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Abstract—Transient Stability Assessment (TSA) is the process in 

which the stability of a system is characterized qualitatively or 

quantitatively. The TSA algorithm presented in this paper is 

derived from the well-established Single Machine Equivalent 

(SIME) method and can thus be categorized as a hybrid direct-

temporal method. The novelty of the proposed algorithm is that 

it derives a Transient Stability Index (TSI) with a single Time-

Domain (TD) simulation for both stable and unstable cases. The 

resulting TSI is uniform in units and linear around the 

instability point. Results are reported for two sample power 

systems of 9 and 36 buses. The proposed algorithm has also been 

successfully employed to speed-up a Critical Clearing Time 

(CCT) determination algorithm. 

Index Terms--power system dynamics, SIME method, time-

domain simulation, transient stability assessment 

I. INTRODUCTION 

Transient stability is defined as the ability of the machines 
of a power system to retain their synchronism with the rest of 
the grid, after a given disturbance [1]. While transient stability 
is an inherent function of the power system, secure operation 
can be facilitated by the availability of adequate analytical 
tools [2]. One such tool is Transient Stability Assessment. It 
consists of the quantitative or qualitative characterization of 
the ability of the system to retain a state of operating 
equilibrium after being subjected to severe disturbances. 

This paper presents a quantitative TSA algorithm that 
builds on the well-established SIME method [3]. Salient 
feature of the proposed algorithm is the ability to consistently 
derive a unit-uniform Transient Stability Index (TSI) with a 
single TD simulation for stable and unstable cases alike. 
Resulting TSIs exhibit linearity around the instability point 
and monotonicity against increasing fault duration time. 

This paper is structured as follows. Section II introduces 
the reader to TSA principles. The proposed algorithm is 
presented in section III together with its mathematical 
foundation. In section IV the application of the algorithm on 
sample test systems is demonstrated. Finally, section V gives 
conclusions and suggests issues to be tackled in future work. 

II. TSA FUNDAMENTALS 

Depending on how the TSI is derived, TSA methods can 
be classified into time-domain simulation, direct, and hybrid. 

Time-domain simulation methods perform the numerical 
integration of the differential-algebraic equations (DAE) 
governing the behavior of the power system. The main 
advantages include very accurate results guaranteed by well-
developed Step-By-Step (SBSI) tools and the unlimited 
modeling capability of system elements. The most serious 
drawbacks are the computational burden for the solution of the 
complex DAEs and the fact that TD methods only provide a 
qualitative yes-or-no to the stability issue. 

In direct methods, transient stability is investigated by 
forming an apposite Lyapunov transient energy function 
(TEF), which describes the energy in the power network. 
Stability is quantified by measuring the system’s ability to 
“absorb” the surplus energy injected during the fault-on period 
so that the synchronous machines may reach a new post-
disturbance equilibrium state. Drawbacks of direct methods 
include limited modeling capability, non-convergence issues 
especially in stressed situations [4], and the generation of 
rather conservative results. 

Hybrid methods merge the above trying to mitigate 
disadvantages while retaining their virtues. They combine TD 
simulation with a TEF calculation of the degree of stability, to 
provide an index similar to the one of direct methods [4]-[7]. 

Hitherto, there are two key concerns regarding the 
majority of hybrid methods. First, they require functional 
integration into the TD program, which might not always be 
possible/practical. Second, derivation of the TSI is 
troublesome for stable cases. In most methods, additional 
pseudo-faults are applied as part of the process to derive the 
stable-case index, slowing down the procedure. In an effort to 
circumvent the above, the following requirements have been a 
priori specified for the proposed algorithm. 

i. No modification or control in the TD engine should be 
available. 

ii. Derive TSI with a single TD run for all cases. 
iii. The TSI should be unit consistent over all its range. 
iv. The resulting TSI should feature linearity especially 

around the critical point (stable to unstable transition). 
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Figure 1 TSA algorithm overview 

 
Figure 2 Extrapolation in the      for a stable case 

 
Figure 3 Extrapolation in the time domain for stable cases 

III. PROPOSED ALGORITHM 

Fig. 1 presents an overview of the proposed algorithm. Its 
foundation is the well-established SIME concept [3]. Its 
output is a TSI that has units of transient energy. Stable cases 
result in positive TSI values and conversely unstable to 
negative ones. The more stable the case, the higher the TSI 
value, and vice versa. Functional blocks of the algorithm are 
explained in paragraphs that follow. 

