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Abstract. As the volumes of AI problems involving human knowledge are likely
to soar, crowdsourcing has become essential in a wide range of world-wide-web
applications. One of the biggest challenges of crowdsourcing is aggregating the
answers collected from the crowd since the workers might have wide-ranging
levels of expertise. In order to tackle this challenge, many aggregation tech-
niques have been proposed. These techniques, however, have never been com-
pared and analyzed under the same setting, rendering a ‘right’ choice for a par-
ticular application very difficult. Addressing this problem, this paper presents a
benchmark that offers a comprehensive empirical study on the performance com-
parison of the aggregation techniques. Specifically, we integrated several state-
of-the-art methods in a comparable manner, and measured various performance
metrics with our benchmark, including computation time, accuracy, robustness
to spammers, and adaptivity to multi-labeling. We then provide in-depth analysis
of benchmarking results, obtained by simulating the crowdsourcing process with
different types of workers. We believe that the findings from the benchmark will
be able to serve as a practical guideline for crowdsourcing applications.

1 Introduction

In recent years, crowdsourcing becomes a promising methodology to overcome prob-
lems that require human knowledge such as image labeling, text annotation, and product
recommendation [14]. Leveraging this methodology, a wide range of applications [5]
(e.g. ESP game [1], reCaptcha [2], and ZenCrowd [3]) have been developed on top of
more than 70 platforms 1 such as Amazon Mechanical Turk and CloudCrowd. The rapid
growth of such applications opens up a variety of technical challenges [16,9,8].

One of the most important technical challenges of crowdsourcing is answer aggre-
gation [17], which aggregates a set of human answers into a single value. In our setting,
we consider a broad class of problems in which there is an objective ground truth exter-
nal to human judgment; i.e. each question has an exact answer but no one knows what
it is. The goal of answer aggregation is to find this hidden ground truth from a set of
answers given by the crowd workers. This goal is, however, difficult to achieve for two
main reasons. First, the crowd workers have wide-ranging levels of expertise [20] , lead-
ing to high contradiction and uncertainty in the answer set. Second, the questions vary
in different degrees of difficulty, resulting in an incorrect assessment of the true exper-
tise between truthful workers and malicious workers. To fully overcome this challenge,
a rich body of research has proposed different techniques for the answer aggregation.

1 http://www.crowdsourcing.org/
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In general, the aggregation techniques are broadly classified into two categories
according to their computing model:

– Non-iterative: uses heuristics to compute a single aggregated value of each ques-
tion separately. One simple approach is Majority Decision (MD) [13], in which the
answer with highest votes is selected as the final aggregated value. Other techniques
are Honeypot (HP) [15] and ELICE [12].

– Iterative: performs a series of iterations, each consisting of two updating steps: (i)
updates the aggregated value of each question based on the expertise of workers
who answer that question, and (ii) adjusts the expertise of each worker based on the
answers given by him. This incremental mechanism serves as the basis in EM [7],
GLAD [22], SLME [18], and ITER [10].

While many aggregation techniques have been developed over the last decades, there
has been no work on the evaluation of their performance altogether. The main reason
is the lack of a common setting (i.e. no common dataset and no common metrics of
success). As a result, understanding the performance implications of these techniques
is challenging, since each of them has distinct characteristics. One, for example, may
achieve very high accuracy over certain types of workers, while another is sensitive to
spammers. Moreover, aggregation techniques have never been compared systematically,
and each work often reported its superior performance generally using a limited variety
of datasets or evaluation methodologies. Therefore, there is a need of common settings
to test, research, and assess the advantage and disadvantage of these techniques.

The primary goal of this paper is to evaluate aggregation techniques within a com-
mon framework. To this end, we present a benchmark that offers an overview of compre-
hensive performance comparison among the aggregation techniques, describes in-depth
analysis on the performance behavior of each method, and provides guidance on the se-
lection of appropriate aggregation schemes. Moreover, potential users (e.g. researchers
and developers) can utilize our benchmarking framework to assess their own techniques
as well as reuse its components to reduce the development complexity. Specifically, the
salient features of the benchmark are highlighted as follows:

– We developed or integrated, in a fair manner for comparisons, the most representa-
tive state-of-the-art techniques in each category of answer aggregation approaches,
including 2 MD, HP, ELICE, EM, GLAD, SLME, and ITER.

