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Abstract

When analyzing multivariate data, one can appeal to the procedures of dimension
reduction to describe its main features in the easiest way possible. In this thesis
we work with one such methods, the sliced inverse regression (SIR), and propose
a new adaptation to survival data.

A popular idea to account for censoring is to reweight the observed data points,
often with the help of inverse probability weighting. We base our strategy on the
estimation of the unobserved information.

Our idea is tested with different distributions for the two main survival data mod-
els, Accelerated Lifetime Model and Cox’s proportional hazards model. In both
cases and under different conditions of sparsity, sample size and dimension of pa-
rameters, this non-parametric approach evaluates the data structure successfully
and can be viewed as a variable selector. We also compare our method with other
existing techniques and find it to be competitive.

In the second part of the thesis, we concentrate on the problem of detection of
a partial correlation. The ability to identify reliably a positive or negative partial
correlation between the expression levels of two genes is determined by the number
p of genes, the number n of analyzed samples, and the statistical properties of the
measurements. Classical statistical theory teaches us that the product of the root
sample size multiplied by the size of the partial correlation is the crucial quantity.
But this has to be combined with some adjustment for multiplicity depending on p,
which makes the classical analysis somewhat arbitrary. We investigate this problem
through the lens of the Kullback-Leibler divergence, which is a measure of the
average information for detecting an effect. As a results, it appears that commonly
sized studies in genetical epidemiology are not able to reliably detect moderately
strong links.

Keywords: survival data, sliced inverse regression, partial correlation, graphical models,
Kullback-Leibler divergence.
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Résumé

Lors de l’analyse des données multivariées, on peut faire appel aux procédures
de réduction de la dimension afin de décrire les principales caractéristiques de la
manière la plus simple possible. Dans cette thèse, nous travaillons avec une de
ces méthodes, la régression inverse par tranches (SIR), et nous l’adaptons pour les
données de survie.

Afin de tenir compte des données censurées il est courant de repondérer les points
observés, souvent à l’aide de la probabilité inverse. Notre stratégie est basée sur
l’estimation de l’information non observée.

On teste notre méthode avec des distributions différentes pour les deux modèles
des données de survie principaux qui sont le modèle à temps accéléré et le modèle
à risque proportionnel de Cox. Dans les deux cas et en changeant la distribu-
tion, la taille de l’échantillon et le nombre des paramètres, cette approche non
paramétrique permet d’évaluer la structure de données avec succès et peut être con-
sidérée pour la sélection des variables. Nous comparons également notre méthode
avec d’autres techniques existantes et la trouvons compétitive.

Dans la deuxième partie de la thèse, nous nous concentrons sur le problème de
la détection d’une corrélation partielle. La capacité d’identifier de manière fiable
une corrélation partielle positive ou négative entre les niveaux d’expression des
deux gènes est déterminée par le nombre p de gènes, la taille d’échantillon n et les
propriétés statistiques des mesures. La théorie statistique classique nous dit que la
racine de la taille de l’échantillon multiplié par la taille de la corrélation partielle
est une quantité importante. Mais il faut aussi considérer un certain ajustement
pour la multiplicité en fonction de p, ce qui rend l’analyse classique quelque peu
arbitraire. On étudie ce problème à l’aide de la divergence de Kullback-Leibler, qui
est une mesure de la moyenne des informations de détection d’un effet. On conclut
que les tailles des études utilisées habituellement en épidémiologie génétique ne
semblent pas être en mesure de détecter de manière fiable les liens modérément
forts.

Mots-clés: données de survie, régression inverse par tranches, corrélation partielle, modèles
graphiques, divergence de Kullback-Leibler.
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CHAPTER

1

INTRODUCTION

1.1. Motivation

Within the last ten years, the amount of data being collected has increased at high
speed. One of the reasons for this development can be found in the automated data
collection systems. The internet provides an obvious example. Web-based retailers
such as Amazon suggest the products a customer might like based on a personal
history of purchases. This is based on finding similarities with other clients.

In biomedical research, the introduction of microarrays at the end of the 90s and,
most recently, the next-generation sequencing data as well as SNPs arrays changed
the nature of data, linking thousands of variables to a single subject. While biolo-
gists might hope to gain a deeper understanding of processes on the molecular/-
cellular level, the treatment of these huge databases represents a difficult challenge
for statisticians and data analysts.

Even the primary analysis of high-dimensional (when the number of subjects n is
smaller than the number of variables p) data is often not straightforward. A defini-

1



1. Introduction

tion of distance (or similarity) between two individuals in not precise in this case,
and its visualization is often problematic. Quite often some of the covariates are
correlated which makes the interpretation unclear. The classical statistical theory,
which relies on asymptotic approximation obtained by letting the size of the data
n tend to infinity, can no longer be applied. Altogether, statistical inference under
high-dimensional settings requires if not the creation of new methods, then at least
an adaptation of existing ones. This thesis partially reflects on limitations of a few
existing methods in different settings.

An intuitive thing, when dealing with the multivariate data, is to try to understand
it in the best possible way, either by simplifying it to groups of new variables, or by
finding a few original covariates which explain the most pertinent features of the
data. If this can be achieved, then one can relate to the well-known techniques to
get more accurate results.

Under low-dimensional settings (n > p), performing a statistical test requires com-
puting the statistic and comparing it to the quantile of its distribution under the
null hypothesis (on a chosen level) or working directly with its p-value. High-
dimensionality brings in new questions to consider. Microarray data analysis, for
example, usually aims to get a list of differentially expressed genes by fitting a
linear model for two or multiple classes of arrays. When fitting the model, a test is
performed for every single gene (which amounts to between 5000 and 10000). Such
setup requires a correction for an error.

If a single test is employed to test a null hypothesis, using 0.05 as the significance
level α and if the null hypothesis is actually true, the probability of reaching the
right conclusion is (1− α) = 0.95. If two such hypotheses are tested independently,
then the probability of reaching the right conclusion on both occasions would be
(1− α)2 = 0.95 · 0.95 = 0.90. If m true hypotheses are tested independently, the
probability of being right on all occasions would decrease substantially to (1 −
α)m = 0.95m. In other words, the probability of being wrong at least once (or getting
a significant result erroneously) would become (1− (1− α)m). This means that in
the case of multiple hypotheses testing on a given data set there is an increasing
probability of getting at least one false significant result.

There are a number of possible ways to correct for multiple testing. The Bonferroni
correction, where the significance level α/m for each individual test is obtained
after dividing the overall significance level α by the number of tests, ensured that

2



1.2. Thesis scope and outline

the probability of at least one false rejection is bounded by α. Another popular
choice is a False Discovery Rate technique, proposed by Benjamini and Hochberg
(1995), where the expected proportion of errors among the rejected hypotheses is
controlled.

What are the possible ways to treat multivariate data? One of the options is some
kind of regression with regularizations to prevent the model from overfitting (being
unnecessarily complex and noisy) and ensure the correct interpretation of results.
The most popular choice for regularizations include the L1-penalty (LASSO), which
allows for sparse solutions, the L2-penalty (ridge regression), their combination
(elastic net) or different kinds of information criteria (AIC, BIC, etc.).

Another way to gain a better understanding of the data structure is clustering. It
allows to regroup the subjects according to some similarity rule. It can be hierarchi-
cal (the objects nearby are most likely grouped together), based on the density, the
distribution or centroid-based (when the clusters are defined by a central vector).

One can also consider the classification approach or assigning the observations
to a set of classes. This family of procedures covers discriminant analysis, random
forests, support vector machines, logistic regression and dimension reduction, each
of them englobing a set of various methods. Dimension reduction aims to select
a group of new variables which preserve the main features of the data. There
are many working methods for dimension reduction, to name here a few: Princi-
pal Component Analysis (PCA), Principal Hessian Directions (PHD), Sliced Aver-
age Variance Estimation (SAVE), Sliced Inverse Regression (SIR). One can divide
those into supervised and unsupervised algorithms. Unsupervised procedures
(like PCA) are based on the response vector only, while the supervised ones take
covariates into account. In this thesis we concentrate on the SIR method which is a
form of the supervised dimension reduction technique. It reconsiders a p-variable
multiple regression as a set of p univariate regressions, resulting in an effective
dimension-reduction space, capturing the information about the response.

1.2. Thesis scope and outline

In this work we cover two topics. The major part considers an application of the
sliced inverse regression (SIR) to survival data. First, the SIR performance is ex-

3



1. Introduction

plained on a linear regression, then its adaptation to the censored data is discussed.
Since it is not the first attempt to adapt SIR to survival data, some comparisons are
made with existing methods. The second topic, presented in Chapter 4, deals with
sizing studies when uncovering the structure of the graphical models. What is the
power of the partial correlation test? How much information can we draw from
the Kullback-Leibler divergence? What is the sample size needed in order to detect
the edge in the graph? These are the questions we address. The main idea we wish
to emphasize is that once the number of parameters is large enough, only strong
dependencies can be uncovered, no matter what method is used.

This thesis has the following structure. Chapter 2 introduces background material,
covering the main aspects of survival analysis, which are used throughout this
manuscript. The main parameters, models and distributions are presented, as well
as the generation of survival times under specific models. The second part of
Chapter 2 presents the idea behind the SIR, illustrating it in a linear regression
case. We review the main algorithm and the theoretical background of the method.
Asymptotic properties of the SIR estimates are discussed.

While Chapter 2 is focused on linear regression, the SIR application to survival
data is introduced in Chapter 3. The integration of censored observations into
the algorithm is discussed in detail and is tested on simulations. Two models
are considered, the one based on the proportional hazards and the one based on
the accelerated lifetimes. In order to compare to other existing methods of SIR in
the survival context, our approach is applied to some alternative models and to
the DLBCL dataset. Variance estimation is considered, in terms of the maximum
likelihood approach (for the accelerated lifetime model) and via bootstrap.

The material presented in Chapter 4 is a different topic concerned with detection
of the structure of the Gaussian graphical models. The power of detecting is of
interest, especially as a function of the sample size. A case of a single partial cor-
relation is studied in detail, with the help of the local asymptotic power and the
Kullback-Leibler divergence, allowing to view the problem from different perspec-
tives. Conclusions about the feasibility of correlation detection are drawn.
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CHAPTER

2

SURVIVAL AND REGRESSION

2.1. Survival data

One speaks of survival analysis if the variable one wants to understand is the time
to an event. The event of interest is often a failure of some type, but it can rep-
resent many other occasions. Examples include time from operation to remission,
time from diagnosis to death, time to retirement and so on. Originally, survival
analysis was concerned with the time from treatment to death (hence the name),
but it has proven to be a very practical tool in many areas other than mortality. In
engineering, it is sometimes called reliability analysis or time to event analysis.

The specifics of the survival data are such that obtaining the observations takes
time. If one wishes to analyze the level of cholesterol in a specific stratum of pop-
ulation, a simple survey involving the taking of blood samples would be sufficient.
However, when dealing with the survival time for a rare disease, the sampling of
patients would take place over a long period of time, sometimes decades.

Survival analysis originated from life-table analysis as used by life insurers, de-
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2. Survival and Regression

mographers and epidemiologists. It is one of the oldest statistical disciplines. First
traces of actuarial science and demography go back to the 17-th century, with the
first life-table presented in 1662 by John Graunt (Kreager, 1988). Until the 1950s,
most approaches were actuarial. The modern development of survival methods
started in 1958, when Kaplan and Meier (1958) proposed their estimator for a sur-
vival function. This paper has become one of the most cited in the history of
statistics. Time recording in the lifetime tables was grouped by fixed intervals, of-
ten long (one-year to five-year) ones. The Kaplan-Meier approach took care of the
observations coming up in clinical trials where the patients were monitored closely
and the events were registered with much higher precision (Aalen et al., 2009).

The introduction of the Kaplan-Meier survival curve opened new areas for re-
search, such as the comparison of the survival curves or hazard functions. The
log-rank test of Mantel (1966) became a popular solution. The introduction of the
proportional hazards model by Cox (1972) allowed for the adjustment for covari-
ates, and due to its flexibility became a very popular model for survival data.

The fundamental theoretical advancements came later. Asymptotic properties and
the theory behind the Cox’s model were intensively studied. Among the main
contributions one could list Breslow and Crowley (1974), Cox (1975) and Tsiatis
(1981). The martingale theory proved to be a very helpful tool in survival theory.
The notion of counting processes for survival data was first introduced in the Ph.D.
thesis of Aalen (1975) and later developed in several papers and books (Aalen,
1978; Aalen et al., 2008; Andersen and Gill, 1982). Aalen et al. (2009) argue that the
martingales, while not formally mentioned, could be intuitively uncovered in the
logrank test and the partial likelihood paper of Cox (1975).

A survival dataset contains a response variable T, representing the survival time
(failure time, lifetime), and a vector of covariates x ∈ Rp. In this work, we mainly
consider biological interpretations. There are many possible questions survival
analysis may answer, the most common being the prediction of survival for a pa-
tient based on the covariates x, the identification of subgroups with low or high
survival or a general understanding of survival as a function of x. Also, often the
comparison between a treatment and a control group or more generally the com-
parison of groups, is of interest. As a new and flexible tool, we will investigate the
use of sliced inverse regression of Li (1991) for survival data.

It can happen that information about some individuals is incomplete, in this case

6



2.1. Survival data

it is said to be censored. There are two main types of censoring. When the subject
drops out of the study, the corresponding observation is said to be right-censored,
the last available information being the fact that the subject is alive at a specific
moment. This is a common situation in longitudinal studies since some participants
lose their interest, relocate, or are lost for some other reason. Left-censoring is less
common, a classical example being a limitation of the measurement technology
which often happens in engineering and environmental research. In cancer studies,
a time of metastasis can be left-censored if it occurs in between the patient follow-
ups. It is not uncommon to have datasets with both types of censoring. The main
focus in this thesis is on right-censored data.

Why keep censored observations? First of all, deleting them directly affects the
power of the study, bringing the sample size down. In rare genetic studies (for
example, hereditary diseases) one can simply not afford to lose information, the
same goes for expensive medical tests. Another reason is that by deleting censored
individuals from the study we introduce a selection bias.

The presence of censoring, which creates a mixture of complete and incomplete
data, is an important characteristic of survival data and it requires the development
of special methods for its analysis.

Example: Here is a simple example of a dataset with survival times. Suppose

T : 15, 18∗, 20, 20∗, 26, 28∗, 32, 32, 35, 37∗,

is a list of the survival times (in months) following a medical intervention. The ob-
servations marked with ∗ are right-censored. To each observation may correspond
a vector of covariates xi, i = 1, . . . , 10.

2.1.1. Main parameters

The main parameter of interest in survival analysis is the survival function, defined
as

F̄(t) = S(t) = P(T ≥ t) ,

denoting the probability that the event does not happen before the time point t
(the individual survives until t). Usually the condition S(0) = 1 is assumed. It

7



2. Survival and Regression

can be easily seen that the survival function is a complement of the cumulative
distribution function F,

S(t) = 1− F(t−). (2.1)

Survival functions can be estimated non-parametrically, for example, with a help of
a Kaplan-Meier method (Kaplan and Meier, 1958), which is based on conditional
probabilities. Their estimate can be written as

Ŝ(t) = ∏
j: tj<t

rj − dj

rj
, (2.2)

where t1, . . . , tm is the set of m distinct event times observed in the sample, dj is the
number of deaths at tj, and rj is the number of individuals ”at risk” at time tj−,
right before the j-th event time. The number of censored observations between the
time tj−1 and tj, denoted as cj, is taken into account when computing rj, using the
relationship

rj+1 = rj − dj − cj.

Example: (continued) In our dataset, we have 6 events and 4 censored observa-
tions. That means that the value of the survival function changes 6 times, starting
at 1 at the time point T = 0. However, two observations (T = 32) are tied, so we
get 5 jumps of Ŝ(t). Figure 2.1 shows the Kaplan-Meier estimator. The fact that our
estimated survival curve doesn’t reach the value of 0 at the last event is explained
by the presence of a censored observation at T = 37, which implies that Ŝ(35) = 0
would not make sense.

Plotting estimated survival curves is an useful tool when comparing several groups,
for example a treatment and a control group.

Another important aspect of survival times is the age-dependent mortality, which
is called the hazard function and is for continuous survival times T defined as

λ(t) = lim
dt→0

P(t ≤ T < t + dt | T ≥ t)
dt

.

It follows that

λ(t) =
f (t)
S(t)

,

where f (t) is the density of the survival time.
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2.1. Survival data
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Figure 2.1.: The Kaplan-Meier estimate of the survival function for the Example 2.1.

Sometimes it can be helpful to consider the cumulative hazard function

Λ(t) =
∫ t

0
λ(u)du,

representing the risk accumulated by an individual at age t. The following rela-
tionship holds between the cumulative hazard function and the survival function:

Λ(t) = − log S(t). (2.3)

The Nelson-Aalen estimator (Aalen, 1975) allows for a non-parametric estimation
of the cumulative hazard function. It is written as

Λ̂(t) = ∑
j: tj<t

dj

rj
,

9



2. Survival and Regression

where rj and dj are the same as in (2.2). Using (2.3) we get an alternative estimator
to (2.2).

Below we review the two most commonly used regression models for survival data.
In a regression model, the effect of covariates on survival is described.

2.1.2. Cox’s proportional hazards (PH) model

The most popular survival model is Cox’s proportional hazards model (Cox, 1972),
which has been extensively studied. It assumes the following relation for the haz-
ard function for an individual with characteristics x:

λx(t) = λ0(t)eβT x, (2.4)

where λ0(t) is the baseline hazard function which is unknown and β contains the
regression coefficients of interest.

The name for the model comes from the fact that the hazard ratio of two individuals
with characteristics x and y satisfies

λx(t)
λy(t)

=
λ0(t)eβT x

λ0(t)eβTy
=

eβT x

eβTy
,

which is independent of the elapsed time t.

Cox’s model is a semi-parametric model. While no assumptions about the form of
λ0(t) are made, we assume a parametric form for the effect of the predictors on the
hazard.

Parameter estimates are obtained by maximizing the partial likelihood function,
which in the absence of tied survival times is

L(β) =
n

∏
i=1

eβT xi

∑j∈Ri
eβT xj

. (2.5)

The product in (2.5) is computed over all the observed events (failures) and for
each event we define the set Ri as the list of individuals at risk of failure time i.
Censored data are naturally taken into account.
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2.1. Survival data

Cox originally called formula (2.5) a conditional likelihood since it is the product of
conditional probabilities that a specific subject would fail at a given time. But the
whole expression is not a conditional probability. In Cox (1975), the name of partial
likelihood was suggested and a general justification was given for L(β) to be the
essential part of the full likelihood. Detailed justification of the partial likelihood
in terms of counting processes can be found in Andersen et al. (1993).

2.1.3. Accelerated failure time model (ALT)

Another model for survival data which might be more reasonable in many med-
ical studies is the accelerated failure time (lifetime) model. Cox’s model assumes
proportionality between hazards, while the accelerated lifetime model considers
different behaviors for the hazards of different individuals. The survival time is
expressed as

T = exp(βTx)T0, (2.6)

where T0 denotes the base survival time and exp(βTx) estimates the effect of the
covariate values of the individual on his survival time. If βTx > 0, the failure
occurs later than for the base situation. Alternatively, when βTx < 0, one speaks of
accelerated lifetime since failure happens earlier.

Since exp(βTx) acts as a scale parameter, the cumulative distribution function is

FT(t) = F0(exp(−βTx)t).

The main difference between Cox’s model and the accelerated failure time is that
the latter is often treated in a fully parametric manner. This fact makes this model
less popular. However, in many genetic studies one would expect that certain con-
ditions would shift the peak of the hazard curve compared to healthy individuals,
which would rule out the proportionality of the hazards.

For example, an individual with a family history of breast cancer and with a mu-
tated BRCA1 gene is known to have a higher risk of developing this disease com-
pared to an individual with no such family history at all. In this case, the propor-
tional hazards assumption is clearly wrong, while the accelerated risk may explain
the action of this covariate. Another point in favor of the accelerated lifetime model
is a simple interpretation of estimated coefficients of the parameters which is less
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2. Survival and Regression

intuitive in Cox’s model.

2.1.4. Distributions in survival analysis

In this section we briefly review the most common distributions used in survival
analysis. We list their densities, survival and hazard functions (where of interest).

Exponential distribution

The case of the exponential distribution of the survival time T corresponds to the
simplest parametric model for survival data. It is denoted as T ∼ E(λ).

• f (t) = λe−λt, t > 0

• S(t) = e−λt

• λ(t) = λ > 0

The hazard function λ(t) is constant.

Weibull distribution

The Weibull distribution for T is widely used in survival models. It is denoted as
T ∼ Weibull(b, c), where b > 0, c > 0.

• f (t) = c
tc−1

bc e(−t/b)c
, t > 0

• S(t) = e(−t/b)c

• λ(t) = c
tc−1

bc

When c = 1, the hazard is constant over time and we find the exponential distri-
bution. When c > 1, the hazard monotonically increases with time, and with c < 1
the hazard monotonically decreases with time.

12



2.1. Survival data

Log-normal distribution

A survival time T follows a log-normal distribution with parameters (µ, σ2) if
ln(T) ∼ N (µ, σ2).

• f (t) =
1
σt

φ

(
ln(t)− µ

σ

)

• S(t) = 1−Φ
(

ln(t)− µ

σ

)
• E(T) = eµ+σ2/2

• Var(T) = e2µ+σ2
(eσ2 − 1)

The functions Φ and φ in the formulas above denote the normal cumulative distri-
bution function and its derivative, respectively.

Gompertz distribution

The Gompertz distribution is also used in modelling survival, although it is more
popular to describe growth. For a T ∼ Gompertz(a, b) (a > 0, b > 0), we get:

• f (t) = aebte−
a
b (ebt−1)

• S(t) = e−
a
b (ebt−1)

• λ(t) = aebt

Gumbel distribution

The Gumbel distribution for W = log(T0) is defined on the real line and can be
used in the accelerated lifetime model to generate an exponential or a Weibull
survival time (details can be found later on in this chapter). It has the following
characteristics:

• F(w) = 1− e−ew

13



2. Survival and Regression

• f (w) = ewe−ew

To avoid confusion, we note that this form of the Gumbel distribution is the less
common one, since this distribution is usually viewed as a part of the generalized
extreme value distribution, with a cumulative distribution function F(w) = e−e−w

.
For our theory, however, it is more practical to use the other form, introduced
above.

To illustrate some of the reviewed distributions, Figure 2.2 shows the survival and
the hazard functions for the two following distributions: E(0.4), Weibull(2, 1/3)
and Gompertz(0.05, 0.3).
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Figure 2.2.: Survival and hazard functions for different distributions.

Weibull distribution under different models

The proportional hazards and the accelerated lifetime specifications are identical
only under the Weibull distribution (Cox and Oakes, 1984). We can illustrate this
in a simple way. As seen earlier, the survival function for the Weibull distribution
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2.1. Survival data

is
S(t) = e(−t/b)c

.

This implies

− ln S(t) =
(

t
b

)c

or
t = b(− ln S(t))1/c.

Now if we put b = eβT x, we get

t = (− ln S(t))1/ceβT x,

which is the accelerated lifetime specification.

On the other hand, the hazard function for the Weibull model is λ(t) = c
tc−1

bc ,

which can be re-written under the parametrization b−c = eβT x as

λ(t) = eβT xctc−1.

By taking ctc−1 as our baseline hazard in the formula above, we find the propor-
tional hazards specification.

2.1.5. Simulating the survival times

In Chapter 3, we compare the sliced inverse regression technique for the ALT and
PH models. Here we explain the generation of the survival times under those
models.

Generating the survival times under the ALT model

To start, we take the logarithm of formula (2.6),

log(T) = βTx + log(T0) = βTx + W, (2.7)
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2. Survival and Regression

which can be rewritten in the regression form:

Y = α + σu, (2.8)

where Y = log(T), α = βTx, and u = W
σ is a random error term. Distributional

assumptions about u determine the survival distribution of T in the resulting ALT
model, and it is straightforward to simulate Y.

• Exponential distribution: Suppose T has an exponential distribution with
parameter λ, T ∼ E(λ). It follows that T = T0/λ, where T0 ∼ E(1). Then
we rewrite equation (2.8) as

Y = log(T) = log(1/λ) + log(T0) = α + W,

where α = − log(λ), and W has a standard Gumbel (extreme value) distribu-
tion.

• Weibull distribution: If T follows a Weibull distribution with the distribution
function

F(t) = P[T ≤ t] = 1− e(−t/b)c
,

we find that

P[Y = log(T) ≤ w] = P[T < ew] = 1− e(−ew/b)c
= 1− e−ec(w−log(b))

.

The variable W = c(Y− log(b)) is called a reduced log-Weibull variable. More
details on it can be found in (White, 1969). Its distribution is the Gumbel

FW(w) = P[W ≤ w] = P[c(W − log(b)) ≤ z] = 1− e−ew
.

If T ∼ Weibull(b, c), then

Y = log(T) = α + σW,

where α = log(b), σ = 1/c and W has the Gumbel distribution.

• Log-Normal distribution: As mentioned earlier, T has a log-normal distribu-
tion if its logarithm follows a normal distribution. In this case, we have

16



2.1. Survival data

Y = log(T) = α + σW,

where W ∼ N (0, 1).

Generating the survival times under the PH model

The survival function of the Cox’s model, for the covariate x can be written as

S(t) = e−Λ0(t)eβT x
,

where Λ(t) is the cumulative hazard function. Thus, the distribution function is

F(t) = 1− e−Λ0(t)eβT x
.

If T is the survival time in Cox’s model, then

U = e−Λ0(T)eβT x
∼ U(0, 1),

where U is a uniformly distributed variable. Bender et al. (2005) cover this topic
nicely. If the baseline hazard λ0(t) > 0 for all t, then we get

T = Λ−1
0 (− log(U)e−βT x), (2.9)

and it is straightforward to generate survival times using formula (2.9).

• Exponential distribution: We saw earlier that the hazard function for the
exponential distribution with a scale parameter λ > 0 is a constant. The
inverse cumulative hazard function is given by

Λ−1
0 (t) =

t
λ0

.

By plugging this expression into formula (2.9), we get the following expres-
sion:

T = − log(U)
λ0eβT x

. (2.10)
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2. Survival and Regression

• Weibull distribution: The inverse of the cumulative hazard function in this
case is

Λ−1
0 (t) = b0t

1
c0 ,

which leads to the following survival time:

T = −b0

(
log(U)

eβT x

) 1
c0

. (2.11)

• Gompertz distribution: For the Gompertz distribution, the inverse hazard
function is of the following form:

Λ−1
0 (t) =

1
b0

log
(

1 +
b0

a0
t
)

.

From equation (2.9) it follows that

T =
1
b0

log
(

1− b0

a0
log(U)e−βT x

)
=

1
b0

log
(

1− b0 log(U)
a0eβT x

)
. (2.12)

In this section, we gave an introduction on the purpose of survival analysis and
covered its main parameters and models. We saw that while the proportional haz-
ards and the accelerated lifetime models allow for the survival times from the dif-
ferent distributions, not all the combinations are possible. The Gompertz survival
time can only be generated under the Cox’s model, while the log-normal survival
time exists only in terms of the ALT model. These distributions were selected on
purpose, to get a better picture of the difference between these two models when
evaluating the performance of our SIR algorithm on the survival data in Chapter 3.

2.2. Sliced Inverse Regression

Let us review the theory of the sliced inverse regression and illustrate this proce-
dure on simple examples. We concentrate mostly on the univariate case, that is, the
reduction to a single dimension, since it is the simplest to interpret graphically. We
cover in detail the case of the linear regression, for which we show the asymptotic
distribution to be equivalent to the one found by sliced inverse regression. The
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adaptation of this method to survival analysis is presented in the next chapter.

2.2.1. Dimension reduction

Dimension reduction is one of the fundamental principles for handling multivariate
data. It aims to select a few new variables, usually linear combinations of the origi-
nal ones, and which describe the most important features of the observed data. It is
possible to construct predictive models for high-dimensional data directly (which is
usually computationally intensive), but in practice it might be easier to reduce the
dimension of the data beforehand. As in this example of searching for predictors,
dimension reduction is often used as a preprocessing step. Among the classical ex-
amples are principal component analysis and factor analysis (see Muirhead (1982)),
probably the most popular linear dimension reduction methods. Among the meth-
ods using non-linear reductions, neural networks and self-organizing maps are
leading examples.

In this thesis, we concentrate on the problem of dimension reduction for the re-
gression of a response variable Y on a p-dimensional predictor x. The reduction
of the dimension of the regressors’ space has become quite important in analyzing
large datasets, the multivariate response regression analysis with a p-dimensional
vector of regressors being a common example. Mathematically, a model in which
dimension reduction makes sense can be written as

y = f (βT
1 x, βT

2 x, . . . , βT
k x, ε), (2.13)

where the β’s are unknown p-vectors, ε is a random variable independent of x, and
f is an arbitrary unknown function on Rk+1.

This model is reasonably general and is the starting point for the development
of several methods. In 1991, Li introduced the sliced inverse regression (SIR) (Li,
1991). The same year, Cook and Weisberg (1991) published a discussion on SIR,
suggesting a variance checking condition and calling this method sliced average
variance estimation (SAVE). In 1992, Li (1992) provided another method, called
principal Hessian directions (PHD), to find the inverse structure as well as a test
for the dimension k. All three methods were further developed and were explored
by many scientists, especially Cook (1994, 1998, 2000). All three of them are imple-
mented in the R package dr for dimension reduction.

19
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Li continued exploring the variations of SIR by considering second moment based
variance methods (Li, 2000) and by comparing the slice covariance matrix with the
mean slice covariance matrix, the method he called SIR-II.

Further developments in SIR include multivariate response vectors (Coudret et al.,
2012; Li et al., 2003), recursive methods (Bercu et al., 2011) and other special cases.
When it comes to the high dimensional predictors, one of the first articles to ad-
dress this topic is a paper by Zhu et al. (2006), where the authors study the asymp-
totic behavior of the SIR estimate. A number of regularizations for SIR have been
suggested, see papers by (Li and Yin, 2008) and (Scrucca, 2007).

In this thesis we propose a new SIR adaptation to survival data. We are mainly
interested in the k = 1 case, that is, we look for a good linear combination of the
covariates, βTx, which can serve as a basis for predicting a variable Y. This case
has been studied by Duan and Li (1991) and is reviewed in detail in this chapter.

2.2.2. The basic ideas behind SIR

The idea of the sliced inverse regression is to find a projection of a p-dimensional
covariate x onto a k-dimensional linear subspace that contains most of the infor-
mation about our response Y. If the subspace, rather than the precise basis, is of
interest, any β such that βTx lies in the k-dimensional subspace is called an effec-
tive dimension reduction (e.d.r.) direction. We note here that the function f does
not have to be linear in its components, the method is able to estimate the e.d.r.
directions even if the link between Y and the subspace is of more complex form.
We concentrate on estimating the e.d.r. directions only, not the form of the function
f . We refer to the linear space generated by the β’s as the e.d.r. space.

The SIR methodology avoids dealing directly with a possibly high-dimensional co-
variate vector by switching to the inverse problem. Instead of estimating Y as a
function of x, we regress x against Y, which transforms a high-dimensional regres-
sion problem into a set of one-dimensional regression problems.

Why does this idea work? Before going into details, we first present an overview
of the method. As stated in (Li, 1991), as Y varies, E(x |Y = y) draws a curve,
called the inverse regression curve, in Rp. Under the condition (2.13), this curve
will oscillate around a k-dimensional affine subspace related to the linear space
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spanned by βT
1 x, . . . , βT

k x. Under certain conditions, the inverse regression curve
falls into the k-dimensional affine subspace determined by the e.d.r. directions. If
the covariates x are standardized to have mean 0 and the identity covariance, then
this subspace coincides with the e.d.r. space, allowing us the capture the main
direction of the variation. We can rewrite formula (2.13) as

y = f (ηT
1 z, ηT

2 z, . . . , ηT
k z, ε), (2.14)

where ηk = Σ1/2βk, Σ being the covariance matrix of x.

The search starts with the standardization of x and proceeds with an estimate of the
regression curve E(x | y). For that, we slice the sorted response vector y into several
intervals and compute the slice means of x corresponding to each slice of y. The
principal component analysis on the slice means of x defines the most important
k-dimensional subspace for tracking the inverse regression curve E(x | y). The e.d.r.
directions on the original scale are found by back-transformation.

A basic condition for sliced inverse regression is as follows:

Condition 2.2.1 For any b in Rp, the conditional expectation E(bTx | βT
1 x, . . . , βT

k x) is
linear in βT

1 x, . . . , βT
k x; that is, for some constants c0, c1, . . . , ck,

E(bTx | βT
1 x, . . . , βT

k x) = c0 + c1βT
1 x + . . . + ckβT

k x. (2.15)

This condition is satisfied when the distribution of x is elliptically symmetric. The
normal distribution is a leading example.

The following theorem provides a foundation for the SIR method. This result was
presented by Li (1991).

Theorem 2.2.2 (Li, 1991) Under the conditions (2.13) and (2.15), the centered inverse
regression curve E(x |Y = y) − E(x) is contained in the linear subspace spanned by
Σβi (i = 1, . . . , k), where Σ denotes the covariance matrix of x.

Corollary 2.2.3 Assume that x has been standardized to z = Σ−1/2x. Then under (2.13)
and (2.15), the standardized inverse regression curve E(z | y) is contained in the linear
space generated by the standardized e.d.r. directions η1, . . . ηk.
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What follows from Corollary (2.2.3), is that the covariance matrix of E(z | y) is de-
generate in any direction orthogonal to the linear subspace spanned by {η1, . . . , ηk}.
Therefore, the eigenvectors ηi (i = 1, . . . , k), corresponding to the largest k eigen-
values of Cov(E(z | y)) are the standardized e.d.r. directions.

To illustrate these results we consider the case for k = 1 in more detail. The main
condition for the SIR method is the elliptical distribution of covariates, as well as
their normalization. Together they ensure the recovery of the direction of the main
eigenvector.

Example: Consider Z ∼ N (0, I), where I is the identity matrix, and let
Y | Z = z ∼ Weibull(b = exp(βTz), c). Then the conditional density f (Y | Z = z) is
of form

f (y | Z = z) = c
yc−1

bc exp
(
−(

y
b
)c
)

,

and the density of Z is
h(z) = (2π)−p/2e−

1
2 zTz.

It follows that
f (z |Y = y) ∝ f (y | Z = z)h(z)

∝ exp
(
−1

2
zTz− c(βTz− log(y))− e−c(βTz−log(y))

)
,

which is a product of a spherically symmetric function with a positive function that
depends only on βTz. In any affine space orthogonal to β, Ad = {z | βTz = d} ⊆
Rp−1, the inner product βTz = d is constant, which implies spherical symmetry
of the conditional distribution of Z |Y within any Ad. Because of this symmetry,
the conditional expectation E(Z |Y) must be a multiple of β and Cov(E(X |Y)) is
of rank one, with any v such that βTv = 0 being an eigenvector with associated
eigenvalue equal to zero.

2.2.3. One-component SIR

Theoretical justification

A good review on the one-dimensional (link-free regression) e.d.r. space can be
found in (Duan and Li, 1991), where the authors also establish the asymptotic
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theory for the SIR estimate. We now give a summary of their results.

They assume that the true model is of the form

Y = f (βTx, ε), ε | x ∼ F(ε), (2.16)

where f is a kind of link function, mapping (βTx, ε) into R, F is the error distribu-
tion, and x and β are in Rp. We rewrite the condition (2.2.1) in a stronger version:

Condition 2.2.4 The regressor variable x is sampled randomly from a nondegenerate el-
liptically symmetric distribution.

Theorem 2.2.5 Duan and Li (1991) Assume the general regression model (2.16) and the
design condition (2.2.4). The inverse regression function falls along a line

E(X |Y = y) = µ + Σβκ(y) ∈ Rp, (2.17)

where µ = E(X), Σ = Cov(X) and κ(y) is a scalar function of y, namely

κ(y) =
E(βT(X− µ) |Y = y)

βTΣβ
.

Proof: The design condition (2.2.4) implies that

E(X | βTX) = µ +
ΣββT(X− µ)

βTΣβ
. (2.18)

By applying the law of iterated expectations, we get that

E(X |Y = y) = E(E(X | βTX) |Y = y) = µ +
Σβ

βTΣβ
E(βT(X− µ) |Y = y).

Discussion of this proof: While the second part of this proof is quite clear, the re-
sult (2.18) may not seem straightforward. We explore this statement in an example
similar to the one earlier in this chapter.

Since X is elliptical we have X = Σ1/2U, where U is spherically symmetric with
E(UUT) = I.
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β

Figure 2.3.: An illustration to Theorem 2.2.5.

In Figure 2.3 we illustrate the spherically symmetric density (represented by the
circles) and the conditional expectation E[U | βTU = y] (in blue). Due to the sym-
metry, the mean of U | βTU = y lies in the linear subspace spanned by β. The scalar
function κ(y) is defined as

E(U | βTU = y) = κ(y)β, (2.19)

that is, it determines how far from the origin the conditional mean lies.

Now we want to generalize the relationship to X:

E(X = Σ1/2U | βTΣ1/2U = y) = Σ1/2E(U | β̃TU = y) = Σ1/2κ(y)β̃ = Σβκ(y),

where β̃ = βTΣ1/2 and we used formula (2.19).
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Corollary 2.2.6 Duan and Li (1991) Assume the same conditions as in Theorem 2.2.5. Let
V = Cov(E(X |Y = y)). The slope vector β solves the following maximization problem:

max
b∈Rp

L(b), where L(b) =
bTVb
bTΣb

. (2.20)

The solution is unique (up to a multiplicative scalar) if and only if κ(y) 6= 0.

Proof: From (2.17) we get that

V = Var(κ(Y))ΣββTΣ

has rank one. This is most easily viewed graphically, as in Figure 2.3, the variation
of E(X |Y) is in only one direction, namely β. The rest of the corollary follows from
the Cauchy inequality. .

Remark: Later on we compute the form of the matrix V and its eigenvalues for the
normal covariates X and show mathematically that its rank in this case is 1.

Thus, β is the principal eigenvector for V, corresponding to the principal eigenvalue
λ1, and all the other eigenvalues are equal to zero. We can rewrite the function L
in (2.20) as

L(b) =
Var(E(bTX | y))

Var(bTX)
. (2.21)

Since L(b) in equation (2.21) compares the explained variance with the total vari-
ance of the data, it can be viewed as the R2-coefficient for the nonparametric re-
gression of βTX on Y, hence it measures how well we predict βTX from Y. The
corollary states that among all linear combinations bTX, Y predicts βTX the best.

Theorem 2.2.5 and Corollary 2.2.6 provide the theoretical foundation for the inverse
regression. Their results can be applied in the sampling case. For a given sample
(yi, xi, i = 1, . . . n) from the general model (2.16), the idea is to estimate the direc-
tion of the slope β. The estimate of the inverse regression curve E(X |Y = y) is
necessary for the application of Theorem 2.2.5, and the idea behind sliced inverse
regression is to use a step function estimate. For that, the whole range of yi’s is
divided into S slices, H1, . . . , HS. Within each slice, E(X | y ∈ Hs) can be estimated
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2. Survival and Regression

by the sample average of the corresponding x’s. The estimated inverse regression
curve can be written as

Ê(X | y ∈ Hs) = ξ̂s = ∑n
i=1 xi IHs(yi)

∑n
i=1 IHs(yi)

if y ∈ Hs,

where IHs(yi) is the indicator of the event that yi in in the slice Hs.

The estimated inverse regression curve converges to the true one if we choose a
suitable number of slices whose meshes decrease to zero as n→ ∞. Since E(X |Y =
y) falls along a line, as shown earlier, a crude estimate for E(X |Y = y) is adequate
for estimating its direction (Duan and Li, 1991).

We can rewrite Theorem 2.2.5 for the sampling case in the following way:

ξs = E(ξ̂s) = µ + Σβks, (2.22)

where

ks = E(κ(Y) |Y ∈ Hs) =
E((X− µ)Tβ |Y ∈ Hs)

βTΣβ
. (2.23)

The idea is to combine the information from all the slices (where κs is nonzero) to
estimate the direction of β. We introduce the following notation:

ps = P(y ∈ Hs), k = (k1, . . . , ks)T , ξ = [ξ1, . . . , ξs], ξ̂ = [ξ̂1, . . . , ξ̂s].

We estimate V by
V̂ = ξ̂W ξ̂T , (2.24)

where W is an arbitrary symmetric nonnegative definite s× s matrix, chosen a pri-
ori, which satisfies W1 = 0 (Duan and Li, 1991). Equation (2.24) can be interpreted
as a weighted covariance matrix for the ξ̂ with a weight matrix W.

We can now rewrite the maximization problem (2.20) in a sample form for a given
weight matrix W:

max
b∈Rp

L̂(b), where L̂(b) =
bTV̂b
bTΣ̂b

. (2.25)

As stated earlier, the maximum
λ̂1 = L̂(β̂) (2.26)

is the principal eigenvalue, and the slicing regression estimate β̂ is the principal
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2.2. Sliced Inverse Regression

eigenvector.

There are many possible choices for the weight matrix W, but the main algorithm
of SIR uses the proportional to size weight matrix. That means, each slice is weighted
by the empirical probability of Y to fall inside the slice. This choice allows for a
great simplification in the variance estimation.

Algorithm

The steps for computing the SIR estimate of β̂ (k = 1) are as follows (Haerdle and
Simar, 2007). We operate on the data (yi, xi, i = 1, . . . , n), and xi ∈ Rp is a vector
containing the covariates for the i-th observation.

1. Standardize x to get
zi = Σ̂−1/2(xi − x̄),

where Σ̂−1/2 and x̄ are the sample covariance matrix and sample mean of
x1, . . . , xn, respectively.

2. Divide the range of y1, . . . , yn into S nonoverlapping slices Hs, s = 1, . . . , S.
ns denotes the number of observations within slice Hs, and IHs the indicator
function for this slice:

ns =
n

∑
i=1

IHs(yi).

3. Compute the sample mean of zi over all slices, denoted by z̄s:

z̄s =
1
ns

n

∑
i=1

zi IHs(yi).

4. Calculate the estimate for the weighted covariance matrix

V̂ = n−1
S

∑
s=1

nsz̄sz̄T
s . (2.27)

5. Identify the eigenvalues λ̂i and eigenvectors η̂i of V̂.

27



2. Survival and Regression

6. Transform the standardized directions η̂i back to the original scale.

β̂i = Σ̂−1/2η̂i.

In case of the one-component model (k = 1 or link-free regression by Duan and
Li (1991)) we are only interested in the first eigenvector, while under the mul-
ticomponent model (2.13), the coefficients of interest are contained in the first k
eigenvectors.

2.2.4. Asymptotic behavior

Determining the asymptotic distribution of the SIR estimator is a challenging prob-
lem. Li (1991) discusses how the choice of the number of slices may affect the
asymptotic variance of β̂. It is also stated that it is possible to establish the asymp-
totic normality of β̂ and to calculate the asymptotic covariance matrices, which is
treated in (Duan and Li, 1991). The formal proof of asymptotic normality can be
found in (Saracco, 1997). Li also proposes a test for the principal eigenvector β1,
but states that such a test is not valid for the confidence interval (Li, 1991).

The asymptotic variance being rather complex, many papers studied the conver-
gence of the SIR estimate. Hsing and Carroll (1992) list conditions under which
β̂ converges at the rate of Op(n−1/2). Zhu and Ng (1995) studied the consistency
under a fixed number of observations per slice and when this number goes to
infinity. The limiting behavior of the eigenvectors and eigenvalues of the matrix
E(Cov(X |Y = y)) is also investigated in their paper.

The main results are established by Duan and Li (1991), but their formula does not
allow an easy interpretation or even application. We present here the details and
show their equivalency to the classical least squares formula in case of the simple
linear regression. All the notations are the same as in Section 2.2.3.

Theorem 2.2.7 Duan and Li (1991) Assume the general regression model (2.16), the
design condition 2.2.4 (normal), and let the weight matrix W be symmetric and nonnegative
definite with W1 = 0 and kTWk > 0. The slicing regression estimate β̂, which solves the
maximization problem (2.25), is consistent for the direction of β. The estimated principal
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2.2. Sliced Inverse Regression

eigenvalue λ̂1 in (2.26) is a consistent estimate for the population principal eigenvalue

λ1 = kTWk. (2.28)

By the strong law of large numbers, V̂ converges almost surely to

ξWξT = kTWkΣββTΣ,

which is proportional to V. Hence, both L̂(b) and L̃(b) converge to a criterion
function proportional to L(b) in (2.20). The results follows from Corollary 2.2.6.

For simplicity, suppose that the design distribution is normal. General formulas
can be found in Duan and Li (1991). We also assume that the β has been normalized
to have unit length in the Σ - metric:

βTΣβ = 1. (2.29)

We also impose the normalization of the slicing regression estimate:

β̂TΣ̂β̂ = 1. (2.30)

We introduce a new parameter

u = Wk = (u1, . . . , uH)T ,

where W is the weight matrix from equation (2.24) and k = (k1, . . . , kH) are defined
by (2.23). The asymptotic results are presented in the following theorem:

Theorem 2.2.8 Duan and Li (1991) Assume the general regression model (2.16), the de-
sign condition 2.2.4 (normal), the normalization (2.29) with a symmetric and nonnegative
definite matrix W, which satisfies W1 = 0 and kTWk > 0. The slicing regression esti-
mate, which solves the maximization problem (2.25) and is normalized by (2.30), has the
following normal approximation:

√
n(β̂− β)→ N (0, A(Σ−1 − ββT)),

where the scalar A is given by

A = ∑S
s=1 u2

s /ps

(uTk)2 .
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This result is presented for the normal design distribution but can be simplified in
case of the weight matrix proportional to size, which we use in our algorithm. The
scalar A in Theorem 2.2.8 is equal to

A =
1

uTk
=

1
λ1

, (2.31)

which can be estimated consistently by substituting λ̂1 for λ1.

The proof of Theorem 2.2.8 is sketched in Duan and Li (1991).

Proof: Without loss of generality, assume that uTk = 1. Throughout the proof, we
leave out the terms of lower order. We approximate V̂ by

V̂ = ξ̂W ξ̂T = (ξ + (ξ̂ − ξ))W(ξ + (ξ̂ − ξ))T

.= ξWξT + (ξ̂ − ξ)WξT + ξW(ξ̂ − ξ)T

= ΣβkTWkβTΣ + (ξ̂ − ξ)WkβTΣ + ΣβkTW(ξ̂ − ξ)T

= (Σβ + (ξ̂ − ξ)u)(Σβ + (ξ̂ − ξ)u)T. (2.32)

If we put ∆ = (ξ̂ − ξ)u, (2.32) becomes

V̂ .= (Σβ + ∆)(Σβ + ∆)T.

Thus, the slicing regression estimate maximizes

L̃(b) =
[bT(Σβ + ∆)]2

bTΣb
. (2.33)

The problem in (2.33) can be viewed as

arg max (bTa)2

subject to the constraint
bTΣb = 1,

which is equivalent to

arg max [bTa− λ

2
(bTΣb− 1)],

where λ is a Lagrangian multiplier. From this formulation, it follows that b ∝
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Σ−1a. = Σ−1(Σβ + ∆). In Section 2.2.3 we saw that β̂ maximizes (2.33). We can
write that

β̂ ∝ Σ−1(Σβ + ∆) = β + Σ−1∆.

The denominator in (2.33) is approximated

(β + Σ−1∆)TΣ(β + Σ−1∆) .= βTΣβ + 2∆Tβ = 1 + 2∆Tβ. (2.34)

Again, we leave out the terms of the lower order. We apply the Taylor expansion
to (2.34) and finish the computation of the normalized β̂:

β̂ =
β + Σ−1∆√

1 + 2∆Tβ
= (β + Σ−1∆)(1− ∆Tβ) .= β + (Σ−1 − ββT)∆. (2.35)

The right-hand side of (2.35) is asymptotically normal with mean β. Its covariance
equals

Cov(β̂) = (Σ−1 − ββT)Cov(∆)(Σ−1 − ββT). (2.36)

The last thing to compute is Cov(∆). The term ∆ = (ξ̂ − ξ)u can be written as

∆ = u1(ξ̂1 − ξ1) + u2(ξ̂2 − ξ2) + . . . + us(ξ̂s − ξs),

and its covariance is of form

Cov(∆) =
S

∑
s=1

u2
s Cov(X |Y ∈ Hs)

1
nps

.

The design condition 2.2.4 implies that the covariance of X | βTX is of form

Cov(X | βTX) = Σ− ΣββTΣ, (2.37)

and it follows that

Cov(∆) = ∑S
s=1 u2

s /ps

n
(Σ− ββTΣ), (2.38)

and plugging equation (2.38) into (2.36) we get

Cov(β̂) = (Σ−1 − ββT)∑S
s=1 u2

s /ps

n
(Σ− ββTΣ)(Σ−1 − ββT)
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= ∑S
s=1 u2

s /ps

n
(Σ−1 − ββT), (2.39)

which concludes the proof.

Remark: The matrix (Σ−1 − ββT) in (2.39) is not of rank p, but of p − 1. This is
due to the chosen normalization, βTΣβ = 1, which was used in the final step of the
proof. This result implies, that the variation in the direction parallel to β is zero.
This is most easily shown with the parametrization (Σ−1 − ββT)Σβ = β− β = 0.
Thus, the algorithm estimates the β precisely. This is shown in the next section for
the linear regression, with the Cov(E(X |Y)) having only one non-zero eigenvalue.

2.2.5. Linear regression

The asymptotic theory reviewed above is valid for the one-component SIR which
assumes a general form of dependency between the response Y and the βTX and
ε. The linear regression is a special case. In this section, we derive explicit results
for the SIR estimator in the case of the linear regression.

Let X ∼ N (0, Σ) be our explanatory variables, and consider the regression condi-
tional on the observed x:

Y = βTx + ε, ε ∼ N (0, σ2), independent of x. (2.40)

We shall start with the conditional distribution of X |Y , whose density is

fX |Y(x |Y = y) =
fX(x) fY | x(y | x)

fY(y)
∝ fX(x) fY | x(y | x). (2.41)

It follows that

fX |Y(x |Y = y) ∝ exp
(
−1

2
xTΣ−1x

)
exp

(
− 1

2σ2 (y− βTx)2
)

∝ exp
(
−1

2
(xTΣ−1x) +

1
σ2 (βTx)2 − 2

σ2 βTxy
)

(2.42)

∝ exp
(
−1

2
(x− µ1)TV−1(x− µ1)

)
. (2.43)
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2.2. Sliced Inverse Regression

Thus, the conditional distribution of X |Y = y is normal and we can easily deduce
its parameters µ1 and V. The conditional distribution is

X |Y ∼ N
(

y
σ2

(
Σ−1 +

1
σ2ββT

)−1

β, V =
(

Σ−1 +
1

σ2ββT

)−1
)

. (2.44)

In the context of SIR, formula (2.44) simplifies. Since we standardize the explana-
tory variable, Σ is an identity matrix. Moreover, our vector of interest β is an
eigenvector for the covariance matrix V of the conditional distribution (2.44). We
can show this by considering the inverse covariance matrix (since the eigenvectors
stay the same).

V−1β =
(

I +
1
σ2 ββT

)
β = β +

1
σ2 ββTβ = β

(
1 +

1
σ2 ||β||

2
)

= β

(
1 +

1
σ2

)
,

where we have used the fact that our eigenvectors are normalized to unit length.

Thus, β is an eigenvector of the covariance matrix V−1 with eigenvalue
1 + σ2

σ2 .

We note that due to the orthogonality of eigenvectors β j, (j = 2, . . . , p), the other
eigenvalues of the matrix V−1 (and of V) are all equal to 1.

The expression for the covariance matrix V can be rewritten by considering its
spectral decomposition.

V = Cov(X |Y = y) =
σ2

1 + σ2 ββT +
p

∑
i=2

βiβ
T
i · 1 + ββT − ββT

=
σ2

1 + σ2 ββT + I − ββT = I − 1
1 + σ2 ββT. (2.45)

Duan and Li (1991) show that Cov(X | βTX) = (I − ββT), but in our model (2.40)
we take ε into account directly, which brings us to (2.45).

From the law of the total variance we know that

Var(X) = E(Cov(X |Y = y)) + Cov(E(X |Y = y)). (2.46)

If we take X as our (standardized) covariates, equation (2.46) becomes

I = E(V) + Ṽ,
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where the matrix V is defined by (2.45), and the matrix Ṽ is the covariance ma-
trix computed by the SIR algorithm (2.27). If we assume that the slices are small
enough, then the variance within each slices could be considered constant. In this
case, using formula (2.45) we find that

V = I − Ṽ =
1

1 + σ2 ββT. (2.47)

We see that for the linear regression, the matrix V indeed would only have one
non-zero eigenvalue, which allows the accurate recovery of β.

In order to relate Theorem 2.2.8 to the classical regression, we have to consider
the effect of normalization of the covariates. The ordinary least squares estimator
based on a sample of n observations has the following distribution:

β̂OLS ∼ N
(

β,
σ2(XTX)−1

n

)
,

where X is the design matrix. Since we standardize the covariate x, the matrix
(XTX)−1 satisfies (XTX)−1 = I. We now show that the variance of β̂OLS/||β̂OLS||
is equal to the variance of β̂SIR. To do that we shall apply the delta method with

the transformation g(β) =
β√
βTβ

. We have

∂

∂β

β√
βTβ

=
1
||β||

(
I − ββT 1

||β||2

)
= A

and the asymptotic variance of the g(β) becomes

Varasy(g(β̂)) = σ2AAT
∣∣∣∣
β

=
(

I − 2
ββT

||β||2 +
ββT

||β||2

)
σ2

||β||2

=
σ2

||β||2

(
I − ββT

||β||2

)
. (2.48)

Theorem 2.2.8 states that the asymptotic distribution of β̂SIR satisfies

√
n(β̂SIR − g(β)) ∼ N (0,

1
λ1

(I − ββT

||β||2 )). (2.49)
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The formulas (2.48) and (2.49) are equivalent with λ−1 = σ2/||β||2.

Remark: Note that the model X ∼ N (0, I) and Y = βTX + ε, ε ∼ N (0, σ2 I) is
equivalent to

Y = g(β)TX + ε

with X ∼ N (0,
1
||β||2 I), ε ∼ N (0, I), which explains the presence of the factor

σ2/||β||2 in (2.48).

2.2.6. Discussions

The SIR procedure reduces the dimension of the predictor whevener a model of
type (2.13) exists. The structure of the underlying function f is impossible to iden-
tify, only the inverse regression curve can be estimated. When identifying the
β′s in (2.13), we identify the e.d.r. space, not the β1, . . . , βk individually. As pre-
sented later in this thesis, SIR can recover the main dependencies in both Cox’s
proportional hazards model and the accelerated lifetime model, despite their very
different nature.

In this thesis, we do not consider the problem of convergence, but this has been
largely studied and pertinent results can be found, for instance, in (Li, 1991; Zhu
et al., 2006; Zhu and Ng, 1995). In general, the method provides root n consistent
estimates for the e.d.r. directions.

How strong is the linearity condition (2.15)? First of all, it is imposed on true e.d.r.
directions, the estimated directions may not fully satisfy this condition. Its possible
relaxation was mentioned by Li (1989), and its robustness was studied in (Hall
and Li, 1993), since low-dimensional projections often fall into the spherical space.
Cook and Weisberg (1991) report that SIR is often not overly sensitive to the linear
design condition. Li (1991) also states that by density estimation and reweighting,
X can be forced into elliptical symmetry. Coudret et al. (2012) state that using
the Bayesian argument from (Li, 1989) it can be inferred that the condition (2.15)
approximately holds for many high-dimensional datasets.

When will the method fail to correctly identify the e.d.r. space? Li (1991) gives an
example of the standardized inverse regression curve which falls within a proper
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subspace of the standardized e.d.r. space. In this case, the e.d.r. directions will not
be completely recovered. Another limitation of SIR is in finding patterns symmetric
about the vertical axes, a better method for such problem would be SAVE (Cook
and Weisberg, 1991) or PHD (Cook, 1998; Li, 1992).

A good review and discussion of all the aforementioned features of SIR can be
found in (Chen and Li, 1998), which draws comparisons between the SIR and
the multiple regression estimates. Based on the theory and examples, they ar-
gue that SIR is a simple method which finds linear combinations of independent
variables that maximize the correlation with the optimally transformed dependent
variable. “It is powerful when it comes to interactive, multi-dimensional graphing
techniques. It can be used whenever there is a need for visualization, which in turn
can help functional approximation”. Moreover, it can be used together with other
methods which we shall discuss in the next chapter.
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CHAPTER

3

SIR FOR SURVIVAL DATA

In the previous chapter, we reviewed in detail the sliced inverse regression (SIR) as
a method for dimension reduction in regression problems. Here we shall discuss
its adaptation to survival data. We start with an overview of literature on the topic,
and then introduce a method for dealing with censored observations. We cover
some aspects of the variance estimation and briefly discuss the high-dimensionality
scenario.

3.1. Background

The first adaption of the SIR method in survival case was suggested by the author
of the original method himself, Li et al. (1999). The paper distinguishes two censor-
ing scenarios, the independence of the censoring distribution from the covariates
and the true survival time, and the the independence of the censoring distribution
from the true survival time, conditional on the covariates. In the first case, Li ar-
gues that the censoring does not introduce bias to the method, and that the SIR
algorithm can be applied to the whole dataset without any modifications. When
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the independence between the censoring time and the true survival time holds but
the covariates influence the censoring pattern, the idea is based on a weighting
scheme to bypass the bias in estimating the slice means. The weight function is es-
timated via kernel smoothing techniques. However, they perform well only when
the number of covariates is small (p ≤ 3). When this is not the case, the estimation
of the weights is preceded by location of the joint e.d.r. directions which allow
for the dimension reduction. The joint e.d.r. directions are computed through the
double slicing technique (slicing the observed and the censored cases separately
and combining them at the third step of the algorithm, when computing the sliced
mean). Under the certain conditions the estimates of this two-step procedure are
root-n consistent. This method is implemented in the R package censorSIR.

Cook (2003) elaborated a version of SIR for bivariate responses, bivariate SIR, as
an alternative procedure for survival data. His approach generalizes the double
slicing of Li et al. (1999), which becomes a special case of the bivariate response.
The proposed method can be found in the supplement to their software Arc, a
program for linear regression analysis. Recently, in a paper about the model-free
dimension reduction for bivariate regression, Wen and Cook (2009) introduced a
new approach, called bivariate estimation across responses (BEAR), which allows
the inclusion of a categorical response (an indicator function for censoring in the
survival analysis case) and is based on the minimization of the quadratic discrep-
ancy function, introduced by Cook and Ni (2005). Asymptotic theory for the BEAR
estimator is presented as well.

An alternative to bivariate dimension reduction method is based on reweighting the
censored observations. Li and Lu (2008) explored the sliced inverse regression with
missing predictors with the help of the augmented inverse probability weighted es-
timator. The augmented version of the inverse probability weighted estimators is
considered in order to obtain unbiased estimators, even if the model of the missing-
ness indicator is misspecified. This approach is suitable under the different setups
of missing data. Later on, Lu and Li (2011) expand their work from 2008 by focus-
ing on the censored regression only. They employ the inverse censoring probability
weighted estimator in order to handle censored responses. The authors obtain es-
timates of the e.d.r. directions by introducing the inverse of the survival function
of the censored time as weight to the uncensored observations. Their weighted
linear squares system has a closed-form solution. Among the ways to estimate the
survival function of the censoring time, they call for the Kaplan-Meier method or
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adopt the semi-parametric approach by imposing the proportional hazards model
and estimating the survival function based on its fit. They go further by consid-
ering variables selection via regularized sparse estimation, which is done by the
lasso technique. A similar adaptation can be found in a paper by Nadkarni et al.
(2011), introducing an inverse regression family for censored data, with SIR being a
member of this family. To adjust for the censoring, inverse probability of censoring
weighting is used. It is applied for the nonparametric estimation of the weighed
Kaplan-Meier estimator for the censored time, the Kaplan-Meier estimator for the
lifetime, and in the estimation of the sample estimators. For the basis estimation,
the authors refer to the concept of inverse regression approach with a quadratic
discrepancy function. Detail on inverse probability weighting can be found, for
example, in Rotnitzky and Robins (2005).

To our knowledge, the first paper to mention high-dimensional covariates in SIR
is Zhu et al. (2006). The main emphasis in put on estimating the dimension via
the Bayes information criterion. More specific problems of linear dimension reduc-
tion methods under high-dimensionality are discussed by Li (2010). The author
presents three possible ways to handle the n < p problem. The first option is to use
a two-way procedure, first reducing the dimension of predictors, and then apply-
ing SIR. Such an approach has been used in the microarray data analysis of Li and
Li (2004), where the principal components analysis is used for dimension reduc-
tion, and the components serve as input data for the SIR algorithm later on. This
algorithm is applied on a diffuse large B-cell lymphoma dataset and the results
are compared with existing methods. Another example incorporating a two-step
procedure is a paper by Wu et al. (2008). Instead of the principal component anal-
ysis, its authors preselect the genes using the liquid association measure (a way
to characterize three-way interactions between genes) and the correlation with the
Kaplan-Meier imputed survival probabilities.

The second way to deal with high-dimensionality is to use the partial least squares
method, and the third one is to introduce some kind of regularization. Zhong et al.
(2005) suggest the ridge regularization, by adding the identity matrix multiplied
by a regularization parameter s to the Cov(E(X |Y)), but this is certainly not the
only possibility. Lue et al. (2011) rely on an imputed spline approach to principal
Hessian directions to reduce the dimension of covariates.

When it comes to a more general approach of dimension reduction in survival
cases, there are many more papers addressing this topic. Some of them consider
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both the problems of high-dimensionality and censoring, others focus on censoring
only. Witten and Tibshirani (2010) give a good review on the existing techniques,
they not only discuss high-dimensional genomic data but introduce also the main
aspects of survival analysis. Among the methods which are covered, one can count
from stepwise selection and shrinkage methods to variance-based methods such as
principal components and partial least squares. They treat SIR as in the paper by Li
and Li (2004) and under the Cox’s proportional hazards model. The most recent
paper on dimension reduction for survival data is by Yan and Zhang (2012), where
the authors study the estimation and variable selection via an iterative method
which is a combination of L1 penalty and the refined outer product of gradient
method (OPG), which they call sparse hazard-function-based OPG algorithm.

All of the afore-mentioned method assume uninformative censoring, when the rea-
sons for removal are unrelated to the event and does not bias the parameter estima-
tion. When the independence condition is violated, information about the censor-
ing mechanism is needed to adjust for the bias. Some of the papers on how to test
for the informative censoring or to account for it, include (Koziol and Green, 1976;
Lee and Wolfe, 1998; Scharfstein and Robins, 2002). The research on dimension
reduction under the presence of informative censoring is ongoing.

3.2. Adaptation of SIR to censored data

What is the best way to handle the censored observations? One strategy, called
the complete-case analysis, is to remove any missing datapoints. Such an approach
can be judged appropriate when most of the data is complete, but it soon becomes
inefficient, once the proportion of the censored cases increases. Moreover, this
complete-case analysis is likely to create a bias in estimation.

Our idea is to propose a simple method of reintroducing the censored observations
to the data slices. We concentrate on the low-dimensional covariates (n > p), just
as the classical algorithm of Li et al. (1999). Some suggestions on how to treat
the high-dimensional setup can be found in the literature review in Section 3.1. We
will explore another method of reweighting the censored cases, but more intuitively
based and simpler than the inverse probability weighting.

We start with considering our response variable. Why does that matter? The
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classical method of SIR requires a relationship of some form between the response
and the covariates. For the accelerated lifetime model, the logarithm of the survival
time, log(T), depends on a linear function of the variables. For Cox’s model, such
a relationship exists for the hazards. While the reviewed papers consider both the
survival time T and its logarithm, we opted to slice the survival time directly.

What does a right-censoring time imply? Given that the individual was censored at
time t which falls in the slice i, the event for this individual could have taken place
anytime after t. Based on this idea, and assuming that the slice sizes are small
enough, we attribute this event with equal weights to all consequent slices. The
total sum of the weights naturally equals one. This allows us to use the covariate
information of the censored observations. Let us illustrate this procedure with a
small example:

Suppose we have 7 observations, listed below:

10, 11∗, 13, 15∗, 17∗, 18, 20. (3.1)

For this data we choose four slices: 10-12, 13-15, 16-18 and 19-20. Then we create
a matrix of weights which shows in which slice each observation falls. The first

obs slice 1 slice 2 slice 3 slice 4
10 1 0 0 0
11* 0.14 0.29 0.29 0.29
13 0 1 0 0
15* 0 0 0.5 0.5
17* 0 0 0.33 0.66
18 0 0 1 0
20 0 0 0 1

Table 3.1.: An example of the weight matrix W for the dataset (3.1)

censored observation 11∗ is in the middle of the first slice, hence it is assigned to
the second half of this slice and to the next 3 slices, giving a weight of 1/7 to the
first slice and 2/7 to the slices 2-4. The last two censored observations 15∗ and 17∗

will be taken into account in the slices 3 and 4 but with the different weights. The
observation 15∗ is considered with the equal weights of 1/2, while the 17∗ will have
the weight of 1/3 in the slice 3 and 2/3 in the slice 4. This matrix, listed in Table 3.1
is used at the third step of the SIR algorithm, when computing the slice mean for
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3. SIR for survival data

covariates. The slice ranges are computed by the R function from the package dr,
which aims to put approximately the same number of observations in every slice,
allowing for the asymptotic results to be valid.

3.3. Data Assumptions

In this section, we shall formalize the setup and the data assumptions. We adopt
the notations from Li et al. (1999). Our main parameters are:

- Yo = the true (unobservable) lifetime,

- C = the censoring time,

- δ = the censoring indicator; δ = 1, if Yo ≤ C and δ = 0, otherwise,

- T = min{Yo, C}, the observed time.

We assume that Yo follows the model

Yo = f (β1x, β2x, . . . , βkx, ε), (3.2)

and that
C ⊥⊥ Yo | x. (3.3)

Condition (3.3) ensures identifiability under the random censoring scheme.

The data sample consists of n i.i.d. observations (Ti, δi, xi, i = 1, . . . , n.) The contin-
uous random variables Yo and C are not observed.

3.4. Simulation results

Simulation studies were performed to assess the performance of this approach un-
der different conditions. We first present the results under different models and
later on in this chapter we compare the estimation with other methods from Nad-
karni et al. (2011) and Li and Lu (2008), as well as on the diffuse large B-cell lym-
phoma data.
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3.4. Simulation results

3.4.1. Cox’s proportional hazards model

The main idea was to generate the survival times following different distributions
under the given models and assess the estimation of the β coefficient via our SIR
approach. With the covariates generated from the normal distribution, we stud-
ied exponential, Weibull and Gompertz survival times in the PH case. While the
Weibull and exponential distributions can both be put under the ALT and PH set-
tings, the Gompertz case can only be interpreted in a PH format. We chose the

following setup: p = 5, x = (x1, . . . , x5)
iid∼ N (0, 2), the regression coefficient

β = (0.5,−0.5, 1√
2
, 0, 0) and generated the survival times as described in Chap-

ter 2. While different sample sizes and censoring patterns were considered, in the
tables below we list the averaged results for n = 50 and n = 500, with censor-
ing percentages of 25% and 50%, all estimated in 1000 runs. To allow for a better
comparison, the estimates of β̂ satisfy ||β̂||2 = 1, which is the Euclidean norm of
the true β. The censoring time C was computed as a random uniform variable
from Uni f orm(0, c0), where the constant c0 was selected to control the censoring
proportion at the desired level.

β̂1 β̂2 β̂3 β̂4 β̂5

Exponential, n=50 0.56 (0.04) −0.41 (0.06) 0.67 (0.06) −0.11 (0.05) 0.18 (0.04)
Weibull, n=50 0.43 (0.05) −0.44 (0.05) 0.77 (0.05) −0.09 (0.04) 0.13 (0.04)

Gompertz, n=50 0.45 (0.03) −0.49 (0.04) 0.73 (0.02) −0.07 (0.04) 0.15 (0.03)

Exponential, n=500 0.54 (0.01) −0.52 (0.01) 0.66 (0.01) −0.01 (0.01) 0.04 (0.01)
Weibull, n=500 0.54 (0.01) −0.51 (0.01) 0.67 (0.01) 0.00 (0.01) 0.03 (0.01)

Gompertz, n=500 0.53 (0.01) −0.48 (0.01) 0.71 (0.01) 0.00 (0.01) 0.02 (0.01)

Table 3.2.: SIR estimates and standard deviations of the coefficients of a PH model.
25% of the observations are right-censored.

From Table 3.2 we can see that the coefficients are pretty close to the true ones. Even
on relatively small samples (n = 50), the method performs rather well. Having
larger samples brings more accuracy, shrinking the fourth and the fifth coefficients
more towards zero. The standard deviations of our estimates, as expected, get
smaller with larger samples.

Table 3.3 contains the same results as Table 3.2, except that a larger proportion of
the data was censored (50% instead of 25%). There is much more noise for the
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3. SIR for survival data

β̂1 β̂2 β̂3 β̂4 β̂5

Exponential, n=50 0.56 (0.06) −0.48 (0.07) 0.61 (0.07) 0.23 (0.08) 0.21 (0.08)
Weibull, n=50 0.47 (0.06) −0.51 (0.08) 0.71 (0.09) 0.12 (0.07) 0.07 (0.07)

Gompertz, n=50 0.73 (0.03) −0.43 (0.05) 0.52 (0.04) 0.04 (0.04) 0.12 (0.04)

Exponential, n=500 0.51 (0.01) −0.47 (0.01) 0.72 (0.01) −0.01 (0.01) 0.00 (0.01)
Weibull, n=500 0.52 (0.02) −0.48 (0.02) 0.71 (0.01) −0.01 (0.02) 0.01 (0.01)

Gompertz, n=500 0.48 (0.01) −0.49 (0.01) 0.73 (0.01) 0.04 (0.01) 0.01 (0.01)

Table 3.3.: SIR estimates and standard deviations of the coefficients of a PH model.
50% of the observations are right-censored.

smaller sample size which makes the correct estimation of the non-zero variables
quite challenging. While the estimates are not so close to the true values, such a
procedure can be viewed as a variable selector, to distinguish the most important
variables. The larger samples (n = 500) do not seem to be influenced much by the
severe censoring.

In general, the underlying distribution does not seem to play a major role in suc-
cessful recovery of the coefficients. One observes a slight underestimation of the
second coefficient, which may be due to the bias caused by the equal reweighting.
On larger sample this effect is less present.

3.4.2. Accelerated lifetime model

As a next step, we assess how our procedure performs under the ALT model. Here
we also used the exponential and the Weibull distributions, replacing the Gompertz
distribution with the log-normal one. The regression coefficients β remained the
same as above, and the similar setups of sample sizes and censoring patterns were
generated.

In general, the results listed in Tables 3.4 and 3.5 present similar properties to the
accelerated lifetime model. One could again notice an underestimation of the sec-
ond parameter in case of the mild censoring (25%) on smaller samples, however it
is less pronounced than in the PH setup. The estimation under the severe censoring
(50%) is of a slightly worse quality, as compared to the PH case.
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3.5. Adjusting the weights for the censored observations

β̂1 β̂2 β̂3 β̂4 β̂5

Exponential, n=50 0.53 (0.07) −0.40 (0.10) 0.74 (0.11) −0.04 (0.08) −0.09 (0.08)
Weibull, n=50 0.50 (0.11) −0.54 (0.13) 0.66 (0.15) −0.04 (0.12) −0.16 (0.11)

Log-Normal, n=50 0.50 (0.06) −0.37 (0.06) 0.77 (0.05) −0.09 (0.08) 0.11 (0.07)

Exponential, n=500 0.54 (0.02) −0.48 (0.02) 0.70 (0.02) 0.03 (0.03) 0.02 (0.03)
Weibull, n=500 0.50 (0.04) −0.50 (0.04) 0.71 (0.03) 0.02 (0.03) 0.01 (0.03)

Log-Normal, n=500 0.50 (0.02) −0.52 (0.02) 0.69 (0.02) 0.02 (0.02) 0.03 (0.02)

Table 3.4.: SIR estimates and standard deviations of the coefficients of an ALT
model. 25% of the observations are right-censored.

β̂1 β̂2 β̂3 β̂4 β̂5

Exponential, n=50 0.71 (0.07) −0.46 (0.09) 0.52 (0.09) 0.01 (0.09) 0.10 (0.10)
Weibull, n=50 0.74 (0.11) −0.20 (0.13) 0.63 (0.15) 0.09 (0.13) 0.11 (0.14)

Log-normal, n=50 0.71 (0.07) −0.60 (0.08) 0.34 (0.08) 0.11 (0.09) 0.10 (0.09)

Exponential, n=500 0.52 (0.02) −0.52 (0.02) 0.67 (0.02) 0.08 (0.02) 0.02 (0.02)
Weibull, n=500 0.54 (0.04) −0.47 (0.04) 0.70 (0.03) 0.01 (0.04) 0.03 (0.04)

Log-normal, n=500 0.55 (0.02) −0.51 (0.02) 0.67 (0.02) 0.01 (0.03) −0.02 (0.03)

Table 3.5.: SIR estimates and standard deviations of the coefficients of an ALT
model. 50% of the observations are right-censored.

Naturally, both the degree of censoring and the sample size influence the results.
The larger the sample size, the better (and more accurate) estimates we get. The
same pattern applies to the degree of censoring. But the sufficiently large sample
size can compensate for the severely censored data. If we have a lot of data, we can
get good results disregarding the fact that a major part of it has been censored.

3.5. Adjusting the weights for the censored

observations

Our original idea to treat the censored observations was to redistribute them with
equal weights to all the subsequent slices. This is justified because the event could
have taken place any time after the censoring. The question is, how well does
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3. SIR for survival data

the equal weight correspond to reality? The individuals are not under the same
risk in all the slices. Moreover, by not taking into the account the covariates, we
run the risk of a strongly biased estimation. As an example, consider a dataset,
where individuals with low, average and high values of βTx gave very different
hazards. The equal distribution of the censored observation to the posterior slices
creates a bias. Other options for the attribution of censored observations have to be
considered.

As an example where the equal weights strategy does not perform well, let us
consider a survival model investigated by Yan and Zhang (2012). Suppose X =

(X1, . . . , X10)T iid∼ Uni f orm(0, 1). The true lifetime Y0 depends on the covariates as
follows

Y0 = exp(5− 10(1−
√

2βT
0 X)2 + ε), (3.4)

where ε ∼ N (0, 1) and is independent of X, and β0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)T/
√

2.
The right censoring time C is generated as

C = c
√

2βT
1 X, (3.5)

where β1 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0)T/
√

2 and c is a constant used to control the
proportion of censoring.

Table 3.6 lists the SIR estimates (after 100 runs) under the equal weighting dis-
tribution of censored observations for the defined model with the true survival
time (3.4) and the censoring time (3.5). The sample size of n = 500 was considered,
under the two censoring percentages, 30% and 75%.

β̂1 β̂2 β̂3 β̂4 β̂5
n= 500 0.61 (0.26) −0.21 (0.10) −0.01 (0.05) 0.41 (0.19) 0.56 (0.15)

censoring 30% β̂6 β̂7 β̂8 β̂9 β̂10
0.19 (0.09) 0.18 (0.08) −0.12 (0.08) 0.05 (0.02) 0.02 (0.04)

β̂1 β̂2 β̂3 β̂4 β̂5
n = 500 0.41 (0.35) −0.03 (0.08) 0.03 (0.05) 0.44 (0.22) 0.78 (0.61)

censoring 75% β̂6 β̂7 β̂8 β̂9 β̂10
−0.01 (0.03) 0.03 (0.04) −0.02 (0.04) −0.06 (0.08) 0.10 (0.09)

Table 3.6.: SIR estimates and standard deviations of the coefficients of the
model (3.4)-(3.5). 30% and 75% of the observations are right-censored.
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3.5. Adjusting the weights for the censored observations

We notice that apart from the 1st and the 5th components, corresponding to the
true basis, the 4th component also stands out. Despite a relatively large sample
size, the censoring pattern interferes with the true survival time, and the results
are mixed up. Augmentation of the sample size does not solve this problem.

3.5.1. Cox’s proportional hazards model

We shall base the reweighting on the direct computation of the probability of an
event in the slice with the help of the survival function. One could write down the
probability of a certain individual with covariate x experiencing the event (dying)
in a slice i as

P[dying in slice i, x] = F(upper, x)− F(lower, x)

= S(lower, x)− S(upper, x) = S0(lower)eβT x
− S0(upper)eβT x

, (3.6)

where S0(upper) and S0(lower) is the baseline survival function, estimated at the
upper and lower bound of the slice i, respectively. This is depicted in Figure 3.1.
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Figure 3.1.: Illustration of (3.6).
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3. SIR for survival data

The application of this reweighting technique is quite straightforward. We start
by computing β̂, based on the equal distribution of the censored observations. We
estimate S0 with the Kaplan and Meier (1958) method. Then we compute (3.6) with
β̂ for every censored individual and for all posterior slices to get a probability of
event in each of them. All the weights for any individual are then normalized to
have their sum equal 1. In the end, we recompute the steps 3-5 of the algorithm
from Section 2.2.3 to get the final β̂.

Figure 3.2 shows the distribution of the weights among 11 slices for a certain cen-
sored individual, with equal weighting system, and after the adjustments for co-
variates. The weights values are in bold, while the grey lines mark the slice ranges,
where the weights are different from zero. We see how drastically the weight as-
signment changes, with the individual in question having much higher probability
to undergo an event later rather than sooner.
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Figure 3.2.: Weights distribution (PH model), before and after the adjustment for
the covariates.

Let us explore whether this adjustment actually affects the estimates for β. Below
we list for comparison both averaged estimates, with equal weights and covariates
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3.5. Adjusting the weights for the censored observations

effect. For convenience, p was taken to be 5, x = (x1, . . . , x5)
iid∼ N (0, 2), and the

true vector of the coefficients is normalized to be β = ( 1√
5
,− 1√

5
, 0,
√

2√
5
, 1√

5
). The

censoring distribution was uniform, and the number of slices was fixed to be 10.
This setup was run over 100 times on different distributions and sample sizes.

β̂1 β̂2 β̂3 β̂4 β̂5

Weibull, n= 50 0.44 (0.07) −0.51 (0.12) 0.06 (0.08) 0.60 (0.12) 0.32 (0.11)
0.39 (0.12) −0.45 (0.14) 0.04 (0.10) 0.54 (0.14) 0.24 (0.13)

Weibull, n = 500 0.44 (0.02) −0.44 (0.02) 0.00 (0.01) 0.63 (0.02) 0.44 (0.02)
0.44 (0.02) −0.43 (0.02) −0.01 (0.02) 0.64 (0.02) 0.44 (0.02)

Exponential, n = 50 0.51 (0.05) −0.43 (0.05) 0.18 (0.05) 0.56 (0.05) 0.38 (0.05)
0.45 (0.09) −0.37 (0.06) 0.17 (0.05) 0.49 (0.07) 0.33 (0.08)

Exponential, n = 500 0.45 (0.02) −0.44 (0.02) 0.00 (0.01) 0.64 (0.02) 0.44 (0.02)
0.44 (0.04) −0.44 (0.04) 0.00 (0.02) 0.64 (0.05) 0.44 (0.05)

Gompertz, n = 50 0.35 (0.06) −0.47 (0.10) −0.10 (0.07) 0.66 (0.10) 0.36 (0.08)
0.33 (0.09) −0.40 (0.12) −0.10 (0.08) 0.57 (0.13) 0.30 (0.10)

Gompertz, n = 500 0.48 (0.02) −0.47 (0.02) −0.04 (0.02) 0.59 (0.02) 0.45 (0.02)
0.48 (0.02) −0.47 (0.02) −0.04 (0.02) 0.59 (0.02) 0.45 (0.02)

Table 3.7.: SIR estimates and standard deviations of the coefficients of an PH model.
25% of the observations are right-censored. For each case, the estimates
under two strategies are presented, equal weighting and after the adjust-
ment for the covariates.

We run the SIR method for Cox’s model under the same distributions as above:
Weibull, exponential and Gompertz. The results for the 25% censoring are listed in
Table 3.7. As earlier, two sample sizes, n = 50 and n = 500, were used. The true
value of β is (0.45,−0.45, 0, 0.63, 0.45). For each distribution there are two lines, the
first one corresponding to the equal weighting strategy and the second one to the
adjusted technique.

The estimates obtained after reweighting present a slightly higher variation which
is due to the increased computation. These results were acquired on the H = 10
slices, considering a higher number of slices can reduce the variation.

Under a 50% censoring, as seen in Table 3.8, the situation is rather similar. For the
smaller samples one could state that after reweighting the estimated components
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β̂1 β̂2 β̂3 β̂4 β̂5

Weibull, n= 50 0.39 (0.09) −0.40 (0.10) 0.04 (0.07) 0.66 (0.08) 0.28 (0.08)
0.35 (0.11) −0.33 (0.12) 0.01 (0.08) 0.55 (0.15) 0.28 (0.14)

Weibull, n = 500 0.46 (0.03) −0.47 (0.02) 0.00 (0.02) 0.63 (0.02) 0.38 (0.03)
0.46 (0.02) −0.47 (0.03) 0.00 (0.02) 0.64 (0.02) 0.38 (0.02)

Exponential, n = 50 0.47 (0.06) −0.41 (0.06) 0.06 (0.07) 0.60 (0.05) 0.35 (0.06)
0.43 (0.08) −0.38 (0.09) 0.05 (0.06) 0.57 (0.09) 0.33 (0.07)

Exponential, n = 500 0.47 (0.03) −0.46 (0.03) 0.01 (0.03) 0.62 (0.02) 0.41 (0.02)
0.47 (0.03) −0.45 (0.03) 0.01 (0.03) 0.62 (0.03) 0.42 (0.03)

Gompertz, n = 50 0.33 (0.08) −0.26 (0.11) 0.06 (0.07) 0.41 (0.17) 0.23 (0.11)
0.28 (0.13) −0.26 (0.16) 0.02 (0.05) 0.35 (0.20) 0.18 (0.14)

Gompertz, n = 500 0.44 (0.02) −0.38 (0.02) −0.02 (0.02) 0.66 (0.02) 0.46 (0.02)
0.44 (0.02) −0.39 (0.02) −0.02 (0.02) 0.66 (0.02) 0.46 (0.02)

Table 3.8.: SIR estimates and standard deviations of the coefficients of an PH model.
50% of the observations are right-censored. For each case, the estimates
under two strategies are presented, equal weighting and after the adjust-
ment for the covariates.

of β̂ are not so close to the true values. The nature of their relationship, however,
mostly preserves (the equality between certain components, their ratio etc.)

3.5.2. Accelerated lifetime model

We write down the model as a case of the log-linear regression:

log(Ti) = Yi = βTxi + wi, i = 1, . . . , n. (3.7)

where wi = log(T0,i) is a residual, following an unspecified distribution, i =
1, . . . , n. We are going to compute the new weights for the censored data based
on the distribution of wi’s.

We start by running the SIR algorithm with equal weights for get an estimate β̂.
Using all the uncensored observations, we create a histogram of residuals, ŵi =
Yi − β̂Txi. For each censored observation T∗j , the histogram is shifted by T∗j − β̂Txj

(where T∗j is the censored value) and the density to the right of this point T∗j − β̂Txj
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3.5. Adjusting the weights for the censored observations

is reweighted to be equal to 1. All the weights are written in the weight matrix W
in order to compute the covariance matrix V̂ in the SIR algorithm.

Once computed, the histogram remains the same, only the zero level shifts for
every censored observation. The detail to keep in mind during the implementation
was the defined range of all the slices. Since the slice means are fixed by the first
run of the procedure (performed to estimate β̂), it is necessary to maintain all the
slice limits. Therefore, the histogram had to be created with the breaks being the
slice ranges.
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Figure 3.3.: Weights distribution (ALT model), before and after the adjustment for
the covariates.

An example of reweighting is presented in Figure 3.3. For a specific observation, we
plot the equal weights strategy and the adjustment for the covariates information.
The slice intervals are defined by vertical lines. We note the uneven spread of slices
among the log(T), this is due to the fact that the slices contain roughly the same
number of observations.

There is another way to account for the information of the censored individuals.

51



3. SIR for survival data

We can view (3.7) as T = eβT xew = eβT xT0, where T0 is a baseline survival time. We
write down the corresponding survival function as

S(t, x) = P[T ≥ t] = P[eβT xT0 ≥ t] = P[T0 ≥ te−βT x] = S0(te−βT x), (3.8)

where S0 is the baseline survival function. Thus, we can compute the probability
for a censored individual to experience an event in a posterior slice in the same
way as in (3.6). We notice that in the PH model the baseline survival adjusted for
covariates by taking it to the power of eβT x, while in the ALT model it is the time
scale which gets shifted by e−βT x.

β̂1 β̂2 β̂3 β̂4 β̂5

0.49 (0.09) −0.47 (0.11) 0.15 (0.10) 0.65 (0.15) 0.28 (0.13)
Weibull, n= 50 0.53 (0.17) −0.48 (0.17) 0.09 (0.10) 0.64 (0.22) 0.27 (0.17)

0.52 (0.15) −0.48 (0.15) 0.16 (0.10) 0.62 (0.22) 0.29 (0.16)

0.46 (0.02) −0.47 (0.02) 0.01 (0.02) 0.63 (0.02) 0.42 (0.02)
Weibull, n = 500 0.47 (0.02) −0.46 (0.02) 0.01 (0.02) 0.63 (0.02) 0.42 (0.02)

0.46 (0.02) −0.46 (0.02) 0.01 (0.02) 0.63 (0.02) 0.42 (0.02)

0.35 (0.06) −0.50 (0.07) −0.09(0.08) 0.66 (0.05) 0.43 (0.05)
Exponential, n = 50 0.39 (0.11) −0.50 (0.10) −0.04 (0.08) 0.67 (0.09) 0.37 (0.10)

0.36 (0.11) −0.50 (0.10) −0.07 (0.07) 0.65 (0.11) 0.44 (0.07)

0.43 (0.02) −0.44 (0.02) 0.01 (0.02) 0.66 (0.02) 0.42 (0.02)
Exponential, n = 500 0.43 (0.02) −0.45 (0.02) 0.01 (0.02) 0.66 (0.02) 0.42 (0.02)

0.43 (0.02) −0.44 (0.02) 0.01 (0.02) 0.66 (0.02) 0.42 (0.02)

0.48 (0.05) −0.52 (0.05) 0.03 (0.06) 0.63 (0.05) 0.31 (0.05)
Log-Normal, n = 50 0.49 (0.07) −0.52 (0.07) 0.02 (0.05) 0.63 (0.08) 0.31 (0.06)

0.47 (0.07) −0.53 (0.07) 0.02 (0.06) 0.63 (0.07) 0.31 (0.07)

0.44 (0.01) −0.43 (0.02) 0.03 (0.01) 0.65 (0.01) 0.44 (0.01)
Log-Normal, n = 500 0.44 (0.01) −0.44 (0.01) 0.03 (0.01) 0.65 (0.01) 0.44 (0.01)

0.44(0.02) −0.43 (0.01) 0.03 (0.01) 0.64 (0.01) 0.44 (0.01)

Table 3.9.: SIR estimates and standard deviations of the coefficients of an ALT
model. 25% of the observations are right-censored. For each case, the es-
timates under three strategies are presented, equal weighting, residuals’
density and Kaplan-Meier reweighting.

Results in Tables 3.9 and 3.10 list the estimates for β = (0.45,−0.45, 0, 0.63, 0.45) and
the setup as in Section 3.5.1. However, for the ALT case we present three estimates
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3.5. Adjusting the weights for the censored observations

for each distribution: equal weighting and two reweighting options. The first one
is based on the density of the residuals, and the second one on the Kaplan-Meier
estimate under the ALT scenario, as described above.

While the results on large samples in Table 3.9 do not differ much, on smaller
samples (n = 50) one can observe a small improvement of the estimates after
reweighting the observations. The residual approach (second line) seems to be
more accurate in shrinking down the third component (which is truly zero) than
other techniques. It is worth mentioning that the log-normal distribution yields
very good estimates even on small samples, regardless of the weighting strategy.

β̂1 β̂2 β̂3 β̂4 β̂5

0.78 (0.12) −0.37 (0.17) 0.01 (0.08) 0.47 (0.20) 0.17 (0.17)
Weibull, n= 50 0.74 (0.20) −0.43 (0.21) 0.10 (0.13) 0.43 (0.26) 0.22 (0.20)

0.81 (0.19) −0.33 (0.22) 0.06 (0.12) 0.42 (0.24) 0.24 (0.20)

0.46 (0.03) −0.41 (0.03) 0.02 (0.03) 0.64 (0.02) 0.47 (0.03)
Weibull, n = 500 0.46 (0.03) −0.40 (0.03) 0.02 (0.03) 0.64 (0.03) 0.48 (0.03)

0.46 (0.03) −0.40 (0.03) 0.02 (0.03) 0.64 (0.02) 0.47 (0.03)

0.48 (0.07) −0.42 (0.12) −0.02 (0.09) 0.70 (0.10) 0.33 (0.10)
Exponential, n = 50 0.50 (0.16) −0.48 (0.19) −0.03 (0.12) 0.67 (0.16) 0.24 (0.15)

0.52 (0.10) −0.44 (0.17) −0.04 (0.10) 0.66 (0.16) 0.32 (0.12)

0.45 (0.02) −0.44 (0.02) 0.00 (0.02) 0.63 (0.02) 0.45 (0.02)
Exponential, n = 500 0.45 (0.02) −0.45 (0.02) 0.00 (0.02) 0.63 (0.02) 0.44 (0.02)

0.45 (0.02) −0.44 (0.01) 0.00 (0.02) 0.63 (0.01) 0.45 (0.02)

0.74 (0.06) −0.21 (0.06) 0.11 (0.06) 0.58 (0.05) 0.22 (0.06)
Log-Normal, n = 50 0.78 (0.12) −0.23 (0.11) 0.12 (0.13) 0.56 (0.17) 0.13 (0.18)

0.78 (0.11) −0.22 (0.11) 0.11 (0.08) 0.56 (0.15) 0.16 (0.16)

0.45 (0.02) −0.43 (0.02) 0.01 (0.02) 0.59 (0.02) 0.52 (0.02)
Log-Normal, n = 500 0.44 (0.02) −0.43 (0.02) 0.01 (0.02) 0.58 (0.02) 0.52 (0.02)

0.45 (0.02) −0.43 (0.02) 0.01 (0.02) 0.59 (0.01) 0.51 (0.02)

Table 3.10.: SIR estimates and standard deviations of the coefficients of an ALT
model. 50% of the observations are right-censored. For each case, the
estimates under three strategies are presented, equal weighting, resid-
uals’ density and Kaplan-Meier reweighting.

When comparing the results in the PH and the ALT case, one notices a higher
variation for the Weibull distribution. This is an unexpected result and worth being
explored. However, it is left for future work.
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3. SIR for survival data

When half of the data are censored, as seen in Table 3.10, the correct identification
of the coefficients is not really feasible. Surprisingly, the exponential distribution
shows good identification, while other distributions yield distorted results. The
best option in such a case is to consider these methods for variable selection (nom-
ination of important covariates).

β̂1 β̂2 β̂3 β̂4 β̂5
0.61 (0.26) −0.21 (0.10) −0.01 (0.05) 0.41 (0.19) 0.56 (0.15)

n= 500 0.58 (0.34) −0.19 (0.13) −0.06 (0.08) 0.32 (0.23) 0.63 (0.18)
censoring 30% β̂6 β̂7 β̂8 β̂9 β̂10

0.19 (0.09) 0.18 (0.08) −0.12 (0.08) 0.05 (0.02) 0.02 (0.04)
0.18 (0.11) 0.22 (0.14) −0.17 (0.11) 0.03 (0.04) 0.03 (0.08)

β̂1 β̂2 β̂3 β̂4 β̂5
0.41 (0.35) −0.03 (0.08) 0.03 (0.05) 0.44 (0.22) 0.78 (0.61)

n= 500 0.67 (0.44) −0.02 (0.09) 0.01 (0.06) 0.14 (0.25) 0.72 (0.66)
censoring 75% β̂6 β̂7 β̂8 β̂9 β̂10

−0.01 (0.03) 0.03 (0.04) −0.02 (0.04) −0.06 (0.08) 0.10 (0.09)
0.02 (0.08) 0.03 (0.08) 0.04 (0.07) 0.02 (0.06) 0.11 (0.13)

Table 3.11.: SIR estimates and standard deviations of the coefficients of the
model (3.4)-(3.5). For each coefficient there are two values, the result
of equal weighting (top line) and the results of Kaplan-Meier reweight-
ing for ALT model (bottom line). 30% and 75% of the observations are
right-censored.

Table 3.11 refers back to the model (with the true survival time (3.4 and the censor-
ing distribution (3.5)) in the beginning of this section, presenting a case when the
equal distribution of the censored observations resulted in a bias in estimation. We
now take the same settings as before and apply the Kaplan-Meier reweighting (for
ALT case) and present the results before and after this reweighting. We see that the
effect of the fourth component (which is a part of the censoring distribution) is less
present after reweighting the censored observations.

So far, we explored the performance of our SIR method for censored regressions
with the uniform censoring pattern. This is quite simplistic, therefore we also
wish to consider other approaches, especially when the censoring and the true
survival time distributions depend on different covariates. This is reviewed in next
section. Further on, the equal slice distribution of the censored observations is not
considered.
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3.5. Adjusting the weights for the censored observations

It seems rather intuitive to re-iterate the process of adjusting the weights for the cen-
sored observations until reaching convergence. The stopping criterion was taken
to be the maximal Euclidean distance between successive weight vectors divided
by the number of censored observations. While one cannot exclude the possibility
of oscillation between two solutions, in our simulations it led to improved results.
For stability purposes, all the weights were rounded to four significant digits. All
results we give from now on were computed with the iterated algorithm.

Another question of interest in the choice of slices in the model. There are few
recommendations on the topic. Li (1991) states that even when the slice number
is n/2 (resulting in two observations per slice), the resulting estimate will still be
root n consistent. Later on, Chen and Li (1998) claim that the SIR algorithm is
not too sensitive to the slice number H. These claims refer to the estimation of
the dimension, but not the directions. Becker and Gather (2007) investigate the
influence of the slice number on the number of directions and discuss that this
parameter is of importance. It is concluded that too large H is to be avoided, as it
presents the tendency to overestimate the e.d.r. space, and that a slice number of
H ≈ 0.1n seems to be a reasonable choice. In the next section we briefly discuss
this strategy.

3.5.3. Different models and comparison with other methods

As mentioned in the beginning of this chapter, Li et al. (1999) discussed two cen-
soring patterns, when both the censoring C and the lifetime Yo distributions are
independent from the covariates, (C, Yo) ⊥⊥ x, and their conditional indepen-
dence given the covariates C ⊥⊥ Yo | x. The censoring of the latter type creates
the bias and is of interest to us. In the simulation studies we considered so far,
the censoring pattern was generated from the uniform distribution. This setup,
however, does not imply that the covariates do not affect the observed survival
T = min(Yo, C). Nevertheless, we shall review models with the censoring distri-
bution depending on the covariates. In order to compare our approach with some
of the methods mentioned in the literature review, we adopt the models from the
papers in question and show our results.