A. Stability Criterion 

Classification of a case as stable or unstable is done 
according to a maximum angle separation criterion. If for any 
time, the angular separation between any two synchronous 
machines in the system exceeds a predefined threshold, then 
the case is deemed unstable [9]. In this work a threshold of 
         has been used. 

B. Unstable cases 

Mode of disturbance (MOD) determination is the 
separation of the machines of the system in two groups, 
critical   and non-critical   machines. When the case is 
unstable, then MOD determination is straightforward: 
machines that exhibit angular separation higher than     from 
the least advanced machine are deemed unstable. 

In such cases, the accelerating power    of the SIME turns 
negative after fault clearance, temporarily decelerating the 
system, before turning positive again, for the aperiodic 
oscillation. The system escapes the attraction of its Stable 
Equilibrium Point (SEP) when it starts accelerating again. 
That moment is termed the time to instability   , and the 

following holds   (  )      ̇(  )   . The TSI for unstable 

cases is given by the excess kinetic energy of the SIME 
equivalent system at   . 

         (  )   
 

 
  (  )  (1) 

C. Stable cases 

Stable cases are particularly challenging for two reasons. 
Firstly, MOD determination is non-trivial as all generators in 
the system retain their stability. Secondly, given a MOD, there 
is a time instant    at which the angle of the resulting 
equivalent SIME reaches a maximum  (  )    . The 
accelerating power remains negative until that moment. This 
means that if the system was to be driven unstable, there 
would be an unused extra decelerating period. In the      
plane, this period would appear as an extra decelerating area 
    

 , shaded in gray in fig. 2. It is     
  that accounts for the 

(positive) TSI.  

1) MOD determination: A maximum inertia-weighted 

angle gap criterion (called hereafter   -criterion) applied at 

moment     has been used for MOD determination. Machines 

are sorted in descending order according to the product 

         (   ). The maximum gap between sorted     

values is identified, and machines before the gap are classified 

as  , whereas machines after the gap are classified as  . The 

  -criterion can be seen as a normalized angular 

displacement of the machines due to the fault 

2) Extra decelerating area approximation: In line with 

[3], this work proposes a TSI based on extrapolation of 



 
Figure 5 TSI results for the 36-bus system 

 
Figure 4 TSI results for the 9-bus system 

trajectories, as a way of guessing the evolution of system 

dynamics. Extrapolation in different domains has been found 

to perform variedly under different circumstances. So, a 

composite index (combination of subindexes) is suggested. 
Firstly, extrapolation is performed on the      plane and 

the first subindex is calculated as         
 . Fig. 2 illustrates 

the concept. Accelerating power   ( )   ( (   )     is 

approximated by  ̂ ( ) using a 3
rd

-order polynomial. 

A second subindex     is derived using extrapolation in 
the time domain, namely on the      and     planes, as 

illustrated in fig. 3.   ( ) is approximated for       by  ̂ ( ). 
Curve fitting is performed using a two-term sum-of-sines 

 ̂ ( )       (      )        (      ). Because of the 

inherent periodicity of the sum-of-sines  ̂ ( ), it is expected to 

have a zero-crossing at some time point      ̂ ( )|     
. Then, 

a scaling factor is defined as   
       

      
. This factor is used to 

scale  ( )
  
→  ̂(t) so that the latter has a maximum at    . 

Given  ̂ ( ) and  ̂( ), the SIME concept of unused 
decelerating area is employed to estimate the stability index as 
        

 . 

Finally, akin to [8], the last subindex          can be 
seen as a measure of how stable the case is. 

    (
  (  )

     (      )   ( )
)

 

 (2) 

Once the three hereinabove described subindices have 
been calculated, they are combined as follows. 

              (     ) (3) 

    has been used as a weight between subdindices     
and    , because it has been noted that     provides a better 
estimate of the stability margin when the case is not strongly 
stable; vice versa for    . This can be explained by the fact 
that     is based on a finer time-domain extrapolation, which 
is more precise the longer the disturbance has lasted. Whereas, 
    is a roughly “blind” approximation on the      plane, 
suitable when little information is available on the dynamics 
of the system. 

All extrapolations have been done on a relative basis. This 
can sometimes lead to    values unrealistically away from the 

scale of the system. A measure of the latter is the kinetic 
energy of the SIME equivalent at the time of fault clearance 

      
 

 
   (   ). With that in mind, an attractor function 

is used to attract the resulting    towards more realistic values. 

     (   )        (   )|   |     (4) 

Finally, the overall TSI is given by: 

       (       ) (5) 

Equation (5) has units of transient energy, and so, is unit-
consistent with indices produced for unstable cases. 

IV. NUMERICAL RESULTS 

The algorithm has been implemented in MATLAB, and 
applied on two sample power systems of 9-buses/3-generators 
and 36-bus/8-gen. All simulations were performed using the 
MatDyn time-domain simulator [10], in a typical modern PC. 

A. TSIs for a stable and an unstable case 

The event A = {Perfect3-φ fault for 400 ms on bus #10} is 
considered for the 36-bus system. MOD identification takes 
place at the time of fault clearance           as described in 
section III-C1. Machines are sorted in descending    order, 
and the maximum gap is found between G7 and G4 (      
      ). So, the MOD is                           
and       . Subindices    ,     and    are calculated as 
described in section III-C2, and the final TSI is given as 
follows. 

 

         
         
        

( )
→          

( )
→         (6) 

Again for the 36-bus system, the event B = {Perfect 3-φ 
fault for 600 ms on bus #10} is considered. Generator G7 loses 
its synchronism, so MOD identification is straightforward, 
                         and       . The TSI is 
calculated: ( )

 
→         

B. TSI against fault duration 

Figures 4 and 5 show TSI results for different fault 
durations on sample buses of the systems. The horizontal axis 
of the graph corresponds to the sustained duration of the fault. 
Critical Clearing Time is defined as the duration above which 
a given fault would render the system unstable. In the graph 



this corresponds to the zero crossing of the respective TSI line. 
Naturally, cases turn unstable as the duration of the fault 
grows, that is, their TSI value crosses zero to the negative. 

Μonotonicity is maintained throughout the window of 
study. Linearity is high for the unstable part of the plot, and 
acceptable for the stable part. In most cases there is a sharp 
increase in the TSI for stable cases, as we move away from the 
critical point. This phenomenon is always system/case-
specific, and can be attributed to the fact that less information 
on the dynamics of the system is available and as a result 
rougher approximations are made. 

C. Critical Clearing Time determination 

TSIs are commonly employed when the critical clearing 
time of a particular fault is investigated. When a TSI is not 
available CCT studies are usually performed in a “blind” 
binary search manner. Conversely, when it is available, 
information provided by the index can significantly speed up 
calculations, by reducing the number of required TD 
simulations. Examples of a “blind” and a TSI-enhanced CCT 
algorithm are presented in fig. 6. Particularities of the latter 
are highlighted in red. 

Require:      
      

   is the search window, and   
 ,  

  estimates 
for the bounds respectively;   is the required precision and 
     the maximum number of iterations allowed 

 1:  procedure FINDCCT1 

 2:             ,     

 3:     
      

  

 4:     
      

  

 5:   while        do 

 6:     if   
    

    then 

 7:                ; break 

 8:       (  
    

 )   

 9:         ChkStab( ) 

10:          

11:    if stab then 

12:        
    

13:    else 

14:        
    

15:  return     ,   
 ,   

   

procedure FINDCCT2 

            ,     

    
      

 ;    TSA(  
 ) 

    
      

 ;    TSA(  
 ) 

  while        do 

    if   
    

    then 

               ; break 

        
      

    
 

       

      TSA( ) 

          

    if     then 

        
   ;      

    else 

        
   ;      

  return     ,   
 ,   

  

(a) “Blind” binary search (b) TSI-based search 

Figure 6 CCT determination algorithms 

The algorithms of fig. 6 were tested on a 3φ fault on bus 
#10 for the 36-bus test system; similarly to events A and B of 

section IV-A. The search window was set to      
      

   
                and a precision of           was asked for. 
Table II summarizes the results of the iterations. Total speed-
up in time was 40.0%. There was a 44.4% reduction in the 
number of TD simulations needed,  →  . This percentage 
falls down to 36.4% if initialization is accounted for,   →  . 

V. CONCLUSIONS 

This paper is dedicated to the assessment of transient 
stability of power systems. The importance of TSA 
applications was underlined and a SIME-based TSA algorithm 
was presented in detail, designed to meet specifically defined 

TABLE I.  RESULTS FOR A 3Φ FAULT AT BