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Abstract We consider the comparative statics of solutions to parameterized opti-
mization problems. A geometric method is developed for finding a vector field that,
at each point in the parameter space, indicates a direction in which monotone com-
parative statics obtains. Given such a vector field, we provide sufficient conditions
under which the problem can be reparameterized on the parameter space (or a subset
thereof) in a way that guarantees monotone comparative statics. A key feature of our
method is that it does not require the feasible set to be a lattice and works in the ab-
sence of the standard quasi-supermodularity and single-crossing assumptions on the
objective function. We illustrate our approach with a variety of applications.

Keywords Change of parameters · Parameterized optimization problems ·
Single-crossing · Supermodularity

1 Introduction

In many model-based optimization problems, important insights can be derived by
comparing solutions for different parameter values. The model’s parameters are ex-
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ogenously specified and often can be varied for analysis purposes, while its variables,
which constitute the building blocks for its predictions, are endogenously determined
by (i) imposed model relations and (ii) parameter values. For instance, an economic
model might be concerned with a firm’s optimal production of widgets (e.g., in terms
of capital and labor requirements), given both a production function relating output
to inputs and a set of prices (e.g., the market price for widgets, the cost of capital,
and an average wage rate). In the neoclassical tradition the model would then impose
maximization of the firm’s profit to determine optimal amounts of factor inputs as
a function of their respective prices. More generally, if a model’s predictions can be
expressed as an optimal action in some finite-dimensional space, then comparative
statics studies the direction in which the optimal action changes as a result of some
disturbance in the values of the model’s parameters [1]. Thus, in our example, nor-
malizing the price of the firm’s output to one, the optimal choice of inputs critically
depends on the prices of the production factors which are this model’s parameters.

Sensitivity and perturbation analysis has been the traditional mathematical ap-
proach to analyze changes of objective values and solutions with respect to para-
meters [2, 3]. The associated methods focus on establishing regularity properties
and generally do not consider the monotonicity properties of solutions, which are
of prime importance for decision makers in many applied optimization problems.
In this paper we consider the possibility of guaranteeing monotone behavior of so-
lutions through an appropriate reparameterization of the problem. The key question
of monotone comparative statics is to determine under what conditions the model
predictions vary monotonically with the parameters [4, 5]. General answers to this
question for optimal actions chosen from feasible sets, which are usually assumed to
be lattices satisfying a set-monotonicity requirement with respect to the parameters,
are provided by [4–6]. They provide a necessary and sufficient condition for optimal
actions to exhibit monotone comparative statics with respect to the parameters. For
the special case of our neoclassical production decision problem, where the produc-
tion function is independent of the factor prices, monotone comparative statics (i.e.,
inputs nonincreasing in prices) obtain if and only if the production function is super-
modular, which—assuming twice continuous differentiability—amounts to requiring
that all cross-partial derivatives of the production function are nonnegative.

The practical importance of monotone comparative statics that justifies its wide-
spread use, particularly in economics, lies in the fact that robust insights can be ob-
tained in the absence of an analytical solution to the model: the monotonicity of
optimal actions in parameters is guaranteed if the system’s objective function satis-
fies certain easy-to-check requirements. In addition, monotonicity of optimal actions
can yield useful rules of thumb for decision makers and thus help in arriving at “op-
timally imperfect decisions” [7]. Clearly, in our production example (which is exam-
ined more closely in Sect. 5.2) it would be helpful for the firm to be able to translate
price movements immediately (without any further computations) into appropriate
input changes which at the very least vary in the right direction, even when its pro-
duction function is not supermodular due to anticomplementarities between factor
inputs. Unfortunately, the currently available theory on monotone comparative sta-
tics returns negative results in situations where the aforementioned characterization
of monotone comparative statics by [6] fails. We argue that this failure is often due
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to the fact that the parameterization of the problem is taken as given.1 Indeed, our
results indicate that it may be possible to achieve monotonicity of solutions in new
parameters that are obtained by a one-to-one mapping from the original parameter
space. In fact, for problems with a smooth analytical structure we show that, pro-
vided with sufficiently precise knowledge about the location of an optimal action in
the action space, it is possible to find a reparameterization that achieves monotone
comparative statics in any single component of the decision.

Our central goal is to provide a new method for achieving monotone compara-
tive statics of solutions to parameterized optimization problems, first by relaxing and
thereby generalizing the standard monotone comparative statics problem, and second,
by providing a systematic way to reparameterize the problem such that monotone
comparative statics can be achieved.2 In addition to addressing cases where the stan-
dard results do not apply, our method can, by offering a new description of the para-
meter space, shed light on important relations between decision variables and para-
meters of economic problems.

The approach developed here builds on tools in differential geometry, and we thus
require models with a smooth structure (e.g., a parameterized optimization problem
with a twice continuously differentiable objective function), even though—as we are
well aware—none of our statements fundamentally depends on the differentiable
structure. All of our results can also be expected to hold if the problem is suitably
discretized; nevertheless, we prefer to adopt a differentiable approach for ease of
exposition, since then the tools of differential geometry can be applied seamlessly.
We decompose the problem of changing problem parameters to achieve monotone
comparative statics (MCS) into two parts. First, the decision maker needs to solve a
local MCS problem by finding for each point t in the parameter space T a direction
vector v(t) (i.e., an element of the tangent space of T at t) that would increase the
optimal action x(t) if parameters were to be locally changed from t in the direction
of v(t). If the location of x(t) is not known precisely, as is generally the case, then
the direction v(t) must be such that it induces local monotonicity with respect to all
points in a subset R(t) of the action space X which is known to contain the optimal
action x(t), given the possibility that any point in R(t) might turn out to be optimal.
A full solution to this problem consists in a vector field v(t), defined for all values
of t in the parameter space. Second, given the vector field v(t), the decision maker
needs to find a reparameterization solving the global MCS problem. We show that
this can always be achieved locally through “rectification” of the vector field. Under
a few additional conditions rectification can also be achieved globally, leading to the
desired global MCS reparameterization of the decision problem.

The paper proceeds as follows. In Sect. 2 we introduce the problem of obtaining
monotone comparative statics (i.e., monotone dependence of solutions on parame-
ters) for parameterized optimization problems, both from a local and a global view-

1This is true in the literature, except for some rare cases where trivial reparameterizations such as a change
of sign or other simple ad hoc reparameterizations are chosen under very special circumstances, e.g., by [8]
in a network flow problem.
2Even though not explicitly developed, our methods apply equally to equilibrium problems, by replacing
the first-order necessary optimality conditions of the optimization problem with the equations specifying
equilibria.
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point. When considered locally, obtaining monotone comparative statics corresponds
to finding directions in the parameter space in which solutions to the optimization
problem are nondecreasing in parameters. A solution to the local monotone com-
parative statics problem is provided in Sect. 3 using a vector field method. Subse-
quently, in Sect. 4, we take a more global perspective: having obtained a vector field
of monotone comparative statics directions defined at each point of the parameter
space, we demonstrate that it is possible (at least locally) to change the parameters
of the optimization problem, i.e., to reparameterize it such that monotone compara-
tive statics of the solutions of the reparameterized problem obtain. We show that the
reparameterization can be global if a hyperplane can be found that is transverse to a
vector field that solves the local MCS problem at each point of the parameter space.
To illustrate our results we discuss a number of economic applications in Sect. 5 and
conclude with a discussion and directions for further research in Sect. 6.

2 Problem Formulation

We consider a decision maker who, given a parameter value t ∈ T , aims to select
an element x(t) of an action space X so as to maximize her objective function f :
X × T → R. She thus tries to solve the parameterized optimization problem

x(t) ∈ arg max
x∈X

f (x, t), (1)

where X is a n-dimensional compact manifold3 and T is an m-dimensional com-
pact manifold. Provided that a solution to (1) exists,4 the decision maker is interested
in the comparative statics of the maximizer x(t) as t ∈ T varies. More generally,
we assume that the decision maker is concerned with the behavior of the composi-
tion ϕ ◦x(t) = ϕ(x(t)), where ϕ :X → R

d (with 1 ≤ d ≤ n) is an evaluation function
that the decision maker uses to assess any solution x(t) of (1). For example, if the de-
cision maker is interested only in the comparative statics of the first component of
the maximizer x(t) = (x1, . . . , xn)(t), she can choose ϕ(x) = x1. From Milgrom and
Shannon’s [6] monotonicity theorem, we know that if ϕ(x) = x and X is a lattice,
then ϕ ◦ x(t) = x(t) is increasing in t (on any given sublattice of X) if and only
if f is quasi-supermodular5 in x and satisfies the single-crossing property6 in (x, t).

3 If X lies in a lower-dimensional submanifold of R
n, the analysis can still be applied, but differential

calculus should be understood on this submanifold, and openness should be understood relative to the
submanifold, cf. Sect. 3.5.
4If for any parameter t ∈ T the function f (·, t) is continuous and X is bounded, a solution to the parame-
terized optimization problem (1) exists in the closure of X by the Weierstrass theorem ([9], p. 540).
5A real-valued function f defined on a lattice X ⊂ R

n is quasi-supermodular if f (x) ≥ (>)f (x ∧ y)

implies f (x ∨y) ≥ (>)f (y), for all x, y in X , where x ∨y = (max{x1, y1}, . . . ,max{xn, yn}) and x ∧y =
(min{x1, y1}, . . . ,min{xn, yn}). As its name suggests, quasi-supermodularity is a weaker condition than
supermodularity.
6A real-valued function f defined on the product X × T of two partially ordered spaces has the single-
crossing property if, whenever x′ > x and t ′ > t , f (x′, t) ≥ (>)f (x, t) implies f (x′, t ′) ≥ (>)f (x, t ′).
The single-crossing property is a weaker condition than supermodularity in (x, t).
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Conversely, for any objective function f that does not satisfy these conditions, x(t)

cannot be nondecreasing on T . Nevertheless, despite this negative result using the
standard theory, it may be possible for the decision maker to at least find a path γt in
the parameter space, so that starting at a given t ∈ T the function ϕ ◦x is nondecreas-
ing along γt . Monotone comparative statics may thus be obtained following certain
directions in the parameter space. It is useful given any t ∈ T to state the decision
maker’s MCS problem (at t) in precisely these terms.

MCS Problem (at t) Given a continuously differentiable evaluation function ϕ and
a parameter value t ∈ T , find a nonempty open interval It ⊂ R with 0 ∈ It and a
path γt : It → T , such that ϕ◦x(γt (λ)) is nondecreasing7 for all λ ∈ It and γt (0) = t .

If a solution (It , γt ) of the MCS problem at t is such that the path γt cannot
be extended in T , then we call the solution maximal. We can restrict our atten-
tion, without any loss of generality, to a maximal solution of the MCS problem at t .
Monotone comparative statics relative to an evaluation function ϕ and a parameter
starting value t obtain whenever the vector ϕ ◦ x is componentwise nondecreasing
along an appropriate path γt in the parameter space T . Along any such path, x(γt (λ))

solves (1) for all λ ∈ It . A solution to the MCS problem for all t ∈ T results in a
global flow θ(λ, t) = γt (λ), for which θ(0, t) = t and

λ ≤ μ ⇒ ϕ ◦ x(θ(λ, t)) ≤ ϕ ◦ x(θ(μ, t)), (2)

for any λ,μ ∈ It . If it is possible to represent the global flow in the form

θ(λt ,ψ(t)) = t, (3)

where λt is uniquely determined and ψ : T → P is a function that maps the parameter
space to a fixed (m − 1)-dimensional hypersurface P , transverse8 to the vector field
induced by the MCS paths γt , then using the new parameters s(t) = (s1, . . . , sm)(t) =
(λt ,π(ψ(t))) guarantees monotone comparative statics of ϕ ◦ x(s) in s1 = λ, at least
locally, where π is a diffeomorphism from P onto a subset of R

m−1 (details are
provided in Sect. 4). Letting F = ⋃

t∈T It × {t}, we formulate the global parameter-
change problem accordingly.

Global MCS Reparameterization If the flow θ : F → T solves the MCS problem
everywhere in T , find a new parameterization s(t) = (s1, . . . , sm)(t) = (λt ,π(ψ(t)))

such that (3) is satisfied for all t ∈ T .

A global MCS reparameterization provides the decision maker with new prob-
lem parameters s = (s1, . . . , sm) that guarantee monotonicity of ϕ(x̂(s)) in the first
component s1 ∈ I , where

x̂(s) = arg max
x∈X

f̂ (x, s) (4)

and f̂ (x, s) corresponds to the objective function f (x, t) after the parameter change.

7A vector v(λ) is nondecreasing in λ if and only if each of its components is nondecreasing in λ.
8See Assumption A6 for the precise definition.
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3 Solving the MCS Problem at t

Our goal is to find directions in which solutions of the parameterized optimization
problem (1) (or functions thereof) are increasing. For this we introduce a “pseudo-
gradient” W(x, t) which mimics the gradient matrix ∇t x(t) = W(x(t), t) corre-
sponding to all potential solutions x ∈ R(t) with respect to the parameters t on a
set R(t) that is known to contain the actual solution x(t). We refer to R(t) as a
“reduced feasible set,” for it is a subset of the set of all feasible actions X . The car-
dinality of R(t) is a measure of how much information the decision maker has about
the location of the solution to (1) at t . If for a given t ∈ T all row-vectors ∇t xi(t),
i ∈ {1, . . . , n}, of the pseudo-gradient lie in the same m-dimensional half-space for
all points of the reduced feasible set (a subset of X ), then a direction v(t) ∈ R

m \ {0}
exists in which monotone comparative statics obtain locally. If such a direction v(t)

can be found for all points t of the parameter space T , then the resulting vector
field v : T → R

m constitutes a solution to the MCS problem on T . The flow in-
duced by this vector field can be used to obtain an MCS reparameterization of the
optimization problem (1), which is discussed in Sect. 4. In this section we first intro-
duce a number of assumptions needed for the vector field method. We then provide
techniques to implement the method, and relate the vector field method to classic su-
permodularity results. Finally, we provide important methods to deal with problems
that contain equality and/or inequality constraints.

3.1 Assumptions

In order to use standard tools from differential geometry, we require that f be suffi-
ciently smooth.

Assumption A1 (Smoothness) The objective function f is twice continuously differ-
entiable in x and has continuous cross-derivatives with respect to each tuple (xi, tk),
for all 1 ≤ i ≤ n and all 1 ≤ k ≤ m.

Let us denote by

H(x, t) = ∇xxf (x, t) =
[
∂2f (x, t)

∂xi∂xj

]n

i,j=1

the Hessian matrix of f (·, t) evaluated at (x, t) and by

K(x, t) = ∇xtf (x, t) =
[
∂2f (x, t)

∂xi∂tk

]n,m

i,k=1

the matrix of cross-derivatives of f between decision-variable and parameter compo-
nents, evaluated at (x, t). In order to bypass (at least for now) any difficulties arising
from binding constraints at the optimal action, we will assume that the parameterized
optimization problem (1) possesses a unique unconstrained optimum. Constrained
optimization problems often can be restated equivalently so as to satisfy this assump-
tion, and Sect. 3.5 is dedicated to this issue. We also emphasize that nothing in our
method requires that the feasible set X be a lattice (cf. also footnote 18).
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Assumption A2 (Existence and Uniqueness) For each t ∈ T , the parameterized op-
timization problem (1) has a unique solution x(t).

In general, the set of maximizers is guaranteed to be nonempty and in the interior
of X if, in addition to being continuous, f is coercive relative to X , in the sense
that for any t ∈ T there exists a point x̌(t) ∈X such that9 f (x̌(t), t) ≥ supf (∂X , t),
(cf. [9], pp. 8, 540). If f (·, t) possesses multiple strict local extrema for some t ∈ T ,
our results can be applied with respect to the comparative statics of each local maxi-
mum. Since X is open, Fermat’s Lemma ([10], Vol. I, p. 215) implies that each strict
local extremum c(t) (and in particular the unique global maximum x(t) guaranteed
by Assumption A2) is a critical point of f (·, t), i.e., ∇xf (c(t), t) = 0. We denote
by C(t) the set of all critical points10 of f (·, t) in X at t ,

C(t) = {x ∈X : ∇xf (x, t) = 0}.
Sard [11, 12] has shown that the corresponding set of critical values f (C(t), t), which
is the image of C(t) under f , is of Lebesgue-measure zero.

Thus, if the decision maker can determine C(t), she might be able to find the
optimal action x(t) as the solution of a reduced optimization problem, x(t) =
arg maxc∈C(t) f (c, t), using the first-order necessary optimality conditions. Assump-
tion A2 also implies that for any t ∈ T at the unique global optimum x(t) the Hessian
matrix of f (·, t) is negative semidefinite, i.e., x(t) satisfies the second-order neces-
sary optimality condition x(t) ∈ D(t), where

D(t) = {x ∈X : H(x, t) ≤ 0}.
This allows the decision maker to further reduce the optimization problem combining
the first-order and second-order necessary optimality conditions and solve

x(t) = arg max
x∈R(t)

f (x, t), (5)

where we refer to R(t) ⊆ X as a reduced feasible set; in this case R(t) = (C ∩D)(t).
More generally, we refer to any subset R(t) of X which is guaranteed to contain the
solution x(t) of (1) as an admissible reduced feasible set. Any element of R(t) is
called a reduced-feasible action. If the decision maker can determine an admissible
reduced feasible set R(t) (e.g., by using first- and second-order necessary optimal-
ity conditions), so that she is able to solve the (reduced) parameterized optimization
problem (5) on T , then the MCS problem always has a trivial solution, as will be-
come clear below (cf. Theorem 3.1). Unfortunately, in many practical applications, a
closed-form solution of (1) is not possible, or the objective function is not perfectly
known by the decision maker (see [13] and Sect. 6). In that case, by constructing a
reduced feasible set R(t) ⊆ X that is guaranteed to contain the optimal action x(t)

9∂X denotes the boundary of X .
10Note that if f (·, t) has a critical point (i.e., X ∩ C(t) �= ∅) and is strictly concave on X for all t ∈ T ,
then Assumption A2 is automatically satisfied, since f (·, t) is necessarily single-peaked on X .
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(e.g., by using heuristics related to the special structure of the problem), the decision
maker may still be able to solve the MCS problem without an explicit solution to the
(equivalent) parameterized optimization problems (1) and (5). To obtain a solution to
the MCS problem when the optimal action x(t) can be only imperfectly localized in
the set R(t) ⊆ X , we require that all critical points of f (·, t) in R(t) be nondegener-
ate (i.e., such that the Hessian matrix of f (·, t) is nonsingular there).

Assumption A3 (Nondegeneracy) For any t ∈ T , the Hessian matrix H(x, t) is
nonsingular for all x ∈ R(t), for some reduced feasible set R(t) ⊆ X which con-
tains x(t).

This assumption guarantees that the inverse H−1(x, t) is well defined and contin-
uous at any point (x, t) ∈R(t)×T . Hence the expression −(H−1K)(x, t), evaluated
at a point (x, t) possibly different from the optimal (x(t), t), is well-defined. Assump-
tion A3 is automatically satisfied if the objective function is strictly concave.

Lemma 3.1 Under Assumptions A1–A3, the unique optimal solution x(t) of the pa-
rameterized optimization problem (1) is continuously differentiable on T . The corre-
sponding Jacobi matrix is given by

∇t x(t) =
[
∂xi(t)

∂tk

]n,m

i,k=1
= −(H−1K)(x(t), t), (6)

for all t ∈ T .

Proof By Assumption A2, a unique interior solution x(t) to the parameterized opti-
mization problem (1) exists for all t ∈ T , satisfying H(x(t), t) ≤ 0 and

∇xf (x(t), t) = 0. (7)

By Assumption A1, we can differentiate (7) with respect to t (using the chain rule)
and obtain

∇t (∇xf (x(t), t)) = (∇xxf (x(t), t))(∇t x(t)) + ∇xtf (x(t), t) = 0,

or equivalently

H(x(t), t)∇t x(t) + K(x(t), t) = 0,

for all t ∈ T . Since H(x(t), t) is nonsingular by Assumption A3, we get expres-
sion (6) after left-multiplication with H−1(x(t), t) in the last equality. We now show
that ∇t x(t) is continuous. Since the maximizer x(t) is unique and the objective func-
tion f continuous, we have that, as a consequence of Berge’s ([14], p. 116) maximum
theorem, the maximizer x(t) is continuous in t (for it is upper-semicontinuous and
single-valued). By virtue of Assumption A1 and the nonsingularity of H , all entries
of the matrix (H−1K)(x(t), t) are well defined and, as a composition of continuous
functions, also continuous. Hence, the Jacobi matrix ∇t x(t) on the left-hand side of
(6) must also be continuous, which completes the proof. �
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In order to study the monotonicity of ϕ ◦ x(t), we require some smoothness as
well as functional independence ([10], Vol. I, p. 508) of the evaluation function.

Assumption A4 (Functional Independence) The evaluation function ϕ is continu-
ously differentiable on X and its Jacobi matrix

	(x) = ∇xϕ(x) =
[
∂ϕl(x)

∂xi

]d,n

l,i=1

has (full) rank d for any (reduced-)feasible action x.

Assumption A4 is not critical for our results and can (except for the smoothness
portion) be relaxed. Functional independence guarantees that the MCS problem is lo-
cally never trivial, since no two of ϕ’s components are collinear. If Assumptions A1–
A4 hold, then for any (reduced-)feasible tuple (x, t), we can define the (d×m)-matrix

W(x, t) = −	(x)H−1(x, t)K(x, t), (8)

which we term the pseudogradient of the MCS problem at (x, t). In analogy to
Lemma 3.1, it is easy to show that the pseudo-gradient evaluated at any optimiz-
ing decision-parameter tuple (x(t), t) describes the comparative statics of ϕ ◦ x(t)

along paths parallel to the standard coordinates in the parameter space T , i.e.,

∇t ϕ(x(t)) = W(x(t), t). (9)

We say that the pseudo-gradient of the MCS problem is orientable at (x, t) if the
collection of all of its row vectors is a subset of a common half space of R

m. If for a
given t ∈ T the row vectors of W(x, t) lie in a common half space of R

m for all x in
a set Y ⊆ X , then we say that the pseudogradient is orientable on Y at t .

Example 3.1 If m = n ≥ 1, φ(x) = x, and f (x, t) = x′Qx − t ′x, where Q is a sym-
metric negative definite matrix, then 	 = I , H = Q < 0, and K = −I . The cor-
responding pseudogradient is W = −	H−1K = Q−1. This pseudogradient is ori-
entable, since its n row vectors are linearly independent and span R

n. For example,
one can take the sum of the row vectors as a normal vector of the half-space that
contains all row vectors.

3.2 Vector Field Method

To find a path γt that solves the MCS problem at t ∈ T , our method requires elicit-
ing some information about the direction of the gradient ∇t (ϕ(x(t))), given that the
decision maker knows only that x(t) lies in some reduced feasible set R(t) ⊆ X .
More specifically, we need to determine a direction forming acute angles with the
pseudo-gradient of the MCS problem. Such a direction exists if the pseudo-gradient
is orientable.
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Assumption A5 (Pseudogradient Orientability) There exists a continuously differ-
entiable vector field v(t) ∈ R

m \ {0} such that, for each t ∈ T ,

W(x, t)v(t) ≥ 0, (10)

for all x ∈ R(t), where R(t) ⊆ X is an admissible reduced feasible set.

Under Assumption A5, v(t) defines a vector field on T and a phase diagram with
paths corresponding to the flow of this vector field.11 The key result of this section is
that ϕ ◦ x is nondecreasing along the paths.

Theorem 3.1 Under Assumptions A1–A5, let I ⊂ R be an open interval and let
γ : I → T be a differentiable path such that

γ̇ (λ) = v(γ (λ)),

for all λ ∈ I . Then, ϕ(x(γ (λ))) is nondecreasing for all λ ∈ I .

Proof Since γ is differentiable on I , Lemma 3.1 implies (using Assumptions A1
and A2) that

∇t x(γ (λ)) = −(H−1K)(x(γ (λ)), γ (λ)).

Thus, using Assumption A4 and (9), the gradient of ϕ(x(γ (λ))) with respect to λ is
given by

∇λϕ(x(γ (λ))) = W(x(γ (λ)), γ (λ))γ̇ (λ) = W(x(γ (λ)), γ (λ))v(γ (λ)).

By virtue of inequality (10) in Assumption A5, the latter expression is nonnegative. �

Under the assumptions of Theorem 3.1, we say that ϕ(x(t)) is nondecreasing
along the trajectories of v(t).

3.3 Implementation

Under Assumptions A1–A5 the vector field method can be implemented using the
following techniques. First, for any t ∈ T determine a reduced feasible set R(t) ⊆ X
that is guaranteed to contain the interior solution x(t) of the parameterized optimiza-
tion problem (1). Second, to satisfy Assumption A5, verify that the pseudogradi-
ent W(x, t) is orientable on R(t). Note that for any given t ∈ T it may be possible
to achieve orientability by premultiplying the evaluation function ϕ by some diago-
nal (d × d)-matrix of the form M(t) = diag(m1, . . . ,md)(t) where ml(t) ∈ {−1,1}
for all l ∈ {1, . . . , d}. Indeed if ϕ̂(x, t) = M(t)ϕ(x), then it is possible to find a ma-
trix M(t) such that the pseudogradient Ŵ (x, t) corresponding to the modified evalu-
ation function ϕ̂,

Ŵ (x, t) = M(t)W(x, t) = −M(t)	(x)H−1(x, t)K(x, t),

11The trajectories of a vector field v(t) exist and are unique on the whole domain T if the vector field is
Lipschitz there ([15], pp. 74–77), and in particular when v is continuously differentiable on T .
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Fig. 1 Solution to the MCS Problem at t for ϕ(x) = x1

is orientable at (x, t). In particular, if a matrix M can be found that is independent of t ,
it may be advantageous for the analysis of the problem if the decision maker uses the
evaluation function ϕ̂ instead of ϕ. Third, find a vector field v that satisfies (10). To
accomplish this, a systematic, algorithmic procedure to determine a vector field v(t)

that is “maximally aligned” with the pseudogradient W(x, t) consists in solving the
maximin problem12

v(t) ∈ arg max
v∈Rm:‖v‖=1

{

min
x∈R(t)

{

min
1≤l≤d

〈Wl(x, t), v〉
}}

. (11)

When the assumptions of the min-max theorem [16] are satisfied, any solution v(t)

to problem (11) also satisfies

v(t) ∈ arg min
x∈R(t)

{

max
v∈Rm:‖v‖=1

{

min
1≤l≤d

〈Wl(x, t), v〉
}}

. (12)

Motivated by the minimax formulation (12), since W is orientable by assumption,
one obtains the set of candidate vector fields

V =
{

W1(x̂
1(t), t)

‖Wd(x̂1(t), t)‖ , . . . ,
Wd(x̂d(t), t)

‖Wd(x̂d(t), t)‖
}∣
∣
∣
∣
t∈T

, (13)

where for any l ∈ {1, . . . , d} we have set

x̂l(t) = arg min
x∈R(t)

‖Wl(x, t)‖.

One can now check whether some element of V is a suitable vector field on T or
possibly a subset thereof.

The above three steps can be iterated to tighten the reduced feasible set. It can also
be useful to consider only subsets of the parameter space T . Note that if an exact

12Wl is the l-th row vector of W , and 〈·, ·〉 denotes the scalar product in the relevant Hilbert space.
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solution to the maximization problem (5) is known for some t ∈ T , then the MCS
problem at t has a solution if any only if W(x(t), t) is orientable at (x(t), t).

Example 3.2 Consider a firm that has the option to invest in a number x of ge-
ographically dispersed markets13 (e.g., cities in the US) at an increasing convex
cost C(x) ≥ 0. For simplicity, the market price p ∈ (0,1) for the firm’s product is
assumed to be the same in each market; it is announced nationally and is a parameter
of the problem. Marginal production costs are zero. The demand in the each market
is D(p) = 1−p, and the firm is risk averse with constant absolute risk aversion ρ. By
investing in x markets the firm also reaps an increasing concave side benefit B(x) ≥ 0
(e.g., through real-estate transactions).14 With probability q ∈ (0,1 − p) that is (at
most) proportional to the quantity sold in each market, the firm incurs a unit loss in
any market due to a liability claim. The firm’s expected payoffs are approximately15

�(x,p,q) = xpD(p) + B(x) − E[L̃|q] − ρ

2
Var[L̃|q] − C(x)

=
(

p(1 − p) − q − ρq(1 − q)

2

)

x + B(x) − C(x),

where the random variable L̃ ∈ {0,1, . . . , x} represents the firm’s total losses. Maxi-
mizing profits we thus obtain x∗(p, q) = ξ(p(1 −p)− q −ρq(1 − q)/2), where ξ is
the (increasing) inverse of C′ −B ′. Hence, the maximizer x(t) is increasing in the pa-
rameter t ∈ T = {(p, q) ∈ R

2++ : p+q < 1} if and only if p(1−p)−q−ρq(1−q)/2
is increasing. The corresponding pseudogradient at the optimum is

W(x(t)) = [−1 + ρq − ρ/2,1 − 2p] ξ ′(p(1 − p) − q − ρq(1 − q)/2),

so that, with v(t) = (−p,qρ/2), we obtain

〈W(x(t)), v(t)〉 = ρξ ′(t)
2

(
2p

ρ
+ p + q − 4pq

)

≥ (4ρ − 1)ξ ′(t)
16

> 0,

for all t ∈ T and ρ > 1/4. The vector field v solves the MCS problem on T . In
Example 4.1 we show how to obtain a global MCS reparameterization of the prob-
lem based on the vector field v, cf. Fig. 2. Let us remark that clearly in this exam-
ple R(t) = {x(t)} if ξ−1 is known precisely (for any given B and C). However, our
conclusions can be obtained without further specifying the firm’s payoffs. Note that it
would have been possible to replace p(1−p)−q −ρ(1−q)q/2 by a scalar parame-
ter λ, which, however, would decrease the resolution for a decision maker somewhat

13We allow x to take non-integer values.
14By imposing the Inada conditions C′(0) < ∞ and B ′(0) = ∞ one can easily guarantee that the optimum
is interior, i.e., x(t) > 0, so that we can without loss of generality set X = (0,∞).
15The dependence of � on the parameter ρ is not explicitly noted. In fact, in this problem the comparative
statics with respect to ρ are obvious. We can thus use ρ itself in solving the MCS problem and finding an
appropriate simple reparameterization, which illustrates an interesting “partial reparameterization” variant
of our technique.
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Fig. 2 Global MCS
reparameterization in
Examples 3.2 and 4.1

(λ is not the result of a one-to-one mapping from the parameter space), yet clearly
provide trivial but precise monotone comparative statics.

3.4 Relation to Classic Supermodularity Results

We now derive a well-known supermodularity result as a particular case of Theo-

rem 3.1. Under Assumption A1, we recall that f (x, t) is supermodular in x if ∂2f (x,t)
∂xi∂xj

is nonnegative for all (x, t) ∈ X × T and 1 ≤ i �= j ≤ n. We call the function f (x, t)

supermodular in (x, t) if, in addition, ∂2f
∂xi∂tk

(x, t) is nonnegative for all (x, t) ∈X ×T
and 1 ≤ i ≤ n,1 ≤ k ≤ m.

Corollary 3.1 Suppose that Assumptions A1–A3 hold and that f is supermodular
in (x, t). Then, x(t) is nondecreasing in t .

Proof We show that x(t) is nondecreasing in each component of t = (t1, . . . , tm).
Supermodularity in (x, t) implies that all components of K(x, t) are nonnegative
on X × T . It also implies that Hij (x, t) ≥ 0 for all i, j ∈ {1, . . . ,m} with i �= j on
X × T . Without loss of generality we can restrict our attention to the reduced feasible
set R(t) = (C ∩ D)(t). Hence Hii(x(t), t) ≤ 0 for all i ∈ {1, . . . , n}, for the Hessian
matrix is negative definite at the optimum. Since H−1

ij = (−1)i+j det(Hji)/det(H),

it is a simple linear algebra exercise to verify that H−1
ij ≤ 0 on X × T for all i, j

in {1, . . . , n}.16 For any vector v(t) > 0, all entries of −H−1(x, t)K(x, t)v(t)

are therefore nonnegative. As a result, Assumption A5 is satisfied for ϕ(x) = x

and v(t) ≡ ek where ek is the k-th unit vector in the canonical basis of R
m. An appli-

cation of Theorem 3.1 with ϕ(x) = x concludes the proof. �

16The adjoint matrix Hij is obtained by removing the i-th row and the j -th column from H .
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An important case that is not currently dealt with in the monotone comparative
statics literature is when f is supermodular in x but does not have the single-crossing
property in (x, t).17 In that context, Assumption A5 can be simplified as follows.

Assumption A5′ For each t ∈ T , there exists a vector v(t) ∈ R
m such that

K(x, t)v(t) is nonnegative for all x ∈ R(t), where R(t) ⊆ X is an admissible re-
duced feasible set.

Corollary 3.2 Suppose that Assumptions A1–A3 and A5′ hold and that f is super-
modular in x. Then, x(t) is nondecreasing along the trajectories of v.

Proof We modify the proof of Corollary 3.1. Supermodularity in x ensures that
H−1

ij ≤ 0 on X × T for all i, j ∈ {1, . . . , n}. This together with Assumption A5′ im-

plies that all entries of −H−1(x, t)K(x, t)v(t) are nonnegative. A direct application
of Theorem 3.1 with ϕ(x) = x concludes the proof. �

Corollary 3.2 applies to situations in which there are complementarities between
the different decision variables, but not between decision variables and parameters.
Since the maximizer under the original parameterization can be nonmonotonic, it is
clear that Assumption A5′ relaxes the tight single-crossing requirement put forward
in [6] for the price of an MCS reparameterization of the problem.

3.5 Constrained Optimization Problems

Assumption A2 requires that the optimizer be in the interior of the feasible set X .
This assumption can be relaxed in different ways, either by reducing the dimension-
ality of the decision space (using a substitution approach for equality constraints), or
by augmenting the dimensionality of the decision space (using a Lagrange-multiplier
approach for equality and/or inequality constraints).

Substitution Approach Any equality constraints that are part of the definition of the
feasible set X in fact define a lower-dimensional set X ′ that forms a submanifold of X
(with or without boundary). If the equality constraints can be solved globally for a
number of decision variables, the parameterized optimization problem can be viewed
as unconstrained on X ′ after backsubstitution of these variables. More specifically,
if X ′ is diffeomorphic to an open subset of R

n̂ with n̂ < n, the problem can be seen
as unconstrained on an open subset of R

n̂. To render our discussion precise, consider
the problem18

max
x∈X (t)

f (x, t), (14)

17In particular, f is not supermodular in (x, t).
18Note that in this formulation it is possible to have the feasible set depend on parameters. In contrast
to standard MCS results obtained on lattices, we do not assume at the outset that X (t) is monotone in t

with respect to the Veinott set order [6]. We are grateful to Pete Veinott for pointing out that his set order
(originally termed “lower than” relation) was first introduced by him in a 1965 unpublished paper.
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with

X (t) = {x ∈ Y : g(x, t) = 0},
where Y is an open subset of R

n, t belongs to an open set T of R
m, and g takes

values in R
k (for some 1 ≤ k < n) and is twice continuously differentiable. Suppose

that the level set g(x, t) = 0 can be expressed explicitly as (xn−k+1, . . . , xn)(t) =
g̃(x1, . . . , xn−k, t), for (x1, . . . , xn−k) ∈ X ′, where X ′ is the projection of Y on the
plane {(x1, . . . , xn−k,0, . . . ,0) : (x1, . . . , xn−k) ∈ R

n−k} ⊂ R
n. The problem is then

reduced to the following (n − k)-variable unconstrained problem on X ′:

max
(x1,...,xn−k)∈X ′ f̃ (x1, . . . , xn−k, t)

= max
(x1,...,xn−k)∈X ′ f (x1, . . . , xn−k, g̃(x1, . . . , xn−k, t), t).

The application discussed in Sect. 5.3 provides an example of this transformation.

Lagrange-Multiplier Approach Equality constraints also can be approached with
Lagrange multipliers. In the previous example, a necessary condition ([9], p. 255) for
optimality is the existence of a k-dimensional vector ν such that, at the optimum,

∇xf (x, t) + νT ∇xg(x, t) = 0.

Together with the k equations g(x, t) = 0, this determines the system of n + k equa-
tions in n + k + m variables x, t , ν,

G(x, t, ν) =
[

∇xf (x, t) + νT ∇xg(x, t)

g(x, t)

]

= 0.

The implicit function theorem implies that, if Gxν is invertible, then locally

∇t (x, ν)(t) = −[
G−1

xν Gt

]
(x, ν, t).

Even though the position of the optimal x and ν in X × R
k is unknown, it might be

possible to find directions in the parameter space such that x(t) is nondecreasing in
these directions. The following example illustrates this Lagrange-multiplier approach
with equality constraints.

Example 3.3 Consider an economy with two goods (x, y) ∈ R
2+, with the produc-

tion frontier {(x, y) ∈ R
2+ : g(x, y) = x2 + y2 − 1 = 0} and a representative agent

with utility f (x, y) = u(x)+ tv(y), where u,v are twice continuously differentiable,
increasing and concave. We would like to determine the monotonicity properties of
the optimizer (x, y)(t) with respect to the parameter t . The constraint set is clearly
not a lattice, hence classic supermodularity results do not apply directly.19 Using the

19However, classic results could be applied in conjunction with the substitution approach described earlier.
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Lagrange-multiplier approach, we have

G(x,y, ν, t) =
⎡

⎢
⎣

u′(x) + 2νx

tv′(y) + 2νy

x2 + y2 − 1

⎤

⎥
⎦ ,

which implies that

Gx,y,ν(x, y, ν, t) =
⎡

⎢
⎣

u′′(x) + 2ν 0 2x

0 tv′′(y) + 2ν 2y

2x 2y 0

⎤

⎥
⎦

and that

Gt(x, y, ν, t) =
⎡

⎢
⎣

0

v′(y)

0

⎤

⎥
⎦ .

An application of the implicit function theorem then yields

d

dt

⎡

⎢
⎣

x

y

ν

⎤

⎥
⎦ = v′(y)

D

⎡

⎢
⎣

−4xy

4x2

2y(u′′(x) + 2ν)

⎤

⎥
⎦ ,

where D = −4y2(u′′(x) + 2ν) − 4x2(tv′′(y) + 2ν). In this problem, the condi-
tion ∇f + ν∇g = 0 implies that ν is negative, since the gradients of f and g both
belong to the positive orthant of R

2. This, along with the concavity of u and v, im-
plies that D is positive and that ∇t x < 0 < ∇t y, i.e., monotone comparative statics
obtains.