We start with the paper by Li et al. (1999) and take the following example: Model 1

assumes x = (x1, . . . , x6)
iid∼ N (0, 1). The true survival time Yo and the censoring
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3. SIR for survival data

time C are generated from

Yo = − log(ε1)
ex1

; C = − log(ε2)
ex2

,

where ε1, ε2 are independent uniform random variables from [0, 1]. Conditional
on x, Yo and C are seen to follow the exponential distributions with the parameters
λ1 = ex1 and λ2 = ex2 , respectively. We generate 300 independent observations
of (T, δ), and have a censoring rate of 45%. To study the effect of the regressor
dimension, we vary p from 6, 10, 15 and 20. The setup has only one true e.d.r.
lifetime direction, β = (1, 0, . . . , 0)T , and we compute an R-squared term for eval-
uating how close to the true e.d.r. direction the estimated direction is. In this case
the R-squared term is the squared correlation coefficient between β̂TX and βTX.
Table 3.12 lists the mean and the standard deviation for R2 over 100 runs as the
number of regressors increases. Different techniques of reweighting for the cen-
sored observations are listed, the density approach (for residuals) under the ALT
model and the Kaplan-Meier adjustment under the ALT and the PH model. For
comparison purposes, we present in the last column the results from the double
slicing procedure DSIR, taken from the paper by Li et al. (1999).

Mean (standard deviation) for R2

p Density approach KM-ALT KM-PH DSIR

6 0.873 (0.062) 0.926 (0.039) 0.939 (0.034) 0.917 (0.059)
10 0.794 (0.068) 0.891 (0.041) 0.914 (0.042) 0.863 (0.063)
15 0.756 (0.071) 0.840 (0.555) 0.828 (0.071) 0.796 (0.089)
20 0.712 (0.080) 0.783 (0.062) 0.782 (0.073) 0.758 (0.082)

Table 3.12.: Performance of the proposed censored SIR under Model 1 with 100
runs. Reweighting of the censored observations is based on the densi-
ties of residuals and the Kaplan-Meier adjustment under the ALT and
PH model. The last column contains the results from DSIR, the double
slicing procedure by Li et al. (1999).

Since the true lifetime is exponential (which can be viewed both as PH or ALT
setup), we test all of the three reweighting techniques. What we conclude from this
example is that two out of the three methods we used for reweighting outperform
the double slicing method. These are the Kaplan-Meier based methods. While the
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3.5. Adjusting the weights for the censored observations

results of the density approach are satisfactory, in this model such an approach
underperforms.

Next, we relate to the inverse regression by Nadkarni et al. (2011), where the au-
thors estimate the conditional probability of survival with the help of a kernel
conditional Kaplan-Meier estimator. In their study, both the accelerated lifetime
and Cox’s model are considered, and the basis for the central subspace is esti-
mated by minimizing a quadratic discrepancy function. We test our procedure
on two models from their article. In their paper, Nadkarni et al. (2011) compare
the performace of their inverse regression method to the double slicing method by
computing the mean angle between the basis vector and the eigenvector estimate.
We did the same for our method and present below, in Figures 3.4 and 3.5, the
results for comparison. The two following models were considered:

Model 2 has the censoring percentage of 45% under the following setup: p=6, x =

(x1, . . . , x6)
iid∼ N (0, 1). The true survival time Yo is generated from

Yo = exp(x1 + x3)ε1,

where ε1 follows the exponential distribution with parameter 1. The censoring time
C is generated from

C = exp(x1 + x2 + x3)4.

Model 3 has the same setup as Model 2, but the true survival time Yo is generated
from

Yo = (− log(ε2)/ exp(x1 + x3)),

where ε2 follows the uniform distribution on [0,1]. The censoring time C is gener-
ated from

C = exp(x1 + x2 + |x3|)2.

Figures 3.4 and 3.5 show the mean angles between the true basis and the esti-
mates from three procedures from 100 simulation runs for Model 2 and Model 3,
respectively. The true basis equals β = (1, 0, 1, 0, 0, 0)T for p = 6. The considered
procedures are listed as SIR (our method, we used the Kaplan-Meier reweighting),
IR (the method by Nadkarni et al. (2011)) and DSIR (the double slicing). Each
figure has two plots: part (a) presents the mean angles for a fixed number of pre-
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Figure 3.4.: Mean angles between the true basis and SIR (our), IR (alternative) and
DSIR (double slicing) estimates in Model 2.

dictors (p = 6) as the sample size n grows, while part (b) is a function of p on the
sample size of n = 200. We can see that our method in both cases largely outper-
forms the other two, while being computationally less challenging (both inverse
regression and double slicing require solving an optimization problem and kernel
estimation).

Table 3.13 lists the mean angles for Model 3 as a function of the sample size and
the number of slices. We notice that on larger samples the choice of H idoes not
have a big effect (aside from the very large values), while on small samples having
a large number of slices (few observations per slice) leads to worse estimates of the
basis. These results are in accordance with the conclusions of Becker and Gather
(2007), where the authors suggest using H ≈ n/10.

We also compared our method with a method described in Lu and Li (2011), which
is also based on the inverse censoring probability weighted estimation, similar to
the idea of Nadkarni et al. (2011). This method is more of a general case for dimen-
sion reduction (sliced inverse regression is just a special case), and the uncensored

58



3.5. Adjusting the weights for the censored observations

200 400 600 800

0
10

20
30

40
50

(a)

sample size n (p=6)

m
ea

n 
an

gl
e

6 8 10 12 14 16 18 20

0
10

20
30

40
50

(b)

number of parameters p (n=200)

m
ea

n 
an

gl
e

SIR
IR
DSIR

Figure 3.5.: Mean angles between the true basis and SIR (our), IR (alternative) and
DSIR (double slicing) estimates in Model 3.

n=200 n=500 n=1000 n=3000

H mean angle H mean angle H mean angle H mean angle

10 4.5 10 3.11 10 5.15 10 2.96
20 5.47 20 5.06 20 4.19 20 3.10
50 13.29 50 6.77 50 3.97 50 4.15

100 14.45 100 3.10 100 4.03 100 4.09
200 7.30 200 4.73 200 3.94

500 6.02 500 8.54

Table 3.13.: Mean angle between the true and the estimated basis in Model 3 as a
function of the sample size n and the number of slices H.

observations are weighted by the inverse of the survival function of the censored
time. We adopt one of their models and test it on our procedure.
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3. SIR for survival data

Model 4 has the the censoring percentage of 40% and takes p=10. Covariates x =

(x1, . . . , x10)
iid∼ N (0, 1). The true survival time is generated from

Yo = exp(−2.5 + sin(0.1πβTx) + 0.1(βTx + 2)2 + 0.25ε3, (3.9)

where ε3 follows the extreme value distribution (to have a PH setup), and β =
(1, 1, 1, 0, 0, 0, 0, 0, 0, 0)T. The censoring time is generated as

C = exp(c + βT
c X + ε), (3.10)

with βc = (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0)T , and c being a constant that controls the cen-
soring percentage.
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Figure 3.6.: Correlation coefficient between the true and estimated basis for
Model 4. Presented results include all three reweighting techniques,
as well as equal distribution of the censored observations.
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3.5. Adjusting the weights for the censored observations

For performance evaluations, the authors rely on the vector correlation coefficient
between the true and estimated basis. The results can be seen in Figure 3.6, where
the median correlation coefficient is plotted versus the sample size. In their paper,
Lu and Li (2011) were comparing different methods of estimating the inverse of
the survival function of the censored time, and their resulting curves vary between
the 0.93 and the 0.98 range for the correlation coefficient, which is comparable with
our results. We highlight the fact that our Kaplan-Meier reweighting under the PH
model performs better than all the methods in Lu and Li (2011). They also list the
results for the double slicing for this example, which fluctuate between 0.80 and
0.85 for the correlation coefficient.

We also performed a sensitivity analysis, inspired by Lu and Li (2011). They sug-
gested to evaluate the effect of misspecification of the censoring time distribution.
For this purpose, different variations of the censoring distribution (3.10) are stud-
ied. The hazard function of εc in (3.10) is given by

λc(t, r) =
exp(t)

1 + r exp(t)
, (3.11)

where the constant r controls the level of deviation from a PH model. When
r = 0, it is a PH model, but as r increases, it deviates from the PH specifica-
tion, and when r = 1, it corresponds to a proportional odds (PO) or ordered lo-
gistic regression model. For the sensitivity study, we take r = 0.25, 0.5, 0.75, and
1. In addition, a log-normal censoring distribution is considered by generating εc

from a standard normal distribution (denoted by log-normal in Table 3.14), and
a misspecified PH model (r = 0) with an interaction term of covariates, that is,
C = exp(c− X1 + X4 + 0.5X1X2 + εc) (denoted by misspec. PH). The true survival
time is still generated by (3.9). Aside from the proportional hazards model for the
lifetime, the proportional odds model was taken into account, with ε following
a logistic distribution in (3.9). The same deviations for the censoring time were
considered.

Table 3.14 presents the median correlation based on 100 simulation runs, with 40%
censoring. Since it is a study of deviation from a PH model, we used the Kaplan-
Meier reweighting for PH models. For comparison, the results from Lu and Li
(2011) are also reported, under ICPW (inverse censoring probability weighted) es-
timation. For both methods, the performance degrades a bit as the model deviates
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3. SIR for survival data

n=400 n=800 n=1200

ε εc SIR ICPW SIR ICPW SIR ICPW

PH r = 0.25 0.976 0.969 0.985 0.976 0.997 0.980
r = 0.5 0.972 0.968 0.984 0.969 0.998 0.971

r = 0.75 0.971 0.964 0.986 0.969 0.997 0.965
r = 1 0.971 0.964 0.983 0.957 0.996 0.958

log-normal 0.980 0.962 0.991 0.967 0.995 0.964
misspec. PH 0.979 0.969 0.984 0.976 0.994 0.981

PO r = 0.25 0.973 0.968 0.989 0.977 0.994 0.981
r = 0.5 0.969 0.967 0.989 0.972 0.994 0.972

r = 0.75 0.971 0.960 0.985 0.967 0.992 0.964
r = 1 0.970 0.959 0.986 0.958 0.991 0.958

log-normal 0.983 0.958 0.991 0.966 0.993 0.967
misspec. PH 0.965 0.967 0.978 0.975 0.987 0.980

Table 3.14.: Sensitivity analysis: median vector correlation for various censoring
time distributions different than the proportional hazards model. For
each scenario, the model for the lifetime distribution (PH or PO) and
the censoring distribution (3.11) is specified.

increasingly from a PH setting, but our method yields slightly higher correlation
coefficients indicating the more accurate estimation of the basis. It is also less sen-
sitive to a deviation towards a log-normal or a misspecified model. One cannot
report a big difference in performance between the PH and PO models for the true
lifetime, for both listed methods. While the results for the double slicing are not
listed in this table, its estimation is far less precise.

In this section, we evaluated the performance of our method on different models
and applied it to several examples from different papers. Since each of the papers
in question used different ways to judge the quality of the estimation, we tried to
be consistent with their methods and did the same. Overall comparison results are
quite satisfactory. In fact, our procedure is competitive with the others, and even
yields a better estimation in most of the cases. While we designed our approach
keeping in mind the nature of the model in question (proportional hazards or
accelerated lifetime), it seems that often the reweighing techniques are not overly
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3.5. Adjusting the weights for the censored observations

sensitive to minor deviations from the model.

3.5.4. DLBCL data

An an example of a an application to real data, we chose the diffuse large B-cell
lymphoma (DLBCL) data, which was first analyzed by Rosenwald et al. (2002).
This dataset consists of 240 patients with DLBCL and there are 138 patient deaths
during the followup. As covariate information, we chose the aggregated informa-
tion (the microarray data have 7399 gene expression levels for each patient), from
Appendix to the original paper. Out of 138 recorded events, 5 cases had a survival
time of zero, and therefore have been excluded. The rest of the pre-selection was
done according to Nadkarni et al. (2011), the IPI subgroup has been removed be-
cause of multiple missing entries, and the categorical variable of gene expression
subgroup was replaced by dummy variables, ABC and GCB groups. The other
variables included gene expression signatures (germinal center B-cell signature,
major-histocompatibility-complex (MHC) class II signature, lymph node signature,
and the proliferation signature), value for the BMP6 gene, and the outcome predic-
tor score. In total, there are eight covariates.

Basis estimate (our approach) Covariate Basis estimate (Nadkarni et al.)

0.284 (0.172) ABC 0.020 (0.537)
0.055 (0.563) GCB 0.029 (0.640)
−0.205 (0.698) B-cell sig. −0.251 (0.161)
−0.245 (0.452) Lymph sig. −0.212 (0.152)
0.096 (0.305) Prolif. sig 0.201 (0.267)
0.207 (0.168) BMP6 0.267 (0.216)
−0.154 (0.242) MHC sig. −0.266 (0.187)
0.317 (0.211) Out. pred. score −0.842 (0.248)

Table 3.15.: Estimates and their bootstrap standard errors of the basis for the DL-
BCL data. In the left column, our results are listed, in the right column,
the results from Nadkarni et al. (2011).

Since Nadkarni et al. (2011) did not provide the details on introducing the dummy
variables for the ABC and the GCB groups, the comparison of results does not make
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much sense. Our basis estimates are listed in Table 3.15, together with the results
of Nadkarni et al. (2011). The most important variable selected is the outcome
predictor score, however, in our results it is not significant.
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Figure 3.7.: Kaplan-Meier estimates of survival curves for three risk groups of pa-
tients defined by the fitted PH model based on SIR basis component for
the DLBCL data.

Inspired by a paper by Li (2006), where the double slicing in SIR was applied to
the DLBCL data, we fitted a Cox model based on the extracted component from
Table 3.15. Based on the fit, we separated the individuals into three groups, corre-
sponding to the low, intermediate, and high risk respectively. The separation was
determined by the 33% and 66% quantiles of the estimated score. The resulting
Kaplan-Meier survival curves can be seen in Figure 3.7, where the three groups are
easily recognized. While we did not consider a further examination of this dataset,
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this example is a nice illustration of the SIR application on real cases.

So far, we used the correlation coefficient, the mean angle between the basis vectors
and the R-squared coefficient to judge the quality of the estimation. The aspects of
the variance estimation are discussed in the next section.

3.6. Variance estimation

Now, let us address the variance estimation for the SIR in survival models. We start
with the likelihood-based approach (for the ALT model) and further on review the
difficulties of the asymptotic estimation.

3.6.1. Maximum likelihood approach

To study the likelihood application on censored regressions, we consider an ALT
Weibull model of the following kind:

log(Ti) = Yi = α + βTxi + σwi, i = 1, . . . , n. (3.12)

The survival time T follows the Weibull distribution, and the random variable w
follows the Gumbel distribution with the density (2.1.4). The model (3.12) is of a
same type as the model (3.7), where the coefficients α and σ were absorbed as the
shape and the scale parameters of w’s Gumbel distribution. Here, for convenience
w has a standard Gumbel distribution.

The likelihood of Y can be written in terms of w = (Y − βTx)/σ (Kalbfleisch and
Prentice, 1980). The density function for Y is of the form

f (y) =
1
σ

f (w) =
1
σ

ewe−ew
,

where f (·) is the standard Gumbel density.

We start with the likelihood for Y:

L(α, β, σ) =
n

∏
i=1

(
1
σ

f (wi)
)δi

F̄(wi)1−δi , (3.13)
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3. SIR for survival data

where δi = 1, if Yi is not censored, and δi = 0, otherwise. F̄(wi) denotes the survival
function of the observation Y∗i .

The log-likelihood takes the following form:

log L(α, β, σ) =
n

∑
i=1

δi[− log(σ) + log( f (wi))] + (1− δi) log(F̄(wi)), (3.14)

and its partial derivatives are:

∂ log L
∂β j

=
n

∑
i=1

(
δi

dlog f (wi)
dwi

dwi

dα
+ (1− δi)

d log F̄(wi)
dwi

dwi

dα

)

=
1
σ

n

∑
i=1

[−δi
d log f (wi)

dwi
+ (1− δi)λ(wi)]

=
1
σ

n

∑
i=1

[−δi(1− ewi) + (1− δi)ewi ] =
1
σ

n

∑
i=1

xji(ewi − δi). (3.15)

In (3.15) we used the fact that the hazard function for the Gumbel distribution is
λ(wi) = ewi .

We can get the partial derivative with respect to α simply by replacing xji in (3.15)
by 1.

∂ log L
∂α

=
1
σ

n

∑
i=1

(ewi − δi). (3.16)

And the last partial derivate equals

∂ log L
∂σ

=
n

∑
i=1

[
δi

(
− 1

σ
+

dlog f (wi)
dwi

dwi

dσ

)
+ (1− δi)

d log F̄(wi)
dwi

dwi

dσ

]

=
1
σ

n

∑
i=1

(wi(ewi − δi)− δi). (3.17)

In order to compute Fisher’s information, we also need the second-degree partial
derivatives. We have the following:

−∂2 log L
∂βk∂β j

=
1
σ2

n

∑
i=1

xjixkiewi .
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3.6. Variance estimation

−∂2 log L
∂α∂β j

=
1
σ2

n

∑
i=1

xjiewi .

−∂2 log L
∂α2 =

1
σ2

n

∑
i=1

ewi .

− ∂2 log L
∂β j∂σ

=
1
σ2

n

∑
i=1

xjiwiewi +
1
σ2

n

∑
i=1

(ewi − δi)xji (3.18)

=
1
σ2

n

∑
i=1

xji(wiewi + ewi − δi).

−∂2 log L
∂α∂σ

=
1
σ2

n

∑
i=1

(wiewi + ewi − δi).

−∂2 log L
∂σ2 =

1
σ2

n

∑
i=1

(w2
i ewi + δi) +

2
σ2

n

∑
i=1

(wi(ewi − δi)− δi).

By taking the expected value of this matrix of second-degree partial derivatives, we
get Fisher’s information.

We wish to compare the maximum likelihood (ML) estimates and the SIR esti-
mates. In order to compute the ML estimates, we need to solve the system of
equation (3.15), (3.16) and (3.17). We use the Fisher scoring algorithm to do that.
For an initial value of θ0 = (α0, β0, σ0), the score statistic at θ̂ = (α̂, β̂, σ̂) can be
written as

∇L(θ̂) ≈ ∇L(θ0)− I(θ0)(θ̂ − θ0),

where I(θ0) is Fisher’s information matrix, evaluated at θ0. Given that ∇L(θ̂) = 0,
we get

θ̂ = θ0 + I(θ0)−1∇L(θ0). (3.19)

Equation (3.19) gives us an iteration procedure for the ML estimates. We start
with θ0 and at each step update the current θ̂ by the term I(θ̂)−1∇L(θ̂). Once the
algorithm has converged, ∇L(θ̂) = 0, and the iterations stop. The choice of θ0 is
important for convergence.

We did a comparison between the SIR and ML estimates for p = 2 case, that is, a
model of the following kind:

log(Ti) = Yi = α + β1xi1 + β2xi2 + σwi, i = 1, . . . , n.
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3. SIR for survival data

Besides the estimates themselves, we are also interested in their respective vari-
ances.

All the results presented below were achieved with 100-repetitions with n = 1000.
For the SIR method, we used a reweighting technique (density-based) on 20 slices.
Independent censoring situations of 16%, 48% and 64% were considered, as well
as the value of σ = 0.5, 2, 4. The true β was normalized (in order to allow for a
comparison between the two methods) and was equal to β = ( 1√

5
, 2√

5
). The starting

value for the ML procedure was β. The main results are aggregated in Figures 3.8-
3.10.
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Figure 3.8.: ML and SIR estimates with σ = 4. Censoring is 16% and 64%.

Figure 3.8 depicts the boxplots for the 2 components of the ML and SIR estimates
when σ = 4. The censoring percentage is either 16% or 64% and is indicated
in the label of each boxplot. The estimation (the recovery of β) is quite good. In
general, SIR tends to have a bit larger variance which is not surprising, since the ML
estimation is fully efficient. Another expected result is that the variation decreases
with lower censoring.

Figure 3.9 shows the variation under the fixed censoring of 48%, but for the models
with different σ’s, namely σ = 0.5 or σ = 4 (as in previous figure, the respective
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Figure 3.9.: ML and SIR estimates under the 48% of censoring, σ = 0.5 or 4.
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Figure 3.10.: ML and SIR estimates under the 16% of censoring, σ = 0.5 or 2.
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3. SIR for survival data

values of σ are indicated in the label of each boxplot). What we observe here, is the
effect of σ in (3.12). The variation depends on it and increases with the value of σ.

An interesting remark could be made on the basis of Figure 3.10. It seems that
under small fractions of censoring, SIR almost outperforms the ML approach, or at
least, performs equally well.

Let us study the variance of the ML method for the Weibull model (3.12) with
no censoring. We shall investigate the structure of the inverse Fisher information
matrix. In order to do that, we need to compute the expected value of the second-
order partial derivatives of the log-likelihood, presented in equations (3.18).

The censoring indicator δi in our case is 1, since we assume the no-censoring sce-
nario. Most terms in equations (3.18) are constants, we only need to compute a few
expected values.

E(ew) = 1, (3.20)

since w follows the Gumbel distribution with the cumulative distribution function
F(w) = 1− e−ew

. By replacing ew by y, we clearly recognize the exponential distri-
bution E(1), hence E(Y) = 1.

The next integral,

E(w) =
∫ ∞

∞
wewe−ew

dw =
∫ ∞

0
e−y log y dy = −γ, (3.21)

turns out to be the negative of Euler’s constant, γ ≈ 0.5772. Here we substituted
y = ew.

The two remaining integrals can be computed by parts, with the help of (3.21):

E(wew) =
∫ ∞

∞
we2we−ew

dw =
∫ ∞

0
ye−y log y dy = 1− γ;

E(w2ew) =
∫ ∞

∞
w2e2we−ew

dw =
∫ ∞

0
ye−y log2 y dy =

π2

6
+ γ2 − 2γ. (3.22)

In last integral (3.22), we used the fact that Var(w) = π2/6.

The information matrix is:
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3.6. Variance estimation

−E

(
∂2 log L
∂βk∂β j

)
=

1
σ2

n

∑
i=1

xjixki.

−E

(
∂2 log L
∂α∂β j

)
=

1
σ2

n

∑
i=1

xji.

−E
(

∂2 log L
∂α2

)
=

n
σ2 .

− E

(
∂2 log L
∂β j∂σ

)
=

1− γ

σ2

n

∑
i=1

xji. (3.23)

−E
(

∂2 log L
∂α∂σ

)
=

n
σ2 (1− γ).

−E
(

∂2 log L
∂σ2

)
=

n
σ2

(
π2

6
+ γ2 − 2γ + 1

)
.

In the context of the SIR, the covariates x come from a elliptically symmetric
distribution and satisfy ∑n

i=1 xji = 0, for a given j. That results in Cov(β, α) =
Cov(β, σ) = 0. Finally, we write down the Fisher’s information matrix. It is block-
diagonal, and its structure is specified for σ, α and β. We do not write the element
∗ part but its formula can be found above in (3.23). We note that all the elements
except the (β, β) part are constants.

I(α, β, σ) =
1
σ2 ·

σ α β


σ ∗ n(1− γ) 0
α n(1− γ) n 0

β 0 0 XTX

What interest us in the matrix I(α, β, σ), is the variance of the parameters of in-
terest, namely β. Since the Weibull distribution with fixed shape parameter is an
exponential family, the asymptotic variance of β is the inverse of the Fisher’s infor-
mation matrix. Its block-diagonal structure allows for a simple inverse:

Var(β̂) = σ2(XTX)−1. (3.24)
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3. SIR for survival data

In formula (3.24) we easily recognize the variance of the linear regression estimates,
derived from the ML estimation. Thus, we conclude that the Weibull regression
without censoring is fully efficient (in terms of maximum likelihood).