– We designed a generic, extensible benchmarking framework to assist in the eval-
uation of different aggregation techniques, so that subsequent studies are able to
easily compare their proposals with the state-of-the-art techniques.

– We simulated different types of crowd workers and questions. In addition, our
benchmark allows users to customize the distribution of these workers. By this
way, the users can predict the accuracy of worker answers and save their money
before really posting the questions to the crowd.

– We offer extensive as well as intensive performance analyses. We believe that the
analyses can serve as a practical guideline for how to select a well-suited aggrega-
tion technique on particular application scenarios.

2 Full names of all abbreviations are given in section 2.



The remainder of the paper is organized as follows. Section 2 reviews state-of-the-
art aggregation techniques. We then describe the methodology used in the benchmark
in Section 3. Section 4 offers in-depth discussions on the benchmark results. Section 5
finally summarizes and concludes this study, where we provide important suggestions
for the applications that consider employing an aggregation technique.

2 Answer Aggregation Techniques

In the domain of crowdsourcing, a large body of work has studied the problem of aggre-
gating worker answers, which is formulated as follows. There are n objects {o1, . . . , on},
where each object can be assigned by k workers [w1, . . . ,wk} into one of m possible
labels L = {l1, l2, . . . lm}. The aggregation techniques take as input the set of all worker
answers that is represented by an answer matrix:

M =
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where ai j ∈ L is the answer of worker w j for object oi. The output of aggregation
techniques is a set of aggregated values {γo1 , γo2 , . . . γon }, where γoi ∈ L is the unique
label assigned for object oi. In order to compute aggregated values, we first derive the
probability of possible aggregations P(Xoi = lz), where Xoi is a random variable of the
aggregated value γoi and its domain value is L. Each technique applies different models
to estimate these probabilities. For simplicity sake, we denote γoi and XOi as γi and Xi,
respectively. After obtaining all probabilities, the aggregated value is computed by 3:

γi = arg max
lz∈L

P(Xi = lz) (2)

In the following, we offer the details of aggregation techniques commonly used
in the literature. We organize them into two categories: (i) non-iterative aggregation,
including MD, HP, and ELICE; and (ii) iterative aggregation, including EM, GLAD,
SLME, and ITER. Table 1 summarizes the important notations used in this paper.

2.1 Non-Iterative Aggregation

The literature suggests various non-iterative techniques, including Majority Decision
(MD)[13], Honeypot (HP)[15], and ELICE[12]. They differ in the preprocessing step
as well as the probability computation. In particular, MD does not require preprocess-
ing. HP filters the answers of spammers in advance, whereas ELICE considers both
worker expertise and question difficulty. This section presents the details for these three
techniques, which cover the characteristics of other non-iterative methods.
Majority Decision Majority Decision (MD) is a straightforward method that aggre-
gates each object independently. Given an object oi, among k received answers for oi,
we count the number of answers for each possible label lz. The probability P(Xi = lz)
of a label lz is the percentage of its count over k; i.e. P(Xi = lz) = 1

k
∑k

j=1 1ai j=lz . How-
ever, MD does not take into account the fact that workers might have different levels of
expertise and it is especially problematic if most of them are spammers.

3 Note that
∑

lz∈L P(Xi = lz) = 1



Table 1: Summary of important notations
Symbol Description

Mn×k answer matrix of n objects and k workers
oi, w j, lz an object, a worker, a possible label
ai j answer of worker w j for object oi

γoi or γi aggregated value of object oi

P(Xi = lz) the probability of object oi that its
aggregated value γi is lz

Ω a set of trapping questions used to test
worker expertise

Table 2: Characteristics of aggregation techniques

algo trapping aggregation worker question computing
set model expertise difficulty model

MD no non-iterative no no online
HP yes non-iterative no no online

ELICE yes non-iterative yes yes offline
EM no iterative yes no offline

SLME no iterative yes no offline
GLAD no iterative yes yes offline
ITER no iterative yes yes offline

Honeypot In principle, Honeypot (HP) operates as MD, except that untrustworthy
workers are filtered in a preprocessing step. In this step, HP merges a set of trapping
questions Ω (whose true answer is already known) into original questions randomly.
Workers who fail to answer a specified number of trapping questions are neglected as
spammers and removed. Then, the probability of a possible label assigned for each ob-
ject oi is computed by MD among remaining workers. However, this approach has some
disadvantages: Ω is not always available or is often constructed subjectively; i.e truthful
workers might be misidentified as spammers if trapping questions are too difficult.

Expert Label Injected Crowd Estimation Expert Label Injected Crowd Estimation
(ELICE) is an extension of HP. Similarly, ELICE also uses trapping questions Ω, but to
estimate the expertise level of each worker by measuring the ratio of his answers which
are identical to true answers of Ω. Then, it estimates the difficulty level of each ques-
tion by the expected number of workers who correctly answer a specified number of
the trapping questions. Finally, it computes the object probability P(Xi = lz) by logistic
regression [6] that is widely applied in machine learning. In brief, ELICE considers not
only the worker expertise (α ∈ [−1, 1]) but also the question difficulty (β ∈ [0, 1]). The
benefit is that each answer is weighted by the worker expertise and the question diffi-
culty; and thus, the object probability P(Xi = lz) is well-adjusted. However, ELICE also
has the same disadvantages about the trapping set Ω like HP as previously described.

2.2 Iterative Aggregation

Iterative aggregation is the approach that consists of a sequence of computational rounds.
In each round, object probabilities–probability about possible labels of each object–are
updated incrementally and this computation is repeated until convergence. This ap-
proach also differs from non-iterative one in the fact that the trapping set Ω is not
required. The widely used techniques in this category includes EM, SLME, GLAD,
and ITER. Each of them has different ways to initialize and update object probabilities.
While EM and SLME only concern about worker expertise, GLAD and ITER consider
both worker expertise and question difficulty. The details are explained as follows.

Expectation Maximization The Expectation Maximization (EM) technique [7] itera-
tively computes object probabilities in two steps: expectation (E) and maximization (M).
In the (E) step, object probabilities are estimated by weighting the answers of workers
according to the current estimates of their expertise. In the (M) step, EM re-estimates
the expertise of workers based on the current probability of each object. This iteration



is repeated until all object probabilities are unchanged. Briefly, EM is an iterative al-
gorithm that aggregates many objects at the same time. Since it takes a lot of steps to
reach convergence, running time is a critical issue.

Supervised Learning from Multiple Experts In principle, Supervised Learning from
Multiple Experts (SLME) [18] also operates as EM, but characterizes the worker exper-
tise by sensitivity and specificity—two well-known measures from statistics—instead
of the confusion matrix. Sensitivity is the ratio of positive answers which are correctly
assigned, while specificity is the ratio of negative answers which are correctly assigned.
One disadvantage of SLME is that it is incompatible with multiple labels since the sen-
sitivity and specificity are defined only for binary labeling (aggregated value γ ∈ {0, 1}).

Generative model of Labels, Abilities, and Difficulties Generative model of Labels,
Abilities, and Difficulties (GLAD) [22] is an extension of EM. This technique takes into
account not only the worker expertise but also the question difficulty of each object. It
tries to capture two special cases. The first case is when a question is answered by
many workers, the worker with high expertise have a higher probability of answering
correctly. Another case is when a worker answers many questions, the question with
high difficulty has a lower probability of being answered correctly. In general, GLAD
as well as EM-based approaches are sensitive to arbitrary initializations. Particularly,
GLAD’s performance depends on the initial value of worker expertise α and question
difficulty β. In fact, there is no theoretical analysis for the performance guarantees and it
is necessary to have a benchmark for evaluating different techniques in the same setting.

Iterative Learning Iterative Learning (ITER) is an iterative technique based on stan-
dard belief propagation [10]. It also estimates the question difficulty and the worker ex-
pertise, but slightly different in details. While others treat the reliability of all answers
of one worker as a single value (i.e. worker expertise), ITER computes the reliability of
each answer separately. And the difficulty level of each question is also computed indi-
vidually for each worker. As a result, the expertise of each worker is estimated as the
sum of the reliability of his answers weighted by the difficulty of associated questions.
One advantage of ITER is that it does not depend on the initialization of model param-
eters (answer reliability, question difficulty). Moreover, while other techniques often
assume workers must answer all questions, ITER can divide questions into different
subsets and the outputs of these subsets are propagated in the end.

2.3 Summary

To sum up, we already implemented seven aggregation techniques—MD, HP, ELICE,
EM, SLME, GLAD, ITER—which aggregate worker answers by computing the proba-
bility of possible labels. Each technique exhibits various aggregation characteristics. In
fact, often these characteristics are not exclusive; a technique might have multiple ones.
Table 2 features each implemented technique with following key characteristics.

– Trapping set: the set of trapping questions, whose answers are known before-hand.
It is mainly used to filter spammers and initialize the expertise of other workers.

– Aggregation model: computation model of answer aggregation. It provides the ba-
sic categorization of aggregation techniques and the indication of their complexity.



– Worker expertise: the ability to capture the behavior of a worker; i.e. the accuracy
and reliability of his answers. This ability is important since human workers often
have wide-ranging levels of knowledge.

– Question difficulty: the ability to measure the difficulty degree of questions. This
ability is a supplement of worker expertise: answering an easy question incorrectly
is worse than answering a difficult question incorrectly.

– Computing model: the ability to perform (online or offline) in response to the new
arrival of worker answers. An online technique can process answer-by-answer in a
serial fashion, whereas offline ones have to re-compute the whole aggregation.

One interesting point to note is that all of the above techniques support aggregation
on questions with binary choices (i.e. yes/no questions). For the questions with multi-
ple choices, only three algorithms—MD, HP, and EM—are applicable. Another worth-
noting point is that estimating worker expertise can serve as a quality indicator in prac-
tical scenarios such as payment mechanism and worker profiling.

3 Benchmark Setup

This section describes the setup used in our benchmark. We first present the details
for our benchmarking framework as well as the simulation of crowdsourcing process.
We then offer an insight of the implementation of aggregation techniques followed by
descriptions of the measures used to assess their performance.

3.1 Framework

A primary goal of this study is to provide a flexible and powerful tool to support the
comparison and facilitate the benchmarking analysis of aggregation techniques. To this
end, we have developed a framework that employs original performance studies of each
technique. Figure 1 illustrates the simplified architecture of the framework. It is built
upon a component-based architecture having three layers. (1) The data access layer
abstracts the underlying data objects, and loads the data to the upper layer. (2) The
application layer interacts with users to receive configurable parameters and visualize
outputs from the computing layer. (3) The computing layer consists of two modules: (i)
aggregation module and (ii) simulation module. On one hand, the aggregation module is
responsible for invoking plugged algorithms (algorithm component) upon inputs from
data access layer and delivering summarized information (evaluation component) to the
application layer. On the other hand, the simulation module simulates the crowdsourc-
ing process in which the workers (worker simulator) label a set of objects by answering
various questions (answer simulator). This simulation will be described in Section 3.2.

We believe that subsequent studies are able to easily compare their algorithms with
the state-of-the-art techniques by using our framework. It is flexible and extensible,
since a new technique as well as a new measurement can be easily plugged in. More-
over, users are also supported to use their crowd simulators or real datasets. The frame-
work is available for download from our website4.

4 https://code.google.com/p/benchmarkcrowd/
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3.2 Crowd Simulation

The simulation module helps benchmark users simulate the crowdsourcing process in
the literature. It is implemented with two components: (i) worker simulator—simulates
different types of workers—and (ii) answer simulator—generates numbers of objects
(questions) and their true labels (answers). Both of them demonstrate an online process
where each worker is assigned to answer a set of questions. Details are provided below.

Worker simulator Many previous studies [11,21] characterized different types of
crowd workers to reflect their expertise. Based on the classification in [21], we sim-
ulate 5 worker types as depicted in Figure 2. (1) Experts: who have deep knowledge
about specific domains and answer questions with very high reliability. (2) Normal
workers: who have general knowledge to give correct answers, but with few occasional
mistakes. (3) Sloppy workers: who have very little knowledge and thus often give wrong
answers, but unintentionally. (4) Uniform spammers: who intentionally give the same
answer for all their own questions. (5) Random spammers: who carelessly give the ran-
dom answer for any question. To model these types of workers, we use two parameters:
sensitivity—the proportion of actual positives that are correctly identified—and speci-
ficity—the proportion of negatives that are correctly identified. Following the statistical
result in [11], we set randomly the sensitivity and specificity of each type of workers as
follows. For experts, the range is [0.9, 1]. For normal workers, it falls into [0.6, 0.9]. For
sloppy workers, the range [0.1, 0.4] is selected. For random spammers, it varies from
0.4 to 0.6. Especially for uniform spammers, there are two regions: (i) sensitivity ∈
[0.8, 1], specificity ∈ [0, 0.2] and (ii) sensitivity ∈ [0, 0.2], specificity ∈ [0.8, 1].

Answer simulator This component generates worker answers for two types of ques-
tions. (1) Binary-choice (yes/no): in the literature, the two-coin model [19] is used to
generate worker answers for each object. Each worker is associated with sensitivity and
specificity, as described above. If the true label is yes, the worker answers yes with
the probability sensitivity. If the true label is no, the worker answers no with the prob-
ability speci f icity. (2) Multiple-choice: since the two-coin model is only compatible
with binary-choice questions, we adapt to multi-choice questions by using a reliability
degree r ∈ [0, 1] for each worker. Given a question with k choices, the probability of
the worker answer being the same as and being different from the true label is r and
(1 − r)/k, respectively. Note that the reliability degree is a special case of sensitivity
and specificity; i.e. if sensitivity = speci f icity then sensitivity = speci f icity = r. It is



important to note that real objects can also be used instead of simulated ones. Users can
plug in their own datasets under different formats. For benchmarking purposes, we also
provide well-known datasets of the data integration domain in our website 4.

3.3 Evaluation Measures

We characterize the aggregation methods compared in the benchmark using four mea-
sures: computation time, accuracy, robustness to spammers, and adaptivity to multi-
labeling. We describe the details for each of the measures in the sequel.

Computation time A simple metric for evaluating aggregation techniques is com-
putation time. Various applications (e.g. CrowdSearch [23]) often have constraints on
computing speed, or limitations in using server resources. As a result, the computa-
tion time becomes an important aspect, when we characterize an aggregation method.
In our benchmark, all techniques are evaluated on the same standard. Specifically, we
randomly generate the answer matrix M (n × k), while varying its size: n = 10, 50, 100
and k = 10, 50, 100. For each setting, we measure the average computation time—from
when M is processed until aggregated values are computed—over 100 runs.

Accuracy Obviously, the most important aspect of an aggregation technique is its ac-
curacy. It is straightforward how to measure that—accuracy is defined as the percentage
of input objects that are correctly labeled:

accuracy =
#correctly labeled objects

#total objects
(3)

The higher accuracy, the higher power of aggregation method. In experiments, we mea-
sure accuracy of each method while varying the number of answers per question and the
number of questions per worker. In that, we find which algorithm requires least answers
and which algorithm requires least workers to achieve the accuracy requirements.

Robustness to spammers In reality, spammers always exist in online community, es-
pecially crowdsourcing. Many experiments [21,4] in the literature showed that the pro-
portion of spammers could be up to 40%. As a result, it is important for crowdsourcing
applications to know how each aggregation technique performs when the worker an-
swers are not trustworthy. In the benchmark, we studied the robustness to spammers by
recording the accuracy, while varying the ratio of spammers. To this end, we artificially
included spammers to the worker population, while applying different appearance ratio
of spammers pspam = 5%, 10%, . . . , 40%.

Adaptivity to multi-labeling In the literature, many applications are designed for
multiple-choice questions. Therefore, it is important to know the adaptivity of aggre-
gation techniques to this setting; i.e. which one is compatible and which one is not.
Moreover, we would like to examine if there are significantly differences of their per-
formance characteristics between the binary and the multiple setting. In the benchmark,
we study the adaptivity to multi-labeling in terms of three aspects—computation time,
accuracy, and robustness to spammers—while varying the number of possible labels
equals to 2 or 4. Studying more than 4 labels is out of interest since these kinds of
questions might be overwhelming to human workers.



4 Experimental Evaluation

We proceed to report results of applying the benchmark to the seven aggregation tech-
niques presented in Section 2. The main goal of the experiments is not only to compare
the aggregation performances, but also to analyze the effects of worker characteristics
on the performance behavior. In order to compare them in a fair manner, we provide the
key insights under a wide range of settings to verify their performance. All the experi-
ments ran on an Intel Core i7 processor 2.8 GHz system with 4 GB of main memory.

4.1 Computation time

This experiment helps to choose the right techniques for a particular input size under
time constraints. It takes server resources to process worker answers. In some real-
time applications like CrowdSearch [23], final aggregations need to be returned within
minutes or even seconds. As a result, quickly aggregating the worker answers is a key
factor. Table 3 shows the computation time of each technique, averaged over 100 runs,
when varying the input size from 10 × 10 to 100 × 100 (#questions × #workers).

Table 3: Average computation time (s) over 100 runs (the lower, the better)
Size of M *MD HP ELICE EM SLME GLAD ITER

10 × 10 1 1 1 11 1 12 1
10 × 50 1 1 2 51 3 59 15
10 × 100 1 1 2 153 5 108 45
50 × 10 1 1 2 33 3 45 19
50 × 50 1 2 3 234 12 141 102
50 × 100 1 2 6 928 27 238 355
100 × 10 1 1 3 52 7 91 53
100 × 50 1 2 9 529 24 272 336
100 × 100 1 2 15 1591 46 473 915

* n × k: n questions and k workers

MD, HP, and ELICE are clear winners on this concern. They by far outperform
the others (their computation time is less than one minute with the size 100 × 100 of
M). This result is straightforward to understand—these techniques are one-time com-
putation and do not execute any expensive routines. In contrast, EM and ITER exhibits
high computing time (with 100 × 100 input size, more than 15 min). While, SLME and
GLAD exhibit satisfactory performance. In fact, we had expected slower performance
from SLME and GLAD before having the results, since they take relatively sophisti-
cated computation to update the worker expertise and the question difficulty in their
iterations. However, the updating formulas in the EM steps of SLME and GLAD are
less complex than EM and ITER. Briefly, this experiment suggests that MD, HP, and
ELICE are fast enough for applications that prefer low response time, while the others
should not probably be used for large inputs. Moreover, recall that iterative techniques
(EM, SLME, GLAD, ITER) must re-compute the whole input when a new answer is
received. We recommend using them for off-line analyses, when the answer set is fixed.

4.2 Accuracy

In order to reflect the accuracy of aggregation, in which the intuition behind this metric
was explained in Section 3.3, our benchmark studies two dimensions of interest: number
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of answers per question (#apq) and number of questions per worker (#qpw). On one
hand, #apq is the number of answers received for each question (i.e. #columns of input
matrix M). When we have more answers from workers, the accuracy of aggregation
increases since these answers will justify each other. This factor is important to study
the trade-off between the cost (of paying workers) and the accuracy (of aggregated
values). On the other hand, #qpw is the number of questions assigned for each worker
(i.e. #rows of M). It should not be too large to ask a human worker or too small to assess
his expertise. Some aggregation techniques (e.g. EM) consider the quality of answers
of each worker to justify aggregated values. This factor is crucial for this purpose. Our
benchmark will help potential users opt for appropriate values of these two factors.

The number of answers per question (#apq) The experiment was conducted with
#apw varying from 10 to 30. The worker types follow the distribution as previously de-
scribed in Section 3.2. Figure 3 illustrates the results obtained by computing the average
over 100 runs. In general, the accuracy of all techniques increases with the increase of
#apw. However, each algorithm behaves with the changes of #apw very differently.

Overall, the iterative techniques perform significantly better when the #apw is higher.
This is because the same questions are answered by multiple workers (overlapping be-
tween workers). As a result, the answers of each worker can be justified by the answers
of others through iterations. Among iterative techniques, EM is the best performer in
this experiment. This is because EM captures the worker expertise by a confusion ma-
trix, whereas the other iterative algorithms use a single parameter α. Subsequently, the
characteristics of workers are more specific. Moreover, we can see that EM’s accuracy
is at least 25% higher than others in the end. In brief, we suggest using EM for high-
accurate results, in case the computation time is not concerned.