Inequality constraints can be approached in a similar fashion. Consider again prob-
lem (14), this time with

X (t) = {x ∈ Y : g(x, t) = 0, h(x, t) ≤ 0} ,

where Y is an open subset of R
n, t belongs to an open set T of R

m, g and h take
values in respectively R

k and R
r (with k < n) and are both twice continuously dif-

ferentiable. The Kuhn-Tucker necessary optimality conditions ([9], p. 284) imply the
existence of adjoint variables ν and μ in respectively R

k and R
r+, such that

∇xf + 〈ν,∇xg〉 + 〈μ,∇xh〉 = 0

and

μ̂i(x,μ, t) ≡ μi(t)hi(x, t) = 0,
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for all i ∈ {1, . . . , r}. Letting

G(x, ν,μ, t) =
⎡

⎢
⎣

∇xf + νT ∇xg + μT ∇xh

g(x, t)

μ̂(x,μ, t)

⎤

⎥
⎦ ,

a necessary optimality condition is that G(x, ν,μ, t) = 0. This defines a system
of n + k + r equations in n + k + r + m variables, so that (if the relevant matrix
is invertible) we can apply the implicit function theorem to compute ∇t (x, ν,μ),
and proceed as in the equality case. In some problems, it is possible to know in ad-
vance which inequality constraints are binding at the optimum. In this simple case,
non-binding inequalities are ignored, while binding ones are treated as equality con-
straints. This approach is illustrated in the applications of Sects. 5.2 and 5.3.

4 Finding a Global MCS Reparameterization

Given a smooth solution v : T → R
m to the MCS Problem, it is interesting in practice

to find an MCS reparameterization of the optimization problem (1). The idea is to
start with the flow θ : F → T induced by the vector field v and note that this flow is
smooth and unique on what we refer to as the maximum “flow domain” F ⊂ R × T ,
beyond which the integral curves of the vector field cannot be extended. By taking
a plane that is transverse (i.e., never collinear) to these integral curves, it is possible
to construct new parameter coordinates under which monotone comparative statics
obtain, at least locally.

4.1 Global Flows

As a consequence of the standard theory of ordinary differential equations (ODEs)
[17], if the solution v is smooth, then integral curves to the vector field exist, are
unique, and induce a smooth local flow θ .20 Intuitively a flow describes how any point
of the set T is transported by a vector field v that is defined on T . To formally define
the well-known concept of a local flow, let us first introduce a flow domain F ⊂ R×T
with the property that, for any t ∈ T , the set

F (t) = {λ ∈ R : (λ, t) ∈ F} ⊂ R

is an open interval containing zero. A local flow on T is a continuous map θ : F → T
that satisfies the two group laws,

θ(0, t) = t, (15)

for all t ∈ T , and

θ(λ, θ(μ, t)) = θ(λ + μ, t), (16)

20Existence and uniqueness of integral curves is also obtained when the vector field v merely satisfies a
Lipschitz condition (cf. footnote 11).
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for all λ ∈ F (t) and μ ∈ F (θ(λ,t)) such that λ+μ ∈ F (t). In addition, for a given local
flow θ , we define the orbits

θλ(t) = θ(t)(λ) = θ(λ, t),

for (λ, t) ∈F . A local flow (sometimes also referred to as a “one-parameter group ac-
tion”) relates the vector field v(t) for any t ∈ T to its orbits θ(t)(λ). If the flow domain
is such that the map θ is surjective (i.e., θ(F) = T ), then we call θ a global flow. The
following result is standard, and will be of great use in the ensuing developments.

Theorem 4.1 (ODE Existence, Uniqueness, and Smoothness) Let v : T → R
m be a

smooth vector field. Consider the initial-value problem

∇λγt (λ) = v(γt (λ)), γt (λ0) = t. (17)

(i) EXISTENCE: For any λ0 ∈ R there exist a nonempty open interval I which con-
tains λ0 and an open set U ⊂ T , such that for any t ∈ U there is a smooth
integral curve γt : I → T which solves (17) for all λ ∈ I .

(ii) UNIQUENESS: Any two smooth solutions to (17) agree on their common domain.
(iii) SMOOTHNESS: Let F = I × U as in (i). If we define the local flow θ : F → T

with θ(λ, t) = γt (λ), then θ is smooth.

Proof See e.g., [18], pp. 452–459. �

In the following we use global flows corresponding to the solution vector field v

of the MCS problem on T (or a subset thereof) in order to find a global MCS repara-
meterization of problem (1) as previously indicated in Sect. 2

4.2 Coordinate Change in Parameter Space

By construction, if v is a solution to the MCS problem on T , it is nonsingular every-
where. The lack of singular points allows us to give a canonical, local representation
of v using a change of coordinates in T . Consider a point t0 of T . If v is smooth,
there exists an open interval I ⊂ R containing the origin and an open subset U of
T satisfying the conclusions of Theorem 4.1 (with λ0 = 0). Moreover, since v(t0) is
nonsingular, it uniquely determines an orthogonal hyperplane H ⊂ R

m containing t0.
Let

P = U ∩H ⊂ R
m.

Since H is diffeomorphic to R
m−1, P can also be seen as an open subset of R

m−1.
To avoid confusion, let � = π(P) denote the image of P under the diffeomor-
phism π : H → R

m−1. Theorem 4.1 implies the existence of a smooth flow θ(λ, t),
which we restrict to the domain I × P . The flow can be reparameterized, with a
slight abuse of notation, by θ(λ,π) on the product S = I × � ⊂ R

m. Moreover, the
corresponding range T̄ = θ(S) is an open subset of T by Theorem 4.1. Last, θ is
one-to-one and smooth from S to T̄ , also by Theorem 4.1. We have therefore de-
fined a local change of coordinates around t0: any t in the open neighborhood T̄ of t0
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can be uniquely expressed by a tuple (λt ,π(ψ(t))) ∈ S . The (m − 1)-dimensional
component ψ(t) of t is the intersection of the trajectory going through t with the
hyperplane H. Moreover, since t = γψ(t)(λt ), Theorem 3.1 implies that ϕ ◦ x is non-
decreasing along the trajectories of the flow θ as λ increases. We have thus proved
the following result.

Theorem 4.2 (Local MCS Reparameterization) If v solves the MCS problem on T ,
there exists a local MCS reparameterization of the form

s = (s1(t), s2(t), . . . , sm(t)) = (λt ,π(ψ(t))), (18)

around any t0 ∈ T , such that ϕ(x(s)) is nondecreasing in s1.

In practice, this result often can be applied globally, as the following example
illustrates.

Example 4.1 In Example 3.2 we obtained a vector field of the form v(t) = (−t2, αt1)

(for some α > 0) as the solution to an MCS problem on some T ⊂ R
2+ \ {0}.

Since v2(t) = αt1 �= 0 on T , we can choose the plane P = {t ∈ T : t = (t1,0)}, which
is transverse to the vector field. The (global) flow of the vector field v(t) is obtained
by solving the initial-value problem (17), whence

γt (λ) = θλ(t1, t2) =
(

t1 cos
√

αλ − t2 sin
√

αλ√
α

, t1
√

α sin
√

αλ + t2 cos
√

αλ

)

.

Thus, for any (s,0) ∈ P , we obtain

θλ(s,0) = (s cos
√

αλ, s
√

α sin
√

αλ),

for λ ∈ (0,π/(2
√

α)) and s > 0. Hence, on any contractible21 compact subset T̄
of T , we obtain the global reparameterization t �→ (λ, s) with λ = 1√

α
arctan t2√

αt1

and s =
√

t2
1 + (t2

2 /α); cf. Fig. 2. In the context of Example 3.2, the key insight for
the decision maker from the MCS reparameterization is that the optimal number of
markets to invest in varies monotonically in the ratio p/q , i.e., the product price in
relation to the risk of liability lawsuits.

We now formally generalize the reparameterization technique used in the local
case by providing a general condition under which Theorem 4.2 holds globally.

Assumption A6 (Transverse Hypersurface) There exist subsets T̄ and P of T , with
T̄ open and P ⊂ T̄ , such that:

(i) There exists a convex, open subset � of R
m−1 and a diffeomorphism π map-

ping P onto �.

21An m-dimensional open set with nonempty interior is contractible if it is homotopy equivalent (i.e., it
can be deformed via a continuous transformation) to an m-dimensional open ball. Intuitively, contractible
sets have no “holes.”
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Fig. 3 Global MCS reparameterization

(ii) For each t ∈ T̄ , γt (F (t)) ∩P is a singleton {ψ(t)}.

This last assumption ensures that trajectories of an MCS vector field v lead to a
foliation of the subset T̄ of T . In other words, the existence of a set P of points, each
element of which can be associated with exactly one trajectory, allows projection of
the set T̄ onto P and—via the length (from t to ψ(t)) of the trajectory (which could
pass outside T̄ )—obtain a bijection between T̄ and a set S ⊂ R

m. This bijection cor-
responds to the desired global MCS reparameterization containing the length of the
MCS trajectories as one new parameter in which the solution to the reparameterized
problem (4) (when evaluated with ϕ) varies monotonically.

Theorem 4.3 (Global MCS Reparameterization) If the vector field v is a solution to
the MCS problem on T̄ and if Assumption A6 holds, then there exists a global MCS
reparameterization of the form

s = (s1(t), s2(t), . . . , sm(t)) = (λt ,π(ψ(t))) (19)

such that ϕ(x(s)) is nondecreasing in s1.