3.6.2. Asymptotics

What about the asymptotic variance? We saw in Chapter 2 the asymptotic theory
for a SIR estimate. Can the effect of the censoring and reweighting be somehow
integrated into Theorem 2.2.8? In principe, yes, but not in a convenient and easy to
use way. Buckley and James (1979) suggested an estimator based on a modification
of the ordinary least squares method. An alternative way to address this problem
is based on linear rank tests, derived by Prentice (1978) using a score test for the
marginal likelihood of generalized ranks. Wei et al. (1990) proposed a method to
make inference on a subset of the regression coefficients, while Tsiatis (1990) intro-
duced a method to consistenly estimate the variances for the linear rank estimates,
using the counting process approach. Ritov (1990) showed the asymptotic equiv-
alence between the Buckley-James estimator and the linear rank test estimator of
Tsiatis. All his results are based on counting process martingale theory.

Based on these facts, it is difficult to integrate the martingale theory of censored
regressions into the asymptotic theory of SIR. Even the formula itself for the asymp-
totic variance of the regression coefficients by Tsiatis (1990) is difficult to apply in
practice. Therefore, a good strategy to estimate the variance of the adapted SIR is
to apply the bootstrap.

The bootstrap of estimators based on censored data were first studied by Efron
(1981). He showed that for the observed data of (Ti, δi, xi, i = 1, . . . , n), a bootstrap
sample of (T∗1 , δ∗1 , x∗1), (T∗2 , δ∗2 , x∗2), . . . , (T∗n , δ∗n, x∗n), drawn by independent sam-
pling n times with replacement, yields an appropriate variance estimation. The
“obvious” method, demanding the independent sampling for the lifetime and the
censoring time points, keeping the minimal value between the two, and defining
the indicator accordingly, is equivalent to the triplets sampling.

To check the validity of the bootstrap variance estimation in our case, we performed
a number of simulations. Figures 3.11 and 3.12 show the boxplots of the bootstrap
estimates under the censoring rates of 20%, 33%, 50%, 60% and 75% for the PH and
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3.7. High-dimensional case

ALT models respectively, on two sample sizes, n = 300 and n = 1000. The top row
of each figure lists the boxplots for a non-zero component, while the bottom line
corresponds to a zero component. The models were generated in a similar way as
in Section 3.5, for p = 10 variables, and the number of bootstrap replications was
set to 100.

The results from our simulations indicate that the bootstrap estimation of our SIR
parameters is consistent. We only present the results for the two components for
each model (a true zero and non-zero one), but they reflect the general behavior.
Figures 3.11 and 3.12 indicate that the variation in estimation decreases as the sam-
ple size grows, allowing to extrapolate for the asymptotic case. For the PH model,
the variances of the true zero coefficients decrease faster than those of the non-
zero coefficients. The ALT model presents more variability in estimation, which
is linked to the censoring pattern and its sensitivity to it. Even on n = 1000, we
observe many outliers in our estimation. However, starting from n = 5000 (not
pictured), the results are more stable and accurate. We note here that the bootstrap
estimation does not reach the true value of the non-zero coefficient (which is 0.45),
unlike in Section 3.5, but captures the overall structure of the regression coefficient
vector (signs, ratios) flawlessly.

A comparison between the bootstrap and the simulated variances reveals that the
bootstrap variances give good estimates of the simulated variances.

3.7. High-dimensional case

The main problem why the original SIR method cannot be applied lies in the fact
that when n ≤ p, the covariance matrix Σ is ill-defined, making its inversion a
problem (we perform this at the very first step of the algorithm). There are many
possible techniques of regularization, and some papers on that topic were men-
tioned in the beginning of this chapter. The most popular technique seems to be
ridge regularization. The choice of methods and respective regularization parame-
ters is out of the scope of this thesis.
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Figure 3.11.: Boxplots of the bootstrap estimates (PH model) under 5 different
censoring rates for a non-zero (top line) and a zero (bottom line)
component. Results for two samples sizes are listed, n = 300 and
n = 1000.
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Figure 3.12.: Boxplots of the bootstrap estimates (ALT model) under 5 different
censoring rates for a non-zero (top line) and a zero (bottom line)
component. Results for two samples sizes are listed, n = 300 and
n = 1000.
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3. SIR for survival data

3.8. Defining the true zero coefficients and confidence

intervals

While visualizing all the coefficients of the principal eigenvector as we have done
so far in Tables above, may be informative, it is not the best way to judge the per-
formance of the algorithm, especially in the case of a larger number of variables.
In practice one is interested in finding the regression coefficients which differ sig-
nificantly from zero. Confidence intervals seem to be a natural choice for such a
task.

From the simulations listed above we see that in most cases the true zero coeffi-
cients are random and of order of Op(1/

√
n). Since we estimate the variance of the

SIR regressors via bootstrap, the classical confidence interval for a coefficient βi, a
component of a vector β, would be:

[β̂i − c · σ̂boot, β̂i − c · σ̂boot], (3.25)

where β̂i is an estimated value for βi, σ̂boot is its estimated standard deviation, and
c is a Student’s quantile.

In our method, we constructed the confidence intervals based on the percentile
method, first introduced by Efron (1981) and later studied by Efron and Tibshirani
(1993). For a given α, we construct a (1 − 2α) confidence interval by using the
percentiles of the bootstrap distribution β∗ in a following way:

[β∗α, β∗1−α], (3.26)

where β∗α = CDF−1(α) and β∗1−α = CDF−1(1− α) are the corresponding percentiles
of the sample distribution of β∗.

We used Formula (3.26) to test the null hypothesis H0 : βi = 0 in our models, are
the results were very satisfactory.

In this chapter, we covered the aspects of applying the sliced inverse regression to
the survival datasets. Despite SIR being a non-parametric method, we studied its
performance on two types of the models, the accelerated lifetime and the propor-
tional hazards, claiming that the consideration of the censored observations, based
on the suggested model, improves the estimation. Different adaptations of the
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method are often not too sensitive to the model specification. Various simulations
prove our approach to be effective in selecting the important variables.
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CHAPTER

4

SIZING STUDIES FOR DETECTING
GRAPHICAL MODELS

This chapter studies the factors that influence the power of the partial correlation
test in detecting the structure of the Gaussian graphical models. We are particularly
interested in how the sample size n affects this power. We concentrate on the case
of a single partial correlation, where a local asymptotic power approach and a
Kullback-Leibler divergence are considered. The Kullback-Leibler approach allows
us to get a better understanding of the complexity of the edge detection with regard
to a value of the partial correlation.

4.1. Background

Probabilistic graphical models are graphs in which nodes represent random vari-
ables Xu and the edges represent conditional dependence. Any two nodes or
variables that are not connected are independent, conditional on the values of all
the other random variables (in this work we only consider undirected graphs).
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4. Sizing studies for detecting graphical models

Such models provide a compact representation of a joint probability distribution.
The theoretical aspects of graphical models are nicely covered by Lauritzen (1996)
and Whittaker (1990). As an application to genetical epidemiology, the variables
Xu can be viewed as gene expressions measured from tissue samples of n patients.
The graphical model is used to describe the association between genes. We write
X1 ⊥⊥ X2 | X3 . . . Xp to indicate that X1 and X2 are conditionally independent,
given X3 . . . Xp. It turns out that for the multivariate normal distribution, condi-
tional independence is equivalent to zero entries in the inverse covariance matrix
Σ−1 (also called a concentration or precision matrix). Thus, if X ∼ Np(µ, Σ) is a
p-dimensional normal random vector with regular Σ, then for 1 ≤ u, v ≤ p with
u 6= v

Xu ⊥⊥ Xv | Xrest ⇐⇒ σuv = 0 , (4.1)

where Σ−1 = (σuv)p
u,v=1. This fact follows from the following theorem:

Theorem 4.1.1 If

(
X
Y

)
is normally distributed with the expected value

(
µX

µY

)
and

covariance matrix

(
ΣXX ΣXY

ΣYX ΣYY

)
then (X | Y) is also normally distributed with the

expected value µX + ΣXYΣ−1
YY(Y− µY) and covariance matrix ΣXX − ΣXYΣ−1

YYΣYX.

Thus the conditional independence in the case of the multivariate normal distri-
bution is expressed through zero elements in the concentration matrix. We can
identify the matrix

Σuv =

(
σuu σuv

σvu σvv

)
as the concentration matrix of the conditional distribution of (Xu, Xv) | Xrest . The
covariance matrix of this conditional distribution is therefore equal to

Σuv|rest =
1
|Σuv|

(
σvv −σuv

−σvu σuu

)
. (4.2)

From (4.2) it follows that

Cov(Xu, Xv | Xrest) =
−σuv

σuuσvv − (σuv)2 ,
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which proves (4.1).

Estimating the structure of the concentration matrix (or a graphical model) from
data can be solved with a variety of statistical procedures. They can be classi-
fied as score-based methods (for instance, a penalized likelihood), Bayesian meth-
ods (identifying posterior distributions over graphs) and constraint-based methods
(testing for conditional independencies and identifying compatible independence
structures). Penalized likelihoods have been extensively studied over the last cou-
ple of years, allowing for a sparse solution in high-dimensional scenario (see Cai
et al. (2011); Loh and Wainwright (2012); Meinshausen and Buehlmann (2006). In
this chapter, we consider testing the inclusion of every edge separately, edge by
edge (which would be a part of the constraint-based approach). Thus, we have to
test Huv

0 : ρuv·rest = 0 for all (p
2) choices of u and v, where rest refers to the variables

with indices in {1, 2, . . . , p} \ {u, v}.

4.1.1. Testing for Edges

Based on a sample x1 . . . xn ∈ Rp, we estimate the covariance matrix Σ by Sn =
(suv)

p
u,v=1, whose elements in the case n > p can be taken as suv = 1

n−1 ∑n
i=1(xiu −

x̄u)(xiv − x̄v), whereas in high-dimensional cases, some regularization needs to be
applied. In the following we assume that n > p. Without loss of generality, let
u = 1, v = 2 and consider

H12
0 : ρ12·rest = 0 against H12

A : ρ12·rest 6= 0.

The standard estimate of ρ12·rest is s12·rest = − s12
√

s11s22
. Under multivariate Gaus-

sianity, its sampling distribution is equal to the sampling distribution of the ordi-
nary product-moment correlation with the sample size n replaced by n− (p− 2).
Assuming the null hypothesis H12

0 is true, this implies that

s12·rest

√
n− p

1− s2
12·rest

∼ tn−p, (4.3)

a Student’s t - distribution with n− p degrees of freedom. In order to achieve level α

with a two-sided test, we reject H12
0 if the absolute value of the test statistic exceeds
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4. Sizing studies for detecting graphical models

the (1− α/2) quantile of the tn−p - distribution, which we denote by tn−p, α/2. We
thus reject if∣∣∣∣∣s12·rest

√
n− p

1− s2
12·rest

∣∣∣∣∣ > tn−p, α/2 or |s12·rest| >
tn−p, α/2√

n− p + (tn−p, α/2)2
. (4.4)

This rule depends only very weakly on p, but this is misleading, because we have
to test m = p(p− 1)/2 null hypotheses. Without some correction, the probability
of getting a falsely significant edge simply by chance increases with p. To avoid
this, we can use the Bonferroni correction or choose to control the False Discovery
Rate (FDR).

Other approaches based on test statistics are possible. In Edwards (2000), for ex-
ample, the backward stepwise model selection on the basis of the χ2 - distribution
is suggested. Drton and Perlman (2004), on the other hand, discuss the estimation
of the confidence interval for the partial correlation coefficient.

In many modern applications one has n < p, that is, there are more variables than
observations. In this case, the above method is clearly no longer available. In fact,
it is not possible to estimate Σ−1 by maximum likelihood and only a regularized
procedure can assure a positive definite estimate. A variety of solutions have been
proposed, see for example Kraemer et al. (2009).

4.1.2. The Kullback-Leibler Divergence

The investigation of the feasibility of edge-detection can also be based on the
Kullback-Leibler divergence. The Kullback-Leibler divergence (KLD) measures the
difference between two probability distributions F1 and F2 with densities f1 and f2

(see Kullback (1997)). It is defined as

D( f1 | f2) =
∫

f1(x) log
(

f1(x)
f2(x)

)
dx . (4.5)

The divergence equals the expected value of the log-likelihood-ratio for a single
observation X ∼ F1 when testing the model F1 vs the model F2. This interpretation
shows that the KLD is in fact a universal information number and is not tied to the
particular model being considered. It is easy to show that this divergence is always
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positive unless F2 = F1. Furthermore, the bigger the KLD, the easier it is to dis-
tinguish F1 from F2 by likelihood tests and the more powerful a test distinguishing
between the two hypothesis F1 and F2 is. If we dispose of n independent obser-
vations, the KLD is multiplied by n. If we test the absence of partial correlations
vs. the presence of partial correlations and assume multivariate Gaussianity, the
KLD is a useful tool to determine the average amount of information in the data.
Because it is based on likelihoods rather than estimates, the KLD can be computed
for any two models, without reference to additional conditions such as n > p. This
is an advantage of this approach.

Further on in this chapter, we will examine how information accumulates when
trying to fit a graphical model. When testing for edges, we will be interested in the
power of the test, while in the KLD approach, we can directly compute the relevant
amount of information.

4.2. Evaluation of the partial correlation test

We investigated the performance of this testing procedure both by simulation and
via asymptotic power calculations.

4.2.1. Asymptotic power

When testing the null hypothesis H12
0 : ρ12·rest = 0 against one-sided alternative

ρ12·rest > 0 based on the estimator s12·rest and the Bonferroni correction for the
number of tests m = p(p − 1)/2, the power function for large sample sizes is
approximately equal to

1−Φ
(
z1−α/m − c

√
nρ12·rest

)
= Φ

(
c
√

nρ12·rest − z1−α/m
)

, (4.6)

where z1−α/m denotes the (1− α/m)- quantile of the standard normal distribution
and c is a constant. This approximation of the power comes from the Pitman
asymptotic relative efficiency theory and is based on the asymptotic normality of
the estimator of the partial correlation and on the consideration of alternatives close
to the null hypothesis (details can be found, for example, in Chapter 10 of Serfling
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4. Sizing studies for detecting graphical models

(1980), or in Chapter 14 of Van der Vaart (1998)). The constant c is called the Pitman
efficacy or the slope of the test and is defined in our case as

c =
µ
′
(0)

σ(0)
, (4.7)

where µ(0) and σ(0) are the expected value and the standard deviation of the
partial correlation test evaluated under the null hypothesis. To compute the Pitman
efficacy, we get the needed results from Muirhead (1982). The expected value of
the partial correlation for an estimate based on a normal sample is

2/ f (Γ[( f + 1)/2]/Γ[ f /2])2 ρ12·rest 2F1

[
1
2 , 1

2 ; ( f + 2)/2, ρ2
12·rest

]
, (4.8)

where 2F1[·] is a hypergeometric function and f = n + 1− p. It follows that its
derivative with respect to ρ12·rest and evaluated at ρ12·rest = 0 equals

2/ f (Γ[( f + 1)/2]/Γ[ f /2])2
2F1

[
1
2 , 1

2 ; ( f + 2)/2, ρ2
12·rest

] ∣∣∣∣
ρ2

12·rest=0

= 2/ f (Γ[( f + 1)/2]/Γ[ f /2])2.

Using Stirling’s formula one can approximate the values of the Gamma function
and finds the following value:

2/ f (Γ[( f + 1)/2]/Γ[ f /2])2 ≈ (1 + 1/ f ) f

e
−→
f→∞

e
e

= 1. (4.9)

Because the asymptotic variance of the partial correlation statistic assuming that
the null hypothesis is true is 1, the slope of the test or its Pitman efficacy is equal
to 1.

Using the asymptotic approximation for the quantile z1−α/m ∼
√

2 log(m/α), and
the fact that c = 1, we can rewrite (4.6) as

Φ
(√

nρ12·rest −
√

2 log(p(p− 1)/(2α))
)

(4.10)

for an actual partial correlation of size ρ12·rest > 0. For a two-sided test one can
replace α by α/2 to obtain an approximate power value. The approximation of the
quantile z1−α/m is quite crude and gives values that are typically too large so that
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4.2. Evaluation of the partial correlation test

the power might be underestimated. The formula shows that the asymptotic power
increases with increasing strength of the partial correlation, where the strength is
measured by √

nσ12
√

σ11σ22
=
√

n ρ12·rest . (4.11)

The approximation (4.10) is valid if n− p is large. Of course, in high-dimensional
situations this is typically not the case.

We can use the approximation (4.10) to compute n as a function of the complexity
of the graph p and the size of the partial correlation. The formula shows that
the sample sizes required to reach a certain power (for example 0.8), are inversely
proportional to the square of the partial correlation we wish to detect. The required
sample size also increases roughly in parallel with the square root of log(p).

4.2.2. Simulated power

We simulated the power function by simple Monte Carlo according to the following
schema:

1. Set up the concentration matrix Σ−1 with diagonal elements equal to 1 and
nonzero off-diagonal elements equal to ρ and of a given sparseness of 10%;
20%; 40%.

2. Repeatedly simulate data X1 . . . Xn
iid∼ Np(0, Σ) with the chosen values of n

and p.

3. Compute the sample covariance matrix S(X1 . . . Xn) and its inverse S−1.

4. Using (4.4), test whether the elements of S−1 are significantly different from
zero.

5. Compare the original Σ−1 and the graph derived from S.

To compute the finite sample power of the test, we started with a sparseness of

1/
(

p
2

)
, that is, a single non-zero off-diagonal element, which we positioned at

(1, 2). All simulations were performed for matrices of dimension p = 40, p = 100
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and a sample size of n = 4000 and n = 300. The power of detection is estimated as

estimated Power =
No. times H12

0 is rejected
No. trials

.

It turns out that the power does not depend strongly on the dimension p. Moreover,
due to the extreme sparseness, the performances of the two corrections are almost
equal. Figure 4.1 below shows the power curves from simulations and asymptotic
formula (4.10) for two cases of parameters (p = 40 and p = 100) on a sample set of
300. The asymptotic curve describes well the power obtained via simulations even
on small samples, and it only gets better for larger samples (not pictured).
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Figure 4.1.: Estimated and local asymptotic power as a function of edge
strength (4.11) for a sample size n = 300. The values of p are 40 (dotted)
and 100 (solid).

We also checked how well the test detects multiple connections. A set of simu-
lations was performed on a 20%-sparse concentration matrix for different sample
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4.3. The Kullback-Leibler Divergence

sizes. We tested whether the procedure could detect all the existing edges. As
expected, only very strong connections were detected on small samples.

4.3. The Kullback-Leibler Divergence

Suppose we have two p-variate normal populations Np(µi, Σi) (i=1, 2), with µi =
(µi1, µi2, . . . , µip) two vectors of mean values, and Σi ∈ Rp×p two covariance matri-
ces. Their respective population densities are

fi(x) =
1

|2πΣi|1/2 exp(−1
2(x− µi)TΣ−1

i (x− µi)) . (4.12)

It follows that

log
f1(x)
f2(x)

= 1
2 log

|Σ2|
|Σ1|
− 1

2 trΣ−1
1 (x− µ1)(x− µ1)T + 1

2 trΣ−1
2 (x− µ2)(x− µ2)T .

Taking the expectation of the above, we can rewrite (4.5) in the case of these two
multivariate normal populations as

D( f1 | f2) = 1
2 log

|Σ2|
|Σ1|

+ 1
2 trΣ1(Σ−1

2 − Σ−1
1 ) + 1

2 trΣ−1
2 (µ1 − µ2)(µ1 − µ2)T. (4.13)

We will next evaluate this formula with normal populations with equal means but
unequal covariance matrices, namely Σ2 equal to the identity matrix and Σ1 with
an inverse which is nearly equal to the identity matrix. In the context of partial
correlations this describes a situation where the p variables have equal variance
and only a very small proportion of all partial correlations is non-zero.

4.3.1. Divergence for a single non-zero partial correlation with

known placement

Let fij be the density of the multivariate normal Np(0, Σij) and let f be the density
of Np(0, I), where Σ−1

ij has diagonal elements equal to 1 and has a value of ρ > 0
in positions (i, j) and (j, i), that is, exactly one partial correlation is non-zero. The
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divergence then takes the following form:

D( fij | f ) = 1
2 log

1
|Σij|

+ 1
2 trΣij(I − Σ−1

ij ) = 1
2(log |Σ−1

ij |+ trΣij − p). (4.14)

Because of our assumption about Σ−1
ij , we have

Σ−1
ij =



1 . . . 0 . . . 0 . . . 0
...

...
...

...
...

...
...

0 . . . 1 . . . ρ . . . 0
...

...
...

...
...

...
...

0 . . . ρ . . . 1 . . . 0
...

...
...

...
...

...
...

0 . . . 0 . . . 0 . . . 1


= Ip + Uij ,

where the off-diagonal elements are in positions (i, j) and (j, i). Without loss of
generality we take i < j. The expansion of the determinant gives

|Σ−1
ij | = 1 + (−1)i+jρ(−1)j−1+iρ = 1 + ρ2(−1)2i+2j−1 = 1− ρ2.

Thus, the determinant does not depend on the position (i, j), nor does it depend
on the dimension p. In order to compute the trace of Σij, we only need its diagonal
elements, which are straightforward to compute. They are equal to 1 except in
positions (i, i) and (j, j), where they are 1

1−ρ2 . Thus, the trace we are looking for is

equal to p− 2 + 2
1−ρ2 . From the previous expression (4.14) we then find

D( fij | f ) =
log(1− ρ2)

2
+

ρ2

1− ρ2 . (4.15)

4.3.2. Divergence when the correlation pair is unknown

In our formulation of the density fij, we make use of the knowledge of the place-
ment of the positive partial correlation. Because of this, Equation (4.15) is only
useful in understanding the test of Hij

0 if no correction for p is made.

How does the divergence change if we do not know the pair of correlated variables?
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4.3. The Kullback-Leibler Divergence

To answer this question, we consider the mixture of normal distributions

g(x) =
p−1

∑
i=1

p

∑
j=i+1

1
(p

2)
fij(x) . (4.16)

We showed earlier that the determinant of the identity matrix with two off-diagonal
elements of value ρ added equals 1− ρ2. The quadratic form in the exponential can
also be explicitly evaluated as x2

1 + · · ·+ x2
p + 2ρxixj. It follows that the elements of

the mixture density g are:

fij(x) =
√

1− ρ2

(2π)p/2 exp
(
−1

2
(x2

1 + · · ·+ x2
p + 2ρxixj)

)
.

The ratio of the two densities becomes

g(x)
f (x)

=

√
1− ρ2

(p
2)

p−1

∑
i=1

p

∑
j=i+1

exp
(
−1

2(x2
1 + · · ·+ x2

p + 2ρxixj)
)

exp(−1
2(x2

1 + · · ·+ x2
p))

=
√

1− ρ2

(p
2)

p−1

∑
i=1

p

∑
j=i+1

exp(−ρxixj) .

It follows that

D(g | f ) =
∫
Rp

g(x) log
(

g(x)
f (x)

)
dx

=
∫
Rp

g(x) log

(√
1− ρ2

(p
2)

p−1

∑
i=1

p

∑
j=i+1

exp(−ρxixj)

)
dx

=
∫
Rp

f12(x) log

(√
1− ρ2

(p
2)

p−1

∑
i=1

p

∑
j=i+1

exp(−ρxixj)

)
dx, (4.17)

where the last line follows from the fact that the ratio of the densities is invariant
with respect to the permutations of the xi.

The integral (4.17) can be approximated as follows for large p. Let (X1, . . . , Xp) be
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a random vector with density f12. The integrand in (4.17) is

log

(√
1− ρ2

(p
2)

(
e−ρX1X2 +

p

∑
j=3

(
e−ρX1Xj + e−ρX2Xj

)
+

p−1

∑
i=3

p

∑
j=i+1

e−ρXiXj

))

= log

(√
1− ρ2

(
OP(p−2) +

2
p2 − p

(
p

∑
j=3

(
e−ρX1Xj + e−ρX2Xj

))

+
2

p2 − p

(
p−1

∑
i=3

p

∑
j=i+1

e−ρXiXj

)))
. (4.18)

For large p, the two last terms should be well-behaved and can be approximated
by their asymptotic limits. The theory of a product of two independent normal
variables is well described by Aroian (1947). We can easily show that if Z1, Z2 are
independent and N (0, 1), then

E(exp(−ρZ1Z2)) = 1/
√

1− ρ2,

Var(exp(−ρZ1Z2)) = 1/
√

1− 4ρ2 − 1/(1− ρ2).

