since Xn is by assump-
tion compact and ∆̂m

n is continuous. If we set αm
n (ϑm

n , θm
n ) = t̂mn (x̂;ϑm

n , θn), then by (21) it is

t̂mn (x;ϑm
n , θn) = ∆̂m

n (x;ϑm
n , θn) + αm

n (ϑm
n , θn)

for all (m,n) ∈M×N and all x ∈ X . Furthermore, ∆̂m
n (x;ϑm

n , 0) ≥ −αm
n (ϑm

n , 0), so that

0 ∈
{

θ̂n ∈ [0, 1] : min
i∈M

t̂in(x̂;ϑi
n, θ̂n) ≥ 0

}
6= ∅

25Note that because of the nonsingularity of expression (36), the equivalent expression (37) is also nonsingular.
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for all n ∈ N . The constants θ̄n in Theorem 3 are therefore well defined and by Berge’s (1963, p. 116)
maximum theorem condition (PM) is satisfied for all θn ∈ [0, θ̄n]. Hence, we have shown that given any
efficient outcome x̂, the pair (t̂, x̂) with t̂mn as defined in (21) constitutes a WTE, which concludes our proof.�

Proof of Theorem 4. Let us first show that the excess transfer ∆ = [∆m
n ] with ∆m

n as defined in (25)
solves (WT’). For this note that as a consequence of Assumption 2 we have that

Fm(x) ≤
∑
n∈N

∂Fm(x̂)
∂xn

· (xn − x̂n) (38)

for any principal m ∈M and any outcomes x, x̂ ∈ X . Hence, using relations (27) and (38), it is

∑
n∈N

∆m
n (x) =

∑
n∈N

∂Fm(x̂)
∂xn

· (xn − x̂n)− λm
n (x)

∑
j 6=n

Gj(xn, x̂−n)


≥ 2

∑
n∈N

∂Fm(x̂)
∂xn

· (xn − x̂n)− Fm(x) ≥ Fm(x),

for any outcome x ∈ X and any principal m ∈ M (relative to the efficient outcome x̂ ∈ X ). Hence,
the inequality (WT’) is satisfied on X for all m ∈ M. We now turn our attention to (AM’). Using the
normalization condition (26) and relation (38) we find that∑

m∈M
∆m

n (xn, x̂−n)−G(xn, x̂−n) =
∑

m∈M

∂Fm(x̂)
∂xn

· (xn − x̂n)−
∑
j∈N

Gj(xn, x̂−n)

≤
∑

m∈M
Fm(xn, x̂−n)−

∑
j∈N

Gj(xn, x̂−n) ≤ 0.

The last inequality follows from the definition of an efficient outcome x̂. Hence, the inequality (AM’) holds
on Xn for all n ∈ N . �

Proof of Theorem 5. The solution (25) to the reduced contract-design problem (R) is well defined as
long as there exist M ·N functions λm

n ∈ C(X , R) that satisfy the M + N relations (26) and (27). If (given
the efficient outcome x̂) for any m ∈M we let

ρm(x) ≡ Fm(x)−

∑
j∈N

∂Fm(x̂)
∂xj

· (xj − x̂j)

 , (39)

then relations (26) and (27) can be rewritten equivalently in the form{
βm(x) ≥ ρm(x), m ∈ {1, . . . ,M − 1}

−
∑

n∈N
∑

j 6=n Gj(xn, x̂−n) ≥ ρM (x) +
∑M−1

i=1 βi(x),
(40)

for all x ∈ X , where

βm(x) ≡ −
∑
n∈N

λm
n (x)

∑
j 6=n

Gj(xn, x̂−n)

 (41)

for all m ∈ {1, . . . ,M − 1}. Clearly, if M − 1 functions β1, . . . , βM−1 ∈ C(X , R) can be found such that (40)
holds for all x ∈ X , then there also exist (λm

1 , . . . , λm
N ) for all m ∈ {1, . . . ,M − 1} such that (41) holds.26

In addition, if a solution to (40) exists, then βm = ρm for m ∈ {1, . . . ,M − 1} must also be a solution. A
necessary and sufficient condition for the existence of a solution to (40) is therefore that∑

m∈M
ρm(x) +

∑
n∈N

∑
j 6=n

Gj(xn, x̂−n) ≤ 0 (42)

for all x ∈ X . Using (39) relation (42) (on X ) is equivalent to (28), which concludes our proof. �

26If for some x ∈ X the excess compliance cost
∑

j 6=n Gj(xn, x̂−n) vanishes for all n ∈ N , then by virtue of

inequality (38) in the proof of Theorem 4 the functions β1, . . . , βM−1 with (β1, . . . , βM−1) = 0 solve (40).
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