Proof Each element t of T̄ uniquely determines an element ψ(t) of P and a real λt

such that γψ(t)(λt ) = t . The set S = ⋃
ψ∈P F (ψ) × {π(ψ)} is an open subset of R

m.

Moreover, the mapping t �→ s = (λt ,π(ψ(t))) ∈ S is one-to-one from T̄ to S , and
smooth by Theorem 4.1. Last, since t (s) = (λ,ψ) follows the trajectories of v as
λ increases, Theorem 3.1 implies that ϕ(x(s)) = ϕ(x(λ,π)) is nondecreasing in
s1 = λ. �

When v has a potential22 u : T → R, a good candidate for P in Assumption A6 is
any iso-potential that crosses all trajectories.23 Although this need not always be the
case, it is likely that iso-potentials will be diffeomorphic to an open subset of R

m−1,
and to a convex subset if one chooses T̄ carefully. The following classic theorem

22That is, v is the gradient of u.
23In that case, trajectories cross P only once, because the potential increases along them.
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(essentially Poincaré’s lemma) gives a necessary and sufficient condition for the ex-
istence of a potential, which can be tested on any vector field v satisfying Assump-
tion A5.

Theorem 4.4 (Existence of a Potential) Let T̄ ⊂ T be a contractible compact do-
main with nonempty interior and let v be a vector field on T̄ . Then, ∂vk/∂tl =
∂vl/∂tk , for all k, l ∈ {1, . . . ,m} with k �= l, if and only if there exists a twice contin-
uously differentiable potential u : T → R, i.e.,

v(t) = ∇t u(t),

for all t ∈ T .

Proof See [10], Vol. II, p. 296. �

5 Applications

5.1 Optimal Capacity Choice and Product Distribution

Suppose that a firm can choose the quantity (or, equivalently, the quality) q of a prod-
uct that will be provided to each of m geographically dispersed consumers. Each
consumer k ∈ {1, . . . ,m} is located at a point tk ∈ R, representing his or her type. To
deliver the product to consumer i the firm incurs a quadratic transportation (or, cus-
tomization) cost d(z − tk)

2, where z ∈ R is the location of a distribution center that
the firm is able to determine freely, and d is a positive constant. The firm’s unit trans-
portation cost from its factory (located at the origin) to the distribution center is given
by the smooth convex function C(z) with C′(0) = C(0) = 0. To keep our analysis
simple, we assume that each consumer’s demand can be represented by a linear in-
verse demand function of the form a − bq , where a, b are positive constants.24 The
firm’s profit can therefore be written as

�(q, z, t) = mq(a − bq) − dq

m∑

k=1

(tk − z)2 − mqC(z), (20)

where t = (t1, . . . , tm) ∈ R
m. The firm thus solves the parameterized optimization

problem

max
(q,z)∈R+×R

�(q, z, t). (21)

Provided that a is sufficiently large, it is easy to verify that problem (21) has a unique
interior solution (q∗(t), z∗(t)) and satisfies Assumptions A1–A3. The firm’s MCS
problem is: how does the optimal per-consumer production quantity q∗ vary with t?

24This corresponds to a quadratic utility function uk(q) = aq − bq2/2 for all consumers k ∈ {1, . . . ,m}.
Allowing for demand heterogeneity with uk(q) = akq − bkq2/2 leads to analogous results.
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Starting from a market characterized by the parameter vector t ∈ R
m, is there a direc-

tion in the parameter space in which the optimal production quantity q∗ increases?
We first determine the first-order necessary optimality conditions for (21),

∂�

∂q
= a − 2bq − d

m∑

k=1

(tk − z)2 − mC(z) = 0 (22)

and

∂�

∂z
= 2dq

m∑

k=1

(tk − z) − mqC′(z) = 0. (23)

Therefore, we can restrict R(t) to the subset of tuples (q, z) ∈ X = R+ × R that
satisfy (22) and (23). To apply the method, we also compute 	, H−1 and K . Since
ϕ(q, z) = q , we have that 	 = (1,0) and Assumption A4 is satisfied. Moreover,

H =
[

−2b 2d
∑m

k=1(tk − z) − mC′(z)
2d

∑m
k=1(tk − z) − mC′(z) −2mdq − mqC′′(z)

]

.

The first-order necessary optimality condition with respect to z, given in (23), sim-
plifies the Hessian matrix H to

H =
[

−2b 0

0 −2mdq − mqC′′(z)

]

.

It follows that25

H−1 = 1

2bmq(2d + C′′(z))

[
−2mdq − mqC′′(z) 0

0 −2b

]

,

whence

−	H−1 =
(

1

2b
,0

)

.

The first row of K is given by26

(
∂2�

∂q∂t1
, . . . ,

∂2�

∂q∂tm

)

= 2d ((z − t1), . . . , (z − tm)) .

Therefore, in order to satisfy Assumption A5, we are looking for a vector v(t) ∈ R
m

such that
d

b
〈(z − t1, . . . , z − tm), v(t)〉 ≥ 0,

25Observe that the determinant is nonzero, since C′′(z) ≥ 0 by convexity of g.
26There is no need to compute the second row, since K is left-multiplied by −	H−1, whose second
component is zero.
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for all z ∈ R, or equivalently

〈(ze − t), v(t)〉 ≥ 0, (24)

for all z ∈ R, where e = (1, . . . ,1)/m is the unit vector of the first bisectrix27

� in R
m. It is easy to see that if v(t) is orthogonal to e and has a nonnegative

scalar product with −t , the condition is satisfied. The vector v(t) = −t + m〈t, e〉e
is such that first, 〈e, v(t)〉 = 0, since 〈e, e〉 = 1/m; and second, 〈−t, v(t)〉 = 〈t, t〉 −
m(〈t, e〉)2 ≥ 0 by the Cauchy-Schwarz inequality. Moreover, the inequality is strict if
t is not collinear with e. Last, observe that, when seen from t , v(t) points directly28

to the first bisectrix � of R
m. We therefore conclude from Theorem 3.1 that q∗(t) in-

creases as t gets closer to �. In other words, as the consumer types become “closer,”
the optimal product quantity increases. When the consumer types are identical (t
collinear to e), the optimal production reaches its maximum. The problem can thus
be reparameterized in the following way: define a cylinder P around the first bisec-
trix �, for example

P =
{
t ∈ R

m−1 : d(t,�) = 1
}

,

where d is the Euclidian distance from a point to a line. This cylinder is an (m − 1)-
dimensional manifold, which can be parameterized by m − 1 components. More-
over, P is transverse to all trajectories, and is hit by all trajectories once, so that
Assumption A6 is satisfied.29 Therefore, we have a global reparameterization of R

m

where m − 1 components correspond to the position on the cylinder and determine
a radius emanating from �, and the remaining component is a parametric repre-
sentation of the radius. In this particular context, it is possible to construct a more
efficient parameterization: let H denote the (m − 1)-dimensional hyperplane of R

m

orthogonal to the first bisectrix and going through the origin, and (ε1, ε2, . . . , εm−1)

be an orthogonal basis of H. Then, (e1, e2, . . . , em) = (ε1, ε2, . . . , εm−1, e) is an or-
thogonal basis of R

m. Moreover, if t is represented with respect to that basis, i.e.,
t = s1e1 + s2e2 + · · · + smem, we obtain a new parameterization of the parameter
space such that q∗(s1, . . . , sm) is nonincreasing in (s1, . . . , sm−1) (the smaller these
coordinates, the closer is t to the first bisectrix).30

It is worth observing that in order to solve the MCS problem, we relied on our
knowledge of the first-order optimality condition for z. It is our second use of the
crucial device R(t) which enables us to narrow down the domain on which Assump-
tion A5 must be satisfied. On the other hand, we did not use the fact that the opti-
mizer (q∗, z∗) satisfies the first-order optimality condition for q . Thus R(t) could
have been larger without affecting our ability to construct the vector field v to sat-
isfy Assumption A5. We also note that classic supermodularity is of no use in this

27The first bisectrix is defined by the equation t1 = t2 = · · · = tm.
28The vector v(t) points in the direction of the orthogonal projection of t on �.
29To be rigorous, P is diffeomorphic to Sm−2 × R, where Sm−2 is the unit sphere in R

m−1. This para-

meterization is a generalization of cylindric coordinates in R
3.

30Moreover, it can be shown that q∗(s) is independent of the last component, sm .
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problem, since q∗ is not monotonic in any of the tk’s. Last, observe a remarkable fact
in our analysis of this example: we are able to obtain monotone comparative statics
for q∗ without solving explicitly for either q∗ or z∗. In general, the method can be
used to derive monotone comparative statics for any single decision variable, say, x1,
while one is able to solve the optimization problem explicitly for some other vari-
ables, say, xk(t), xi+1(t), . . . , xn(t). In that case the reduced feasible set R(t) can be
narrowed down to the set of all x ∈X such that xk = xk(t), . . . , xn = xn(t).