Thus, the variance is only finite for ρ < 0.5 and a transition in the KLD value hap-
pens as one passes to ρ > 0.5. These equations are computed in a straightforward
way:

E(exp(−ρZ1Z2)) =
∫∫

exp(−ρZ1Z2)φ(z1)φ(z2)dz1dz2

=
∫∫ 1

2π
exp

(
−

z2
1

2
− z2

2
2
− ρz1z2

)
dz1dz2

=
∫ 1√

2π
exp

(
−z2

2
2

+
ρ2z2

2
2

)(∫ 1√
2π

exp(− (z1 + ρz2)2

2
)dz1

)
dz2

=
1√

1− ρ2

∫ √
1− ρ2
√

2π
exp

(
−z2

2
2

(1− ρ2)

)
dz2 =

1√
1− ρ2

,

where the φ function represents the density of the standard normal distribution.
The result for Var(exp(−ρZ1Z2)) is computed analogously.
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Thus, if ρ < 0.5, we can appeal to the central limit theorem to deduce that(
p−1

∑
i=3

p

∑
j=i+1

e−ρXiXj

)
/[(p− 2)(p− 3)/2] ∼asy N

(
1√

1− ρ2
, O(p−2)

)
.

The variables X1, . . . , Xn have the density f12, that is, their inverse covariance matrix
is diagonal from i = 3, . . . , n and has ρ in the positions (1, 2) and (2, 1). Hence,
the marginal variance of X1 and X2 is

Var(X1) = Var(X2) =
1

1− ρ2 .

The second summand in (4.18) is based on the variables X1 and X2, and the expec-
tation of the typical term exp(−ρX1Zi) can be computed in the following way:

E(exp(−ρX1Zi)) =
∫∫

exp(−ρx1zi)
√

1− ρ2
√

2π
exp

(
−

x2
1

2
(1− ρ2)

)
φ(zi)dzidx1

=
√

1− ρ2
∫ 1√

2π
exp

(
− (zi + ρx1)2

2

)
dzi

∫ 1√
2π

exp

(
−

x2
1

2
(1− 2ρ2)

)
dx1

=
√

1− ρ2√
1− 2ρ2

. (4.19)

The variance of this term exp(−ρX1Zi) is also O(p−2). In this computation, we
replaced Xi by Zi to highlight the fact that Xi, (i = 3, . . . , p) ∼ N (0, 1).

The last thing to account for is a number of terms in each of the summands in (4.18).
We get that

E

(
2

p2 − p

p

∑
j=3

(
e−ρX1Xj + e−ρX2Xj

))
=

4(p− 2)
p(p− 1)

√
1− ρ2√

1− 2ρ2

≈ 4
p

√
1− ρ2√

1− 2ρ2
;

E

(
2

p2 − p

p−1

∑
i=3

p

∑
j=i+1

e−ρXiXj

)
=

(p− 2)(p− 3)
p2 − p

1√
1− ρ2
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= (1− 4
p

+ O(p−2))
1√

1− ρ2
.

Combining everything together we get that the KLD is approximately equal to
the expectation of log(

√
1− ρ2(Y + Op(p−2))), where Var(Y) = O(p−2) and its

mean is (1− 4/p)/
√

1− ρ2 + (4/p)
√

1− ρ2/
√

1− 2ρ2. Multiplying by
√

1− ρ2

and expanding the logarithm leads to an approximate KLD value of

D(g | f ) = log

(
1− 4

p
+

4
p

(1− ρ2)√
1− 2ρ2

+ O(p−2)

)

=
4
p

(
1− ρ2√
1− 2ρ2

− 1

)
+ O(p−2) . (4.20)

A comparison of (4.15) and (4.20) reveals that the effect of an unknown placement of
the partial correlation is a much slower increase with ρ of the information content.
Table 4.1 shows values of the KLD, calculated by Monte Carlo integration.

ρ p = 10 p = 100 p = 1000

0.1 4× 10−4 2× 10−5 6× 10−6

0.5 2.026× 10−2 1.77× 10−3 8× 10−5

0.9 2.05 1.1 5.9× 10−1

Table 4.1.: The entries of this table show the information about a single randomly
placed partial correlation of size ρ provided by one subject. The infor-
mation is shown as a function of the number of genes p. For studies
involving n subjects, the information can be multiplied by n.

Figure 4.2 compares the numerical true values with the approximation. Our ap-
proximation predicts that the information content decreases for small values of the
partial correlation (ρ < 0.5) very rapidly with the dimension p, much more rapidly
than the decrease predicted by the local power, where the dimension p entered
via log(p). The analysis via the KLD leads to the conclusion that only very large
studies will be able to confirm a weakish connection in a graphical model. The
approximated and the numerical values show a good agreement, even for p = 10.
The approximate divergence decreases as 1/p, which translates into a slope of −1
in the plot.
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Figure 4.2.: The comparison of the numerical (solid) and the approximate (dotted)
divergence as a function of a number of parameters p.

The case ρ ≥ 0.5 requires more refined methods and is mainly left for future work.
Figure 4.2 includes also the numerical results for ρ = 0.9. The plot makes it clear
that in this case the information content decreases much less rapidly with increas-
ing dimension p. The linearity in the plot of log(KLD) as a function of log(p)
remains, but the slope passes from −1 to −0.25. In the end of this chapter we
quickly reflect on the ratio between the sample size and the number of parameters,
allowing for detection of the partial correlation.

The divergence value will grow to infinity for any fixed value of p as the sample
size n → ∞. When does this method undergo difficulties in detecting a partial
correlation, i.e. when does the divergence remain small despite the large sample
size n? A Table 4.2 below shows some simulation on that subject.

From the simulations it is clear that under when ρ is of order O(n−1/2), there are
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ρ =
1√
n

ρ =
1
n

n p = 10 p = 100 p = 10 p = 100

100 0.002 0.0005 0.003 7.73e-06
500 0.044 0.002 0.0007 5.85e-05

1000 0.08 0.011 0.0003 4.53e-05
5000 0.18 0.016 0.0012 0.0002

Table 4.2.: Kullback-Leibler divergence when the partial correlation ρ = ρn is a
function of the sample size n.

almost no chances of discovering the partial correlation. The only exception might
be the case with an extremely large sample and very few variables. This problem
is even more evident when ρ is of order O(n−1).

Table 4.3 gives a very rough estimate (based on simulations) for the necessary sam-
ple size in order to detect a single partial correlation of value ρ among p variables.
We note that the presented ratio gives a lower bound for the ratio upon which the
partial correlation remains undetected. The behavior of the method around this
ratio strongly depends on the value of ρ. A high correlation of ρ = 0.9 is easily
detected even with small samples, and only a large number of variables can mask
it. For the average partial correlation (ρ ≈ 0.5), this table suggests it can not be
detected in high-dimensional settings.

ρ = 0.9 ρ=0.5

p
n
≤ 100 1

Table 4.3.: Critical ratio between p and n enabling detection of a single partial cor-
relation.

4.3.3. Exact value for two and more non-zero partial correlations

The exact divergence between g = Np(0, Σ) and f = Np(0, I), when Σ−1 contains
more than two non-zero off-diagonal elements, becomes more problematic to eval-
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uate. As seen in the Formula (4.14), the determinant of Σ−1 needs to be computed.
However, even if we assume all the non-zero entries to be of the same value ρ,
the determinant of Σ−1, and hence, the Kullback-Leibler divergence takes multiple
values. The different values of the determinant depend on the positions of the
non-zero entries in the matrix.

In the case of two partial correlations of equal value, there are two possible cases:

|Σ−1| =
[

1− 2ρ2, if the partial correlations are in the same row or column,
(1− ρ2)2, if the partial correlations are in different rows and columns.

This transforms into the following values for the divergence:

D(g | f ) =


1
2

(
log(1− 2ρ2)− 4ρ2

2ρ2 − 1

)
,

1
2

(
log((1− ρ2)2)− 4ρ2

ρ2 − 1

)
.

For three partial correlations of equal size we have three solutions:

|Σ−1| =

 1− 3ρ2, if all three partial correlations are in the same row or column,
1− 3ρ2 + 2ρ3, if two out of three correlations are in the same row or column,
1− 3ρ2 + ρ4, if all three of them are in different rows and columns.

D(g , f ) =



1
2

(
log(1− 3ρ2)− 6ρ2

3ρ2 − 1

)
,

1
2

(
log(1− 3ρ2 + 2ρ3)− 6ρ2

2ρ2 − ρ− 1

)
,

1
2

(
log(1− 3ρ2 + ρ4)− 4ρ4 − 6ρ2

ρ4 − 3ρ2 − 1

)
.

These divergence values do not depend on the dimension p but they illustrate
how quickly the difficulty of the problem increases. Distinguishing between a case
with no dependencies and a case with a few of them is not straightforward as
the number of the correlations grows. Nevertheless, we shall address the case of
unknown placement of correlation in the case of two partial correlations of equal
value.
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4.3.4. Divergence in the case of two equal correlations with

unknown placement

To write down the mixture density for two partial correlations (of the same value),
we need to know the exact number of cases when both correlations are in the same
line or column and otherwise. The total number of placements (in the upper off-

diagonal) for two elements is N =
(

(p
2)
2

)
= (p4 − 2p3 − p2 + 2p)/8. To determine

the number of cases when two partial correlations are placed in the same row or
column, we first explore the case of p = 7.

Σ−1 =



1 ρ ρ 0 0 0 0
∗ 1 0 0 0 0 0
∗ ∗ 1 0 0 0 0
∗ ∗ ∗ 1 0 0 0
∗ ∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ ∗ 1


.

Here, for illustration purposes, we have placed the elements in the positions (1, 2)
and (1, 3). What are the other options? If we fix the first element to be (1,2), then the
possible cases within the same row for the second element are (1, 3), (1, 4), (1, 5), (1, 6)
and (1, 7). For all the cases when one of the correlations is in the first line (columns
2-7), there are 5 options to place the second one to be on the same row (or the
column) with the first one. For the second row, there are 5 possible columns, each
of them yielding 4 potential placements for the second correlation, and so on. In
total, we get 6 · 5 + 5 · 4 + 4 · 3 + 3 · 2 + 2 · 1 = 70 possible placements. In the general
case, for a dimension of p, this can be written as

N1 = #{same row/column} =
p−2

∑
i=1

(p− i)(p− i− 1) =
1
3

p3 − p2 +
2
3

p. (4.21)

Equation (4.21) also gives us the number of placements of two correlations in dif-
ferent rows and columns:

N2 = #{different rows/columns} = N − N1 =
1
8

p4 − 7
12

p3 +
7
8

p2 − 5
12

p. (4.22)
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Since for two partial correlations there are two distinct cases of |Σ−1|, our mixture
density (4.16) becomes

g(x) =
p−1

∑
i=1

p

∑
j=i+1

1(
(p

2)
2

)
 p

∑
k=i+1

k 6=j

fijk(x) +
p−1

∑
k=1
k 6=i

p

∑
l=k+1

l 6=j

fijkl(x)

 , (4.23)

where fijk and fijkl are the normal densities with Σ−1 having two non-zero upper-
diagonal elements in positions (i,j), (i,k) for fijk, and (i,j), (k,l) for fijkl. These densi-
ties have the following form:

fijk =
√

1− 2ρ2

(2π)p/2 exp
(
−1

2
(x2

1 + . . . + x2
p + 2ρxixj + 2ρxixk)

)
,

fijkl =
1− ρ2

(2π)p/2 exp
(
−1

2
(x2

1 + . . . + x2
p + 2ρxixj + 2ρxkxl)

)
,

where the multipliers
√

1− 2ρ2 and 1− ρ2 are the square roots of the correspond-
ing determinants of Σ−1.

For a divergence D(g | f ), where f is a density Np(0, I), as before, the ratio of the
two densities becomes:

g(x)
f (x)

=
p−1

∑
i=1

p

∑
j=i+1

1(
(p

2)
2

)(√1− 2ρ2
p

∑
k=i+1

k 6=j

exp(−ρxixj − ρxixk)

+ (1− ρ2)
p−1

∑
k=1
k 6=i

p

∑
l=k+1

l 6=j

exp(−ρxixj − ρxkxl)

)
= A + B. (4.24)

It follows that

D(g | f ) =
∫
Rp

g(x) log
(

g(x)
f (x)

)
dx =

∫
Rp

f123(x) log
(

g(x)
f (x)

)
dx, (4.25)

where without loss of generality we choose the density f123, with the partial cor-
relations in the positions (1,2), (1,3) or (1,2), (2,3), depending on the summand
in (4.24).

We wish to employ the same strategy as in the case of a single partial correlation
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by approximating the integrand in (4.25) and using the central limit theorem to get
the expected values of the summands in (4.24). To do this, we need the consider in
more detail the terms arising in the sum and their behavior, as in (4.18) .

We start with the first summand in (4.24). Let (X1, . . . , Xp) be a random vector
with density f123. We write down the corresponding ratio of densities:

A =
p−1

∑
i=1

p

∑
j=i+1

1(
(p

2)
2

)
√1− 2ρ2

p

∑
k=i+1

k 6=j

e−ρXiXj e−ρXiXk

 (4.26)

=
√

1− 2ρ2(
(p

2)
2

) (
e−ρX1X2e−ρX1X3 + e−ρX1X3e−ρX2X3 + ∑

i={2,3}

p

∑
j=4

e−ρX1Xi e−ρX1Zj

+ ∑
i={1,2}

∑
j={2,3}

j 6=i

p

∑
k=4

e−ρXiZk e−ρXjZk +
p

∑
i=4

e−ρX2X3e−ρX2Zi +
3

∑
i=1

p

∑
j=4

p

∑
k=4
k 6=j

e−ρXiZj e−ρXiZk

+
3

∑
i=1

p

∑
j=4

p

∑
k=4
k 6=j

e−ρXiZj e−ρZkZj +
p−1

∑
i=4

p

∑
j=i+1

p

∑
k=i+1

k 6=j

e−ρZiZj e−ρZiZk +
p−1

∑
i=4

p

∑
j=i+1

p−1

∑
k=4
k 6=i

e−ρZiZj e−ρZkZj

)
.

In Equation (4.26) we explicitly write down all the arising pairs of correlations and
we change the notations for Xi to Zi since Xi, (i = 4, . . . , p) ∼ N (0, 1).

For large p, the sums in (4.26) should be well-behaved and be approximated by
their asymptotic limits. Before computing the expected values of these terms, we
shall first estimate the number of terms in each of these summands. The last two
terms in (4.26) correspond to the number of placements of two elements in the
same row or column in the upper off-diagonal matrix of dimension p− 3. Hence,
we get n13 = ∑

p−5
i=1 (p− 3− i)(p− 4− i) = p3/3− 4p2 + 47p/3− 20. We can show

that

E(exp(−ρZ1Z2 − ρZ1Z3)) =
∫∫∫

exp(−ρZ1Z2 − ρZ1Z3)φ(z1)φ(z2)φ(z3)dz1dz2dz3
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=
∫∫ 1

(2π)3/2 exp

(
−

z2
1

2
− z2

2
2
−

z2
3

2
− ρz1z2 − ρz1z3

)
dz1dz2dz3

=

( ∫ 1√
2π

exp
(
−1

2
(z1 + ρ(z2 + z3))

)2

dz1

)
∫∫ 1

2π
exp

(
−1

2
(z2

2(1− ρ2) + z2
3(1− ρ2)− 2ρ2z2z3)

)
dz2dz3

=
∫ 1

2π
exp

(
− (1− ρ2)

2

(
z2 −

ρ2

(1− ρ2)
z3

)2)
dz2

∫ 1
2π

exp
(
−1

2
(1− 2ρ2)
(1− ρ2)

z2
3

)
dz3 =

1√
1− ρ2

√
1− ρ2√
1− 2ρ2

=
1√

1− 2ρ2
. (4.27)

The variance of this term is computed analogously and equals

Var(exp(−ρZ1Z2 − ρZ1Z3)) =
1√

1− 8ρ2
,

which states that the transition of KLD in this case happens as ρ > 1/
√

8.

The terms in the sums
3

∑
i=1

p

∑
j=4

p

∑
k=4
k 6=j

e−ρXiZj e−ρXiZk and
3

∑
i=1

p

∑
j=4

p

∑
k=4
k 6=j

e−ρXiZj e−ρZkZj need to

be separated. The possible placements are ((X1, Zi), (X1, Zj)), ((X2, Zi), (X2, Zj)),
((X3, Zi), (X3, Zj)), ((X1, Zi), (Zk, Zi)), ((X2, Zi), (Zk, Zi)) and ((X3, Zi), (Zk, Zi)). Each

of these combinations takes place in n12 = ∑
p−1
i=4 (p− i) = p2/2− 7p/2 + 6 cases.

As an example in p = 7 for the placement of the kind ((X1, Zi), (X1, Zj)) we get
{((1, 4), (1, 5)) ((1, 4), (1, 6)) ((1, 4), (1, 7)) ((1, 5), (1, 6)) ((1, 5), (1, 7)), ((1, 6), (1, 7))},
i.e. 3 + 2 + 1 cases. The rest can be shown in a similar way.

The remaining random terms, when separated, present the following combinations:
{(X1, X2), (X1, Zi)), ((X1, X3), (X1, Zi)), ((X1, Zi), (X2, Zi)), ((X1, Zi), (X3, Zi)),
((X2, X3), (X2, Zi)), ((X2, Zi), (X3, Zi))}. Each of them appears in n11 = (p − 3)
cases, for example {((1, 2), (1, 4)), ((1, 2), (1, 5)), ((1, 2), (1, 6)), ((1, 2), (1, 7))} for
(X1, X2) (X1, Zi) in a p = 7 case.

These coefficient sum up to N1, the total number of placements in case of same row
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4. Sizing studies for detecting graphical models

or column, in a following way:

N1 = n11 + n12 + n13 + 2,

where 2 comes from the terms e−ρX1X2e−ρX1X3 and e−ρX1X3e−ρX2X3 . In our sum (4.26),
however, we divide them by the total number of placements, N = (p4− 2p3− p2 +
2p)/8. Since n11 = O(p−3) and n12 = O(p−2), we only keep the

n13

N
=

p3/3− 4p2 + 47p/3− 20
(p4 − 2p3 − p2 + 2p)/8

=
8

3p
+ O(p−2).

Finally, we appeal to the central limit theorem and get that

E

p−1

∑
i=4

p

∑
j=i+1

p

∑
k=i+1

k 6=j

e−ρZiZj e−ρZiZk +
p−1

∑
i=4

p

∑
j=i+1

p−1

∑
k=4
k 6=i

e−ρZiZj e−ρZkZj

 =
8

3p
1√

1− 2ρ2
.

And our first term A is approximated for large p by

A =
√

1− 2ρ2 8
3p

1√
1− 2ρ2

=
8

3p
. (4.28)

Now we consider the case when the partial correlations are placed in different
rows and columns. There are N2 = N − N1 = p4/8 − 7p3/12 + 7p2/8 − 5p/12
possibilities and the detailed breakdown of scenarios is more complicated than
before. Let (X1, . . . , Xp) be a random vector with density f123, where Σ−1 has ρ in
positions (1, 2) and (2, 3). The corresponding ratio of densities is

B =
p−1

∑
i=1

p

∑
j=i+1

1(
(p

2)
2

)
(1− ρ2)

p−1

∑
k=1
k 6=i

p

∑
l=k+1

l 6=j

exp(−ρxixj − ρxkxl)

 . (4.29)

The possible placements and the number of cases they present are listed in Ta-
ble 4.4 below. While the coefficients n21, n22 and n23 are rather easy to deduce, the
coefficients n24 and n25 are computed as the total number of placements in respec-
tive scenarios minus the number of placements in the same row or column. We
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conclude that we are keeping only the coefficients n24 and n25 since after division
by N they are of order O(p−1) or higher. More precisely,

n24

N
=

p3/2− 11p2/2 + 20p− 24
(p4 − 2p3 − p2 + 2p)/8

=
4
p

+ O(p−2),

n25

N
=

p4/8− 25p3/12 + 39p2/8− 43p/12 + 35
(p4 − 2p3 − p2 + 2p)/8

= 1 + O(p−2).

Possible combinations Number of cases

((X1, X2), (X2, Zi))
((X1, X2), (X3, Zi))
((X1, X3), (X2, Zi))
((X1, X3), (X3, Zi)) n21 = (p− 3) = n11
((X1, Zi), (X2, X3))
((X2, X3), (X3, Zi))

((X1, X2), (Zi, Zj))
((X1, X3), (Zi, Zj)) n22 = ∑

p
i=4(p− i) = n12

((X2, X3), (Zi, Zj))

((X1, Zi), (X2, Zj))
((X1, Zi), (X3, Zj)) n23 = (p− 4)(p− 3)
((X2, Zi), (X3, Zj))

((X1, Zi), (Zi, Zk))

((X2, Zi), (Zi, Zk)) n24 =
(p− 4)(p− 3)2

2
− n12 = p3/2− 11p2/2 + 20p− 24

((X3, Zi), (Zi, Zk))

((Zi, Zj), (Zk, Zl)) n25 =
(p− 4)(p− 3)

4

(
(p− 4)(p− 3)

2
− 1
)
− n13

Table 4.4.: Possible scenarios and their counts for placing two partial correlations
in upper off-diagonal matrix in different rows and columns.

The last thing to compute is the expected values of terms which enter Equa-
tion (4.29).

E(e−ρZiZj e−ρZkZl) = E(e−ρZiZj)E(e−ρZkZl) =
1

1− ρ2 .

To compute E(e−ρXiZj e−ρZiZl), we need the marginal variance for X1, X2 and X3.
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Since their Σ−1 has ρ in positions (1, 2) and (1, 3), we get that

Var(X1) = Var(X3) =
1− ρ2

1− 2ρ2 ,

Var(X2) =
1

1− 2ρ2 .

The computation of the necessary expected values is straightforward and resem-
bles (4.19). The results are:

E(e−ρX1Zj) = E(e−ρX3Zj) =
√

1− 2ρ2√
1− 3ρ2 + ρ4

,

E(e−ρX3Zj) =
√

1− 2ρ2√
1− 3ρ2

.

By multiplying each of them by E(e−ρZjZk) = 1/
√

1− ρ2, we get the desired ex-
pected values.

Hence, the approximated term B becomes

B = (1− ρ2)

(
4

p
√

1− ρ2

(
2
√

1− 2ρ2√
1− 3ρ2 + ρ4

+
√

1− 2ρ2√
1− 3ρ2

)
+

1
1− ρ2

)

=
4
p

√
1− 2ρ2

√
1− ρ2

(
2√

1− 3ρ2 + ρ4
+

1√
1− 3ρ2

)
+ 1. (4.30)

Finally, we can write down the approximate KLD value in case of two partial cor-
relations of the same value by taking the logarithm of (A + B)

D(g | f ) = log

(
1 +

8
3p

+
4
p

√
1− 2ρ2

√
1− ρ2

(
2√

1− 3ρ2 + ρ4
+

1√
1− 3ρ2

))

≈ 4
p

(
2
3

+
√

1− 2ρ2
√

1− ρ2

(
2√

1− 3ρ2 + ρ4
+

1√
1− 3ρ2

))
. (4.31)

Comparing (4.31) and (4.20), the KLDs for one and two partial correlations, we
see that both values are of order 1/p, making the detection rather difficult. For-
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mula (4.31) is only valid for ρ < 1/
√

8 ≈ 0.35, while the KLD for a single partial
correlation is valid for ρ < 0.5. While no theoretical justification can be made for
the behavior on higher values of ρ, numerical simulation suggest that detection
gets easier, as expected. In this case, this translates as two-correlation case will
be detected easier (since the “bad” behavior stops at ρ ≈ 0.35) than the single
correlation. When comparing their values, the KLD for two correlations is much
higher then the one for a single one, for example, 0.1 versus 2e− 06 for ρ = 0.1 and
p = 100.