The number of questions per worker (#qpw) In this experiment, we vary the number
of questions per worker—hereby denoted as #qpw—from 10 to 30. The same worker
population is used. In general, all techniques achieve higher accuracy when the #qpw
increases. But there is no significant difference between them. When the #qpw > 20,
the accuracy of all techniques is more than 90%. Figure 4 depicts the result.

At starting points (#qpw 10), ITER, HP, and MD are the worst techniques. For MD,
this is because the majority effect: not enough trustworthy answers to dominate un-
trustworthy ones. For HP, this effect is more severe since truthful workers have too few
correct answers to pass trapping questions. For ITER, it is due to the lacks of initial
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information. However, as the #qpw increases, the difference among all techniques is re-
duced (less than 0.05 with 30 #qpw). In addition, each of them has a ”convergent point”:
continue increasing #qpw above this point will not improve the accuracy significantly
(e.g. EM achieves 95% accuracy at #qpw ≈ 18, doubling #qpw only increases the ac-
curacy up to 5% more). Another interesting observation is that iterative techniques are
slightly better non-iterative ones: the difference is only 5% when the #qpw reaches to
30. This can be explained by the fact that in iterative techniques, worker answers are
more refined by multiple of computational rounds.

4.3 Robustness to Spammers

In this experiment, we will increase the ratio of spammers to study its effects on accu-
racy. First, we remove sloppy workers from the crowd due to their lacks of knowledge,
which generates many wrong answers in the input. By this way, we can see a clear
effect of spammers. The spammer ratio is varied from 5% to 40%. Based on previous
results, we fix the number of answers per object to 20 because this gives a high starting
point of accuracy. Figure 5 and 6 illustrate the effects of uniform spammers and random
spammers on accuracy, respectively. In general, the accuracy of all techniques decreases
when the spammer ratio is higher. But their behaviors are significantly different.
Uniform spammers The effects of uniform spammers are presented in Figure 5. An
interesting observation is that ITER and GLAD are the worst in this setting. At the
starting point (5% spammers), their accuracies are already lower than the others’—
about 0.6 and 0.75 respectively. After the spammer ratio rises to 25%, ITER and GLAD
drops rapidly to nearly 0.5. By the time more than 25% spammers, their behaviors
are like random (accuracy converges to 0.5). This observation could be explained by
their underlying models. First, ITER’s algorithm depends on the entropy of a worker’s
answers. Since uniform spammers always give identical answers, the uncertainty of
the input is high and it ends up with a poor accuracy. Second, GLAD is not able to
identify and prioritize truthful workers (i.e. all workers are initially weighted as equal),
resulting in a random accuracy in the end. In brief, ITER and GLAD are very sensitive
to the spammers. Another key finding is that among the five remaining techniques, we
can observe two distinct groups. The first group consists of EM and SLME, which are
the better than the second group including MP, HP, and ELICE. However, the difference
between them is not significant (less than 0.1 with 40% uniform spammers).
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Fig. 8: Multi-label effect on spammer robustness

Random spammers The effects of random spammers are depicted in Figure 6. Similar
to random spammers case, most of the techniques are robust to random spammers—
their accuracy decreases up to 10% at the end. However, their accuracies are better in
this case. This is reasonable because the answers of spammers are different from each
other, which cannot dominate the answers of other workers. Another noticeable obser-
vation is that ITER and GLAD perform better than before. For ITER, although starting
with high accuracy, its accuracy reduces more than 15% at the end. This could be ex-
plained by the same way. Since the answers are random but different, the entropy value
is lower, resulting in a higher accuracy. For GLAD, it uses the answers of other workers
to justify the spammers’, rendering the similar performance like EM and SLME.

4.4 Adaptivity to Multi-labeling

In this experiment, we study the adaptivity to multi-labeling of aggregation techniques.
Only three techniques—MD, HP, and EM—are retained while the others fail to adapt
this setting. SLME models worker expertise by sensitivity and specificity, which are ap-
plicable for binary question only. Regarding ITER and ELICE, their original papers in-
dicate that they are only applied for binary questions. Besides, they use the sign (positive
or negative) of aggregated value to classify object. Regarding GLAD, we checked the
source code and confirmed that it was implemented for only binary-choice questions.
Similar to previous experiments, we proceed to report the performance characteristics
of applicable techniques (MP, HP, and EM) in three aspects below.