5.2 Neoclassical Production

Consider a firm’s optimal choice of factor inputs, capital k and labor l, so as to max-
imize the objective function

f (x, t) = g(k, l) − rk − wl, (25)

where x = (k, l) and t = (r,w) with r the rate of return of capital and w the average
wage rate. As pointed out by [6], if g is not supermodular, comparative statics are not
monotone in the original parameterization. To demonstrate the use of our method,
we assume that g is twice continuously differentiable and that there exists a unique
optimizer in the interior of R

2+. Therefore, Assumptions A1–A3 are satisfied, with
the Hessian and cross-derivative matrices

H =
[

gkk gkl

gkl gll

]

and K =
[

−1 0

0 −1

]

,

respectively. The pseudogradient is therefore

W = 1

D

[
gll −gkl

−gkl gkk

]

,

where D(k, l) = (gkkgll − g2
kl)(k, l) is the determinant of H(k, l). Because of the

strict concavity of g at the optimizer, we can restrict the reduced feasible set R(t)

to the subset of R
2+ where H is negative definite, implying that D(k, l) is positive.31

Notice that the pseudo-gradient and the reduced feasible set are independent of r

and w.32 To simplify our exposition we drop the explicit dependence on t and refer
to R(t) as R. If one can find a vector v making a positive scalar product with W(k, l)

for all (k, l), it will satisfy Assumption A5 for all values of r and w. The vector field
will then consist of straight, parallel trajectories of direction v. This will generate
a linear reparameterization of the problem (the basis of the new coordinate system
consisting of v and any other vector not collinear to v), under which both k and l

are nondecreasing in the first parameter coordinate. Before addressing the problem
of monotone comparative statics for both k and l, let us consider the simpler problem

31The determinant D is positive at any maximizer of (25) as the product of the two negative eigenvalues
of H .
32Note that H , K and D are all independent of (r,w).
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of finding monotone comparative statics for k alone. That is, we consider the func-
tion ϕ(k, l) = k, which trivially satisfies Assumption A4. The pseudogradient then
becomes

Wk(k, l) = 	(k, l)W(k, l),

with 	(k, l) = (1,0). This yields

Wk(k, l) = 1

D
(gll,−gkl).

We are looking for a vector v ∈ R
2 \ {0} such that 〈Wk(k, l), v〉 ≥ 0, or equivalently

〈(gll,−gkl), v〉 ≥ 0. (26)

Since gll is nonpositive, a solution is v = (−1,0). That is, k(r,w) is nondecreasing
in r . Notice that this result obtains without assumption on g except for smoothness.33

In general, k(r,w) is not monotonic in w: this would require gkl ≥ 0 for all (k, l)

(as can be seen by substituting v = (0,−1) in (26)). However, there may be other
directions of v such that k is nondecreasing. Equation (26) can be rewritten as

v1gll(k, l) − v2gkl(k, l) ≥ 0,

for all (k, l) ∈ R
2+. Since gll ≤ 0 on R, this is equivalent to

v1 ≤ min{D,d}v2, (27)

where (d,D) = (inf δ, sup�), with

δ =
{

gkl

gll

(k, l) : gkl ≥ 0, gll < 0, (k, l) ∈ R
}

,

� =
{

gkl

gll

(k, l) : gkl ≤ 0, gll < 0, (k, l) ∈ R
}

,

as well as the conventions that inf{∅} = +∞ and sup{∅} = −∞. When � �= ∅, D ≥ 0.
Similarly, d ≤ 0 if δ �= ∅. When g is supermodular, � is empty or reduced to the sin-
gleton {0}, so that D ≤ 0. Moreover, δ �= ∅ implies d ≤ 0, so that condition (27) is sat-
isfied by any v ∈ R

2−, by virtue of the nonpositivity of d ∧D. This proves that k(r,w)

is nonincreasing not only in r , but also in w, whenever g is supermodular. In general,
relation (27) defines a convex cone �k ∈ R

2 based at the origin which always con-
tains the negative real line R− × {0}. Except when both D = +∞ and d = −∞, �k

has a nonempty interior. If gkl > 0, D = −∞, implying that �k is a half-space that is
located below the line v1 = dv2.

33Another way to see this is the following: the function f (k, l, r,w) = g(k, l) − rk − wl is supermodular
in (r, k). To apply standard supermodularity results, define F(k, r,w) = maxl≥0 f (k, l, r,w). F is super-
modular in (k, r) and arg maxk≥0 F(k, r,w) = k(r,w). This implies that k(r,w) is nondecreasing in r . We
thank Paul Milgrom for this observation.
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The optimizer k(r,w) is nondecreasing in any direction of �k . When �k has a non-
empty interior, it is possible to change coordinates in the parameter space by using
two independent basis vectors in �k . As pointed out earlier, this coordinate change is
global, since �k is independent of the particular values chosen for r and w. Similarly,
l(r,w) is nondecreasing in any direction located in the cone �l based at the origin
and containing the negative imaginary line {0} × R−. Having constructed these two
cones, we can now address the more challenging question, is it possible to find direc-
tions in which both k and l increase? The answer depends on V = �k ∩ �l . If V is
empty, we cannot construct any direction that jointly increases k and l. If V is non-
empty, then it is also a convex cone, whose elements are directions of joint increase.
The intersection V being empty does not prove the nonexistence of directions of joint
increase. It just means that we do not have enough information on the optimizers
to produce such directions. As our information gets richer, the set R becomes nar-
rower, which implies that the cones �k and �l become wider. When one has enough
information, the cones are wide enough to intersect, yielding the desired directions
of joint increase (cf. Fig. 4).34 When V is nonempty, the vector field can be chosen
constant: v(r,w) = v for some v ∈ V . In that case, any straight line P orthogonal to v

satisfies Assumption A6: it is transverse and is hit exactly once by all trajectories.
The reparameterization is then simple: take any vector e2 on that line and let e1 = v.
Then, (e1, e2) is an orthogonal basis of R

2, such that if one expresses t = (r,w) on
that basis (that is, (r,w) = s1e1 + s2e2), then (k(s), l(s)) is nondecreasing in s1.

Fig. 4 Neoclassical production:
monotonicity of k(r,w) on
�k ∩ �l

34The analysis for obtaining directions of joint decrease is naturally analogous, by considering opposite
directions. Similarly, it is possible to obtain directions of increase in one parameter and decrease in the
other.
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5.3 Giffen Goods

In an economy with two goods, an agent wishes to maximize her increasing and
concave utility by solving

max
(x,y)∈R

2+
u(x, y),

subject to

px + qy ≤ w,

where x, y are the quantities of the two goods, p and q are their respective positive
prices, and w represents the agent’s wealth. Without loss of generality, we select the
second good to be the numéraire and correspondingly set q = 1. In addition, since
both goods are desirable, the agent’s budget constraint is binding. As pointed out in
Sect. 3.5, the agent’s problem can be restated as

max
x∈[0,w/p]

u(x,w − px).

In this formulation the problem has one decision variable and two parameters.35 If u

is smooth, compactness ensures the existence of an optimizer. We assume that for
our starting values of w and p, the optimizer x(w,p) is unique, located in (0, w

p
),

and that u(·,w,p) is locally strictly concave at x(w,p) and everywhere twice con-
tinuously differentiable. This implies that Assumptions A1–A3 are satisfied. The first
good is “normal” if x(w,p) is nonincreasing in p, and Giffen or “inferior” if this
monotonicity is sometimes violated.36 Similarly, one would usually expect the con-
sumption of any good to increase with the agent’s wealth. However, this monotonic-
ity is also sometimes violated. The question then becomes, under what conditions is
a good normal, and how are price and wealth effects connected? The Hessian and
cross-derivative matrices are

H = uxx − 2puxy + p2uyy and K = [
uxy − puyy − xuxy + pxuyy − uy

]
.

The pseudogradient W is therefore given by

W(x,w,p) = 1

D
[α(x,w,p) − xα − uy(x,w − xp)],

where D = −H > 0 (by strict concavity of H at the optimizer) and α(x,w,p) =
uxy − puyy. We also note that since ϕ(x) = x, Assumption A4 is trivially satisfied.

35As mentioned earlier, we have therefore converted the initial problem—with two decision variables on

a one-dimensional manifold of R
2 (with empty interior but nonempty relative interior)—into a problem

with one decision variable on a set with nonempty interior.
36 Classic examples include potatoes or bread. The gist of the argument goes as follows: when the price for
bread increases, poorer people cannot afford buying “luxury goods” such as meat, and end up consuming
more bread, which is still the cheapest good. Other goods violating this monotonicity are Veblen goods [19]
or positional goods ([20], Chap. 3) which are such that the implied status of the owner increases with their
price.
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In order to meet Assumption A5, we are thus looking for a vector v ∈ R
2 such that

α(x,w,p)v1 − (xα(x,w,p) + uy)v2 ≥ 0, (28)

for all x in the reduced feasible set R(w,p). First, we observe that if u is supermod-
ular and concave in its second variable, α is nonnegative, which implies, along with
the nonnegativity of uy , that any vector v in R+ × R− solves (28). This means that
if the two goods are complements and if the utility function is concave in the second
good, then the first good is normal.37 In the general case, we show that there is a hi-
erarchical relationship between wealth and price effects. Increasing wealth amounts
to setting v1 > 0 and v2 = 0, so that the good is normal with respect to the wealth
effect if and only if α ≥ 0. On the other hand, α ≥ 0 implies that xα + uy ≥ 0.
Since decreasing the price amounts to setting v2 > 0 and v1 = 0, the good is there-
fore normal with respect to the price effect if α ≥ 0. This shows that the follow-
ing result holds for any smooth, nondecreasing utility function: if an augmentation
in wealth increases the optimal consumption of a good, then a cut in its price also
increases its optimal consumption. In general, the converse is not true.38 If the op-
timal consumption x(w,p) is known or constrained to belong to some subinterval
J = (x1, x2) ⊂ (0,w/p),39 the analysis can be refined. For example, suppose that
minx∈J {α(x,w,p)} ≥ 0 for all w,p. Then the good is normal with respect to both
wealth and price effects (any v ∈ R+ × R− solves (28)). If α sometimes takes nega-
tive values but minx∈J {xα(x,w,p) + uy(x,w − px)} ≥ 0, then the good is normal
with respect to price effects (v ∈ {0} × R− solves (28)). More generally, suppose
that α(·,w,p) changes sign only once on (x1, x2), and that α(x1,w,p) > 0 for all w

and p in an open neighborhood of initial values of wealth and price. The second
condition means that the good is normal for low consumption, while the first condi-
tion means that the good becomes Giffen for high consumption values. Then, if the
vectors

(
α(x1,w,p),−x1α(x1,w,p) + uy(x1,w − px1)

)

and
(
α(x2,w,p),−x2α(x2,w,p) + uy(x2,w − px2)

)

are in the same half-plane, there exists a normal vector v(w,p) of the half-space
whose scalar product with W(x,w,p) is nonnegative for all x ∈ (x1, x2). The situa-
tion is represented in Fig. 5.

It is easy to verify that v(w,p) can always be taken in the negative orthant R
2−.

Therefore we have the following result: if the pseudo-gradients of consumption
boundaries x1, x2 lie in the same half-plane, and if the good behaves as a normal
good for low consumption values and as a Giffen one for high consumption values

37This result can also be shown by observing that the concavity of u in y implies the supermodularity of v

in (x,w,−p).
38The result can be read in the opposite direction: if a good is inferior with respect to price effect, it is also
inferior for wealth effect.
39For example, minimal consumption could be imposed or supply could be limited.
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Fig. 5 Giffen goods: solving
the MCS problem for x(w,p)

(such as potatoes, cf. footnote 36), then there exists a way to increase optimal con-
sumption of this good by reducing both wealth and price at the same time. It can
also be shown that in the same situation, there is no way to increase consumption by
raising both wealth and price at the same time.

5.4 Multiattribute Screening

A variation of our method can be used in the context of screening with multiple in-
struments. A firm faces customers of different types, distributed on an interval X ⊂ R

according to a positive density function g. The firm sells products whose m attributes
are described by a vector t ∈ T ⊂ R

m. The goal of the firm is to propose a prod-
uct line � ⊂ T and a price schedule P : � → R+ (with 0 ∈ � and P(0) = 0) that
maximizes its expected profit

π(P,�) =
∫

X
[P(t (x)) − C(t (x))]g(x)dx,

where C(t (x)) is the cost of producing t (x) ∈ � and t (x) solves the type-x con-
sumer’s utility maximization problem

t (x) ∈ arg max
t∈�

{u(x, t) − P(t)} .

This general screening problem has been only solved for particular cases.40 When
m = 1 (only one instrument available), it is possible to directly compute the opti-
mal price schedule P(x) under some additional supermodularity assumptions on the

40See [21–23] for the multiattribute, one-dimensional type case, and [24] for a recent account of the
general multidimensional screening literature.
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primitives of the problem. Assuming that u is smooth, we can define

μ(x, t) = u(x, t) − ux(x, t)
1 − G(x)

g(x)
,

where G is the probability distribution of the density g. [25] has shown, based on a
technique developed by [26], that if u and μ are twice differentiable and supermodu-
lar (i.e., uxt ≥ 0 and μxt ≥ 0 on X × T ), then it is possible to construct the optimal
price schedule. Moreover, this optimal schedule leads to “perfect” screening (without
bunching): each consumer of type x will buy a distinct product t (x). Suppose now
that there are m ≥ 2 product attributes available. Our method can be extended to build
product lines that perfectly screen consumers. Defining the pseudogradient W as the
(2 × m)-matrix

W(x, t) =
[

∇T
x ut (x, t)

∇T
x μt (x, t)

]

,

suppose that there exists for all t ∈ T a nonzero vector v(t) such that

W(x, t)v(t) ≥ 0,

for all x ∈ X (i.e., Assumption A5 is satisfied). We can then define � ⊂ T to be
the image of any smooth trajectory γ : (0,1) → T generated by the vector field v.
This leads to a reparameterization of the utility u and the function μ when restricted
to X × � (that is, when customers are offered the product line �). Specifically, we
define ũ and μ̃ on X × (0,1) by ũ(x, λ) = u(x, γ (λ)) and μ̃(x,λ) = μ(x, γ (λ)).
Using Lemma 3.1 and Theorem 3.1, we can show that ũ and μ̃ are supermodular
on X × (0,1). The aforementioned result then implies that it is possible to find the
optimal price schedule on �, and that this schedule perfectly screens customers. This
approach does not solve the original problem of maximizing the profit on T , since
we artificially restricted ourselves to the product line �. However, the method can
be repeated for several distinct trajectories, and leads to a perfectly screening price
schedule that maximizes the expected profit not only on a particular product line, but
on a large class of product lines that spans the whole multiattribute space T .

6 Discussion

In the available literature on monotone comparative statics, the parameterization of
the optimization problem is essentially taken as given.41 The presently known criteria
for the monotonicity of solutions hold, therefore, only with respect to the particular
problem formulation given at the outset. Milgrom and Shannon’s [6] characterization
of the monotonicity of solutions to (1) on lattices requires the objective function f to

41Note that the decision variables are also typically taken as given. Our method in principle allows for a
change of the decision variables to obtain monotone comparative statics through an appropriate choice of
the evaluation function ϕ.
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be quasi-supermodular in x and to satisfy a single-crossing property in (x, t).42 The
supermodularity requirement on the objective function can thereby be interpreted in
terms of “complementarity” of decision variables, a concept that dates back at least to
Edgeworth [28] and whose origins are reviewed by [29]. Reference [30] demonstrates
the power of complementarities and associated supermodularity properties in inter-
preting decision changes as monotone responses to exogenous shifts of economic
conditions. Even though equilibria cannot be located exactly, complementarities al-
low one to make precise statements about the direction in which optimal decisions
move as a consequence of parameter changes. In the absence of such complementari-
ties, the presently available theory unfortunately guarantees the non-monotonicity of
solutions, even though this non-monotonicity might just be a symptom of an unsuit-
able parameterization of the problem. This paper proposes a way to obtain an equiva-
lent formulation of the optimization problem (1) using a new parameterization, such
that—provided sufficient knowledge about the location of the solution—monotone
comparative statics may be obtained. Finding a new parameterization of the problem
amounts to creating a set of economic indicators which allow for monotonic deci-
sion making and thus easy rules of thumb (i.e., when the relevant indicator goes up,
the optimal decision goes up, too). This seems especially useful in situations where
the same optimization problem needs to be solved repeatedly for different parameter
values.

Let us briefly mention at this point that our method naturally extends to equilib-
rium problems (cf. also [31]) specified by a relation

F(x, t) = 0,

where F : X × T → R
n is a continuously differentiable function, as can be seen by

associating ∇xf with F , so that H = ∇xF and K = ∇tF . With these substitutions
in place, all of our results hold essentially without modification. We also remind
the reader that, as pointed out in Sect. 3.5, even though through Assumption A2
we require the existence of a unique interior global optimum, parameter-dependent
constraints can be accommodated in a straightforward way by shifting the analysis
to a submanifold in X or by augmenting the space of decision variables by Lagrange
multipliers corresponding to the binding constraints.

Sometimes our method may also be useful for reducing the number of parameters
without any losses. To show this, let us first note that, clearly, an “ideal” parameter-
ization of problem (1) for the case m ≥ n associates exactly one parameter ti with
each component of the decision variable xi , and is such that xi remains unchanged
in response to a change of parameter tj (with j �= i). If the location of the optimal
solution is perfectly known, a reparameterization with these “ideal” properties can
always be obtained by setting si = xi(ti) for i ∈ {1, . . . , n} and simply discarding all
other m − n parameters, tn+1, . . . , tm. Unfortunately, lack of knowledge about the
location of the optimizer (up to a monotone transformation) usually makes this triv-
ial solution impracticable. Nevertheless, it may sometimes be possible to reduce the

42Reference [27] applies these results to expected-utility maximization problems under uncertainty and
finds necessary and sufficient conditions on the model primitives in that context.
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number of parameters by finding directions v(t) for which 〈W(x, t), v(t)〉 = 0 for
all x in an admissible reduced feasible set R(t). If such a direction can be found, the
solution does not depend on λ in the associated global MCS reparameterization and λ

may thus be discarded from the set of new parameters. By repeating this process it
may be possible to eliminate further parameters.

The tradeoff between the decision maker’s knowledge about the location of the
optimal action and her ability to find directions that guarantee monotone behavior of
the optimizer (i.e., to solve the (local) MCS problem) is related to “partially specified
problems”, as discussed by [13]. One type of partially specified optimization prob-
lems possesses an objective function of the form f (x, t) = g(x, t) + δ(x), where δ

is any affine mapping from X ⊂ R to R. Monotonicity of optimal solutions xδ(t)

to the problem (1) for any affine δ is then equivalent to the (otherwise unknown)
function g being supermodular on X × T . The key idea in this approach is that the
class of perturbations δ is large enough relative to g and X to allow for any loca-
tion of the optimizer in X . A variation of our method bypasses this definitive result
when the function g fails to be supermodular: it might be possible to transform the
parameter space so as to “supermodularize” the function g. If g(x, t) is not super-
modular in (x, t), we can build trajectories γ : (0,1) → T in the parameter space
such that g(x, γ (λ)) is supermodular in (x,λ). We have also used this approach in
Sect. 5.4 and Corollary 3.2. While supermodularization of functions is just a partic-
ular application of our method, its repeated use in this paper suggests its potential
benefits in numerous other settings, such as for supermodularizing noncooperative
games.

Further research could proceed to relax some of the differentiable structure im-
posed to obtain our results. Systematic MCS reparameterizations can be expected
to generalize naturally to an analysis on lattices. The problem is to find a rule
on W ⊂ T × T such that (t, t ′) ∈ W implies φ(x(t ′)) ≥ φ(x(t)). In particular, sup-
pose that we can build trajectories {Ti} in T such that (x, t) �→ f (x, t) has the single-
crossing property43 on X × Ti for all i ∈ I . If f is in addition (quasi-)supermodular
in x, standard results as in [13] apply, showing that x(t) is nondecreasing along the
trajectories. The problem is of course to construct such trajectories. Our method for
doing so is based on differential calculus, but there may be other ways to build tra-
jectories (e.g., through discretization of our results), or at least to find rules in the
parameter space, in order to achieve monotone comparative statics.
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