4.4. Comparison of local power and KLD

The analysis using the KLD is related, but different, from the asymptotic power
computed in Section 4.2.1. When using the KLD, there is no correction for multi-
plicity involved, no constraints of the type n > p are needed and no limits towards
infinite study sizes are taken. The KLD thus provides a more solid foundation for
judgeing the sample sizes needed in order to reliably detect effects.

A rough comparison can be based on the fact that in order to reach a power of
about 0.5 at level α, the KLD of an experiment must exceed z2

1−α. From this, one
can derive a formula for the needed size of a study,

n = pz2
1−α/[4((1− ρ2)/

√
1− 2ρ2 − 1)].

The equivalent value of n from the asymptotic power on the other hand predicts
that

n = (z1−α/m/ρ)2,

where m = p(p − 1)/2 is the number of tests. For values of ρ < 0.5, the KLD-
based formula gives much higher values of the study size n. For example, around
n = 20, 000 subjects would be required to detect a partial correlation in a single pair
of p = 1000 genes. The asymptotic power wrongly suggests that n = 135 subjects
would be sufficient. Generally speaking, when ρ < 0.5, the situation is hopeless,
unless the number of candidate genes that are tested can be reduced below p = 100.
Figure 4.2 also gives an indication of what will happen for a strong effect, ρ = 0.9.
The value of KLD decreases by about a factor of 0.24 for each increase of p by a
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factor of 10. If we extrapolate to p = 106, we have a KLD value of about 8× 10−3.
We thus would need a study involving at least n = 330 subjects, which is doable.
The qualitatively different behavior of the local power and the KLD confirms the
observed overestimation of power for large p from Figure 4.1.

The divergence value will grow to infinity for any fixed value of p as the sample
size n → ∞. This means that a sufficiently big study will always detect a partial
correlation of fixed size. In order to approximate high-dimensional cases (n < p),
it is more interesting to study limits where ρ is fixed, but n and p both tend to ∞.
For ρ < 0.5 we found that KLD = O(p−1) from which it follows that the KLD will
grow to infinity as long as p/n → 0. When ρ = 0.9, our numerical values suggest
that p/n1.6 → 0 in order for the effect to be detectable. Thus, with n = 1000, we can
hope to sift through a few tens of thousands of genes and detect strong linkage.

To sum up, it is easier to detect the structure for sparse graphs while the detection
of multiple edges requires stronger linkages. We studied in detail the case of a
single true alternative in dimension p, where m = p(p − 1)/2 tests have to be
performed. The local asymptotic power and the Kullback-Leibler divergence were
used to assess the sample size needed for detection.

The KLD increases linearly in the number of samples n and we showed that
it decreases inverse proportionally with p when the linkage is weak. In high-
dimensional smoothing problems, it is usually found that p enters logarithmically,
which is much more favorable. A transition phenomenon happens as the partial
correlation increases beyond 0.5. We were, however, not able to give a rigorous de-
scription of the “strong effect” situation, although numerical integration suggests
that a power law in p remains in effect.

We conclude that weak partial correlations require very large samples in order for a
study to be able to detect them reliably. Our results are consistent with the findings
of Arias-Castro et al. (2012), where the detection of correlation has been studied as
a part of a structure of a high-dimensional vector. The authors show that, under
certain conditions (value of the correlation relative to n and p), the correlations
would not be detected.
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CHAPTER

5

CONCLUSIONS

This thesis covers two topics. The first and the main result consists in proposing
a new approach on how to integrate the censored observations arising in survival
data into the sliced inverse regression procedure. This is done via a two-step ap-
proach. At first, all the censored observations are distributed with equal weights
to consecutive slices of the data. Since the individual is censored, the event could
have taken place anytime after the censoring appeared (we consider the slices to
be small enough). When computing the slice means, we appeal to the weights of
the censored points and apply them to the covariate information. This allows us to
get the first SIR estimate (we only keep the principal direction). For better preci-
sion, we separate the cases of the accelerated lifetime and the proportional hazards
model and suggest a method to recompute the weights for the covariates based on
the supposed model. Our results prove to be competitive and in some cases better
than other methods used for incorporating the censored data into the SIR.

When it comes to strategies to account for incomplete information (and censoring
is a special case of such a situation), a popular idea is to reweight the observed data
points, often with the help of the inverse probability weighting. This is the strategy
of the other methods of SIR we have compared our results to. Our approach is

105



5. Conclusions

inspired by the EM algorithm, by trying to estimate the unobserved events.

Since the asymptotic variance for our estimate is difficult to derive, we base the
variance estimation of the bootstrap technique. When studying the likelihood ap-
proach for the accelerated lifetime models, we get the nice result that the Weibull
regression is fully efficient (in terms of the maximum likelihood) in the absence of
censoring.

In our algorithm, we devoted our attention to the case of the principal direction.
The generalization to the several directions can be easily integrated in our applica-
tion, while the testing for the dimensions is left for future work.

In the second part of the thesis (Chapter 4) we studied the factors that influence
the power of the partial correlation test in detecting the structure of the Gaussian
graphical models. The purpose of the study was to determine the limits between
the sample size and the number of parameters one includes in the graph allow-
ing for the detection. This was done based on two approaches, by deriving the
local asymptotic power of the the partial correlation test and by considering the
Kullback-Leibler divergence.

The main case for the study was the problem of detection of a single edge in the
graph, which transforms for the partial correlation ρij·rest in a single true alternative
for the hypothesis H0 : ρij·rest = 0.

While we do not elaborate this topic in detail, we found that it is easier to detect the
structure for sparse graphs while the detection of multiple edges requires stronger
linkages. This is not a new result, many penalized approaches these days aim
for a sparse solution. Considering a single partial correlation in the concentration
matrix allowed us to establish the local asymptotic power which we found to be
overoptimistic in terms of the sample size value.

The Kullback-Leibler divergence (KLD) allows us to overcome the constraint n > p,
set by the test of the partial correlation. While establishing its value, we uncovered
the change in its behavior once the value of the correlation ρ passes the threshold
of 0.5. This transition phenomenon allows for the asymptotic approximation only
for the values of ρ < 0.5. In this case we uncovered that while the KLD increases
linearly in the number of samples n, it also decreases inverse proportionally with
p. That is, the ability to detect is proportional to n/pα, when the linkage is weak.
In high-dimensional smoothing problems, it is usually found that p enters logarith-
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mically, in the n/ log(p) kind, which is much more favorable for detection. While
we were not able to give a rigorous description of the “strong effect” situation
ρ > 0.5, our numerical results suggest that a power law in p remains in effect. The
asymptotic approximation of the divergence for two partial correlations of the same
value showed the same behavior, but the transition appears when ρ ≥ 1

√
8 ≈ 0.35,

expanding the region of an “easier” detection.

Our findings suggest that weak partial correlations require very large (larger, than
usually anticipated) samples in order for a study to be able to detect them reliably.
This results in big challenge for getting the necessary amount of data in genetical
epidemiology and other biomedical studies, where samples rarely exceed a few
hundred individuals.

107





APPENDIX

A

R FUNCTIONS

Here we list the main functions for our algorithm in R.

library(survival)

library(dr)

#-------------------------------------------------------------

GetWeightHazard <-function(i, j, a, survival_hat , effect)

{ # weight for the W matrix , i-th censored obs , j-th slice

w<-numeric(length = a$nslices)
if(j ==a$nslices){ #it ’s in the last slice

w[a$nslices]<-1
}else{

for(k in (j+1):a$nslices){
w[k]<-survival_hat[k]^ effect - survival_hat[k+1]^ effect

}

if(sum(w)==0){w[a$nslices]<-1}
}

return(w)

}

109



A. R Functions

#-------------------------------------------------------------

GetPosition <-function(data_sorted , i, a)

{ # place the censored observation in the W matrix

if (i < nrow(data_sorted)){ # next position isn ’t censored

j<-1

while(data_sorted[i+j, ncol(data_sorted) -1]==0 && (i+j) <

nrow(data_sorted)){

j<-j+1

}

position <-data_sorted[i+j, ncol(data_sorted)]

if(position == 0){

position <-a$nslices
}

}else{position <-a$nslices}
return(position)

}

#-------------------------------------------------------------

SIR_slicing <-function(NUM_Patients , NUM_Variables , a, x_mod , W,

Sigma_sqrt_inv)

{ # steps 3-5 of the algorithm

p<-numeric(length = a$nslices)
for (i in 1:a$nslices){

p[i]<-sum(W[,i])/NUM_Patients

}

m<-numeric (0)

for(i in 1:a$nslices)
{

line <-numeric(length = NUM_Variables)

for(j in 1:NUM_Patients)

{

line <-line+x_mod[j,]*W[j,i]

}

line <-line/(p[i]*NUM_Patients)

m<-rbind(m, line)
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var(x_mod*W[,i])

}

m<-t(m)

#--- step 4: building a weighted covariance matrix

V<-matrix(nrow=NUM_Variables , ncol=NUM_Variables , data =0)

for (i in 1:a$nslices)
{

V<-V+p[i]*m[,i]%*%t(m[,i])

}

#--- step 5: Eigenvalues of V

EV<-eigen(V)

beta <-EV$vectors%*%Sigma_sqrt_inv
return(beta [,1])

}

#-------------------------------------------------------------

VectorNorm <-function(data){ return(data/sum(data)) }

#-------------------------------------------------------------

BuildW <-function(NUM_Patients , NUM_Variables , a, data_sorted ,

censored_indices)

{ # assembling a weight matrix at step 2

W<-matrix(nrow=NUM_Patients , ncol=a$nslices , data =0)

indices <-which(data_sorted[, NUM_Variables +2]==1)

j<-1

for(i in indices){

data_sorted[i, NUM_Variables +3] <-a$slice.indicator[j]
j<-j+1

W[i, data_sorted[i, ncol(data_sorted)]]<-1

}

for(i in censored_indices){

position <-GetPosition(data_sorted , i, a)

data_sorted[i, NUM_Variables +3] <-position

for(j in position:a$nslices){
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W[i,j]<-1/(1+(a$nslices -position))
}

}

return(W)

}

#-------------------------------------------------------------

SpherizeX <-function(NUM_Patients , NUM_Variables , X, Sigma_sqrt_

inv)

{ # data normalization

X_mod <-matrix(nrow = nrow(X), ncol=ncol(X), dat=0)

X_mean <-apply(X, 2, mean)

for (i in 1:NUM_Variables){

X_mod[,i]<-X[,i] - X_mean[i]

}

for(i in 1:(NUM_Patients)){

X_mod[i,]<-Sigma_sqrt_inv%*%X_mod[i,]

}

return(X_mod)

}

#-------------------------------------------------------------

SortData <-function(NUM_Patients , NUM_Variables , X, T, event)

{ # preprocessing

data <-cbind(X,T, event)

data_sorted <-matrix(nrow = NUM_Patients , ncol = NUM_Variables

+2, data =0)

index <-order(data[,NUM_Variables +1])

for (i in 1:NUM_Patients){

data_sorted[i,]<-data[index[i],]

}

return(data_sorted)

}

#-------------------------------------------------------------

112



SingleRun_PH<-function(NUM_Patients , NUM_Variables , H, X, T,

event , beta)

{ # PH version of SIR

#--- preprocess the data

data_sorted <-SortData(NUM_Patients , NUM_Variables , X, T, event)

y<-data_sorted[,NUM_Variables +1]

x<-data_sorted [,1:NUM_Variables]

censored_indices <-which(data_sorted[,NUM_Variables +2] == 0)

x_uncensored <-x

y_uncensored <-y

for (i in NUM_Patients :1){

if (event[i] ==0){ #if censored

x_uncensored <-x_uncensored[-i,]

y_uncensored <-y_uncensored[-i]

}

}

#--- step 1: standardization

Sigma <-cov(x)

s<-svd(Sigma)

d<-diag(sqrt(s$d))
Sigma_sqrt_inv <-s$v%*%solve(d)%*%t(s$u)
x_mod <-SpherizeX(NUM_Patients , NUM_Variables ,x, Sigma_sqrt_inv)

#--- step 2: slicing

a<-dr.slices(y_uncensored , H)

#--- building the vector of slices indices in the data

slices <-numeric(length=NUM_Patients)

data_sorted <-cbind(data_sorted , slices)

W<-BuildW(NUM_Patients , NUM_Variables , a, data_sorted , censored

_indices)

W<-round(W, 4)

W_old <-W

#--- SIR estimate with equal weights
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beta_hat <-SIR_slicing(NUM_Patients , NUM_Variables , a, x_mod , W,

Sigma_sqrt_inv)

eps <-1

while(eps > 0.01){

#--- start reweighting with Kaplan -Meier

if (length(y_uncensored)< NUM_Patients) {

slice_breaks <-numeric (0)

slice_breaks [1] <-min(y)

for (i in 2:a$nslices){
slice_breaks[i]<-min(y_uncensored[a$slice.indicator ==(i)])

}

slice_breaks[a$nslices +1] <-max(y)+0.01

temp <-summary(survfit(Surv(data_sorted[,NUM_Variables +1],

1-data_sorted[,NUM_Variables +2]) ~ 1, type="kaplan -meier"))

survival <-temp$surv

#--- adjusting the K-M curve to the slice ranges

survival_hat <-numeric(length=length(slice_breaks))

survival_hat[1: length(survival_hat)]<-1

survival_hat[length(survival_hat)]<-survival[length(survival)]

for(k in 2:( length(survival_hat) -1)){

for(l in 1:( length(temp$time) -1)){
if (slice_breaks[k] > temp$time[l] && slice_breaks[k] <=

temp$time[l+1]){
survival_hat[k]<-survival[l]

}

if(slice_breaks[k] > max(temp$time)){
survival_hat[k]<-survival_hat[length(survival_hat)]

}

}

}

W[censored_indices ,]<-0

for(i in censored_indices){

effect <-as.double(exp(beta_hat%*%x_mod[i,]))

for (j in 1:a$nslices){
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if(y[i] >= slice_breaks[j] && y[i] < slice_breaks[j+1]){

W[i,]<-GetWeightHazard(i, j, a, survival_hat ,

effect)

}

}

W[i,]<-VectorNorm(W[i,]) #rescale W[i,]

}

W[NUM_Patients ,]<-0

W[NUM_Patients ,a$nslices]<-1
W<-round(W, 4)

beta_coeffs <-SIR_slicing(NUM_Patients , NUM_Variables , a, x_mod ,

W, Sigma_sqrt_inv)

}

beta_hat <-beta_coeffs

dist.max <-0

for(u in censored_indices){

dist <-sqrt(sum((W[u,]-W_old[u,]) ^2))/length(censored_indices)

if (dist > dist.max){ dist.max <-dist}

}

W_old <-W

eps <-dist.max

#cat(" maximal distance", round(eps , 6), "\n")

}

return(beta_coeffs)

}

#-------------------------------------------------------------

SingleRun_ALT <-function(NUM_Patients , NUM_Variables , H, X, T,

event)

{# ALT version of SIR

data_sorted <-SortData(NUM_Patients , NUM_Variables , X, T, event)

y<-data_sorted[,NUM_Variables +1]

x<-data_sorted [,1:NUM_Variables]

censored_indices <-which(data_sorted[,NUM_Variables +2] == 0)

x_uncensored <-x
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y_uncensored <-y

for (i in NUM_Patients :1){

if (event[i] ==0){ #if censored

x_uncensored <-x_uncensored[-i,]

y_uncensored <-y_uncensored[-i]

}

}

#### step 1: standardization

Sigma <-cov(x)

s<-svd(Sigma)

d<-sqrt(s$d)
d<-diag(d)

Sigma_sqrt_inv <-s$v%*%solve(d)%*%t(s$u)
x_mod <-SpherizeX(NUM_Patients , NUM_Variables , x, Sigma_sqrt_inv

)

#### step 2: slicing

a<-dr.slices(y_uncensored , H)

#building the vector of slices indices in the data

slices <-numeric(length=NUM_Patients)

data_sorted <-cbind(data_sorted , slices)

W<-BuildW(NUM_Patients , NUM_Variables , a, data_sorted , censored

_indices)

W<-round(W, 4)

W_old <-W

#--- equal weights

beta_hat <-SIR_slicing(NUM_Patients , NUM_Variables , a, x_mod , W,

Sigma_sqrt_inv)

##### start convergence

eps <-1

while (eps > 0.01){

#--- reweighting

if (length(y_uncensored)< NUM_Patients) {

w<-numeric (0)

for (i in 1: length(y_uncensored)){

w[i]<-y_uncensored[i] - beta_hat%*%x_uncensored[i,]

116



}

minT <-0

maxT <-0

for (i in censored_indices){

if (min(w+ beta_hat%*%x_mod[i,]) <=minT){

minT <-min(w+ beta_hat%*%x_mod[i,])

}

if (max(w+ beta_hat%*%x_mod[i,]) >=maxT){

maxT <-max(w+ beta_hat%*%x_mod[i,])

}

}

slice_breaks <-0

slice_breaks [1] <-min(y,minT)

for (i in 2:a$nslices){
slice_breaks[i]<-min(y_uncensored[a$slice.indicator ==(i)])

}

slice_breaks[a$nslices +1] <-max(y, maxT)+0.01

W[censored_indices , ]<-0

for(i in censored_indices){

for (j in 1:(a$nslices +1)){
if(y[i] == max(slice_breaks)){

W[NUM_Patients ,]<-0

W[NUM_Patients ,a$nslices]<-1
}else{

if (y[i] >= slice_breaks[j] && y[i]< slice_breaks[j

+1]){ #-- Y_i* is in the j-th slice

if (j==a$nslices){
W[i,a$nslices]<-1

}else{

for(k in (j+1):a$nslices){# taking the weights

from the histogram density

W[i, k]<-hist(w+beta_hat%*%x_mod[i,], breaks

= slice_breaks)$density[k]
}

if (sum(W[i])==0){
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W[i,j+1] <-1 #-- T_i* falls beyond the

histogram

}

}

}

}

}

W[i,]<-VectorNorm(W[i,]) #rescale W[i,]

}

beta_density <-SIR_slicing(NUM_Patients , NUM_Variables , a, x_mod

, W, Sigma_sqrt_inv)

#---Kaplan -Meier

#-- transforming the timeline

for(i in 1:NUM_Patients){

data_sorted[i, NUM_Variables +1] <-data_sorted[i, NUM_Variables

+1]*exp(-beta_hat%*%x_mod[i,])

}

temp <-summary(survfit(Surv(data_sorted[,NUM_Variables +1], 1-

data_sorted[,NUM_Variables +2]) ~ 1, type="kaplan -meier"))

survival <-temp$surv

#--- adjusting the K-M curve to the slice ranges

survival_hat <-numeric(length=length(slice_breaks))

survival_hat[1: length(survival_hat)]<-1

survival_hat[length(survival_hat)]<-survival[length(survival)]

for(k in 2:( length(survival_hat) -1)){

for(l in 1:( length(temp$time) -1)){
if (slice_breaks[k] > temp$time[l] && slice_breaks[k] <=

temp$time[l+1]){
survival_hat[k]<-survival[l]

}

}

}

W[censored_indices ,]<-0

for(i in censored_indices){

for (j in 1:a$nslices){
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if(y[i] == max(slice_breaks)){ #the last observation is

censored

W[NUM_Patients ,]<-0

W[NUM_Patients ,a$nslices]<-1
}else{

if(y[i] >= slice_breaks[j] && y[i] < slice_breaks[j+1]){

W[i,]<-GetWeightHazard(i, j, a, survival_hat , 1)

}

}

}

W[i,]<-VectorNorm(W[i,]) #rescale W[i,]

}

W[NUM_Patients ,]<-0

W[NUM_Patients ,a$nslices]<-1
W<-round(W, 4)

beta_km<-SIR_slicing(NUM_Patients , NUM_Variables , a, x_mod , W,

Sigma_sqrt_inv)

}

beta_hat <-beta_km

#beta_hat <-beta_density

dist.max <-0

for(u in censored_indices){

dist <-sqrt(sum((W[u,]-W_old[u,]) ^2))/length(censored_indices)

if (dist > dist.max){ dist.max <-dist}

}

W_old <-W

eps <-dist.max

#cat(" maximal distance", round(eps , 6), "\n")

}

return(c(beta_density , beta_km))

}

#-------------------------------------------------------------

SIR_bootstrap <-function(T, X, event , H, method=c("alt", "cox"))

{ # the main function , return the coefficients and their

standard deviations
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NUM_Patients <-length(T)

NUM_Variables <-ncol(X)

if(length(T)!= length(event) || length(event)!= nrow(X))

stop("dimensions do not match");

if(NUM_Patients < NUM_Variables) stop("high -dimensional

case!");

NUM_bootstrap <-100 # repetitions for the bootstrap

if (method == "alt"){

beta <-SingleRun_ALT(NUM_Patients , NUM_Variables , H, X, T,

event)

beta_matrix <-matrix(nrow = NUM_bootstrap , ncol = NUM_

Variables*2, data = 0)

for(i in 1:NUM_bootstrap){

indices <-sample(NUM_Patients , replace=TRUE)

T_new <-T[indices]

event_new <-event[indices]

X_new <-X[indices ,]

beta_matrix[i,]<-SingleRun_ALT(NUM_Patients , NUM_

Variables , H, X_new , T_new , event_new)

if (sign(beta_matrix[i,1]) == -1){

beta_matrix[i,]<-beta_matrix[i,]*(-1)

}

}

beta_sd<-apply(beta_matrix , 2, sd)

beta_coefficients <-cbind(beta [1: NUM_Variables], beta_

sd[1: NUM_Variables], beta[(NUM_Variables +1) :(2*NUM_

Variables)], beta_sd[(NUM_Variables +1):(2*NUM_

Variables)])

colnames(beta_coefficients)<-c("beta_density", "sd_

beta_density", "beta_km", "sd_beta_km")

}else{ #cox

beta <-numeric(length = NUM_Variables)

beta <-SingleRun_PH(NUM_Patients , NUM_Variables , H, X, T,

event)

beta_matrix <-matrix(nrow = NUM_bootstrap , ncol = NUM_

Variables , data = 0)

for(i in 1:NUM_bootstrap){

indices <-sample(NUM_Patients , replace=TRUE)
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T_new <-T[indices]

event_new <-event[indices]

X_new <-X[indices ,]

beta_matrix[i,]<-SingleRun_PH(NUM_Patients , NUM_

Variables , H, X_new , T_new , event_new)

if (sign(beta_matrix[i,1]) == -1){

beta_matrix[i,]<-beta_matrix[i,]*(-1)

}

}

beta_sd<-apply(beta_matrix , 2, sd)

beta_coefficients <-cbind(beta , beta_sd)

colnames(beta_coefficients)<-c("beta_km", "sd_beta_km")

}

return(beta_coefficients)

}

#-------------------------------------------------------------

# Example: Cox -Weibull regression , 10 variables , 30 samples ,

25% censoring

beta <-c(1, -1, 0, sqrt (2), 1,0,0,0,0,0)/sqrt (5)

X<-rnorm (3000 , 0, 2)

X<-matrix(X, ncol = 10)

T<-numeric(length = 300) #observed time

Y<-numeric(length = 300) #real time

C<-numeric(length = 300) #censored time

event <-numeric(length = 300) # 1 if observed , 0 if censored

lambda <-numeric(length = 300)

U<-runif (300)

for (i in 1:300){ # generating times

lambda[i]<-X[i,]%*%beta

Y[i]<-(-log(U[i])/exp(lambda[i]))^{1/4}*10 #Cox -Weibull

C[i]<-runif (1,0,45) # 25% censoring

if(C[i] > Y[i]){

T[i]<-Y[i]

event[i]<-1

}else
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{

T[i]<-C[i]

event[i]<-0

}

}

beta_hat <-SIR_bootstrap(T, X, event , 10, "cox") # results
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