Computation time In general, MD and HP are not affected by #labels—their compu-
tation time keeps unchanged when #labels increases. This is because the complexity of
majority rule only depends on the number of answers per object (the label with highest
number of answers wins). For EM, its completion time increases a little bit since it uses
a confusion matrix to capture worker expertise. The size of this matrix is n× n, where n
is the number of labels. However, as n only up to 4, this shows no significant difference.
Therefore, the results of computation time are omitted due to page limits.

Accuracy Using the same worker distribution of Section 4.2, we measure the accuracy
against different numbers of answers per question. The result for different numbers of
questions per worker is omitted due to similar findings. Figure 7 illustrates the result. In
general, with more labels, the accuracy is better. EM is still the winner in both cases—2
labels and 4 labels. However, the superiority of EM in comparison with MD and HP



is reduced when the number of labels increase. For example, the difference is between
0.12 and 0.28 with 2 labels, whereas this difference is less than 0.02 with 4 labels. This
is, in fact, reasonable. The incorrect answers are now distributed among several choices,
which is unlikely to dominate the majority of the true answers.
Sensitive to spammers Like previous experiments in Section 4.3, we increase the
spammer ratio to study the accuracy reduction. Results are presented in Figure 8. In both
2-label and 4-label settings, EM is more robust to spammers than MD and HP. Surpris-
ingly, MD and HP become better with 4 labels. This can be explained by the majority
property: answers given by spammers no longer dominate those of other workers. Since
there are more choices, it is unlikely that spammers give the same answer together.

5 Summary and Conclusions

This paper presented a thorough evaluation and comparison of answer aggregation tech-
niques widely used in crowdsourcing. We offered an overview of two major classes
(non-iterative and iterative) of aggregation techniques, while discussing about the char-
acteristics of their underlying probabilistic models. We then introduced the component-
based benchmarking framework, in which a new aggregation technique as well as a
new measurement can be easily plugged. During the framework development, we made
the best effort to re-implement and integrate the most representative aggregation tech-
niques, and evaluated them in a fair manner. We also analyzed various performance fac-
tors for each technique, including computation time, accuracy, robustness to spammers,
and adaptivity to multi-labeling. The crowdsourcing process is simulated by letting five
different types of workers answer binary or multiple-choice questions.

We here summarize our principal findings as a set of recommendations for how to
select a well-suited aggregation technique on particular application scenarios:

– Overall, EM and SLME achieve highest accuracy and work robustly against spam-
mers. In particular, they outperform the others when #answers per question is high.
Regarding #questions per worker, there are two runner-ups (GLAD and ITER).

– If the crowd contains many spammers (≥ 30%), we suggest using SLME or EM.
Interestingly, the performance of non-iterative techniques (MD, HP, ELICE) is not
significantly lower than SLME and EM. If accuracy is not highly required, they are
best-suited for applications that require fast computation. In contrast, we strongly
suggest not using GLAD and ITER since they are most sensitive to spammers.

– Only MD, HP, and EM can adapt to multi-labeling. For binary labeling, EM is
the winner. In case of 4 labels, MD and HP are also appropriate choices since the
difference between them and EM is not distinguishable.

– For applications that require fast computation, MD and HP are the winners. Oppo-
sitely, we strongly suggest not using iterative techniques. Not only is their compu-
tation time much higher than the non-iterative techniques, but also they require to
re-compute the whole answer set upon the new arrival of worker answers.

category winner 2nd best worst

computation time MD HP EM
accuracy EM SLME HP
robustness to spammers SLME EM ITER
adaptivity to multi-labeling * EM MD HP

* other techniques (ELICE, SLME, GLAD, ITER) only work
with binary labeling due to their implementation limitation



As a concluding remark, we recommend potential applications to use our bench-
marking framework as a tool to find out the best-suited aggregation technique accord-
ingly, since there is no absolute winner that outperforms the others in every case. As the
source codes as well as datasets used in the benchmark are publicly available, we expect
that the experimental results presented in this paper will be refined and improved by the
research community, in particular when more data become available, more experiments
are performed, and more techniques are integrated into the framework in the future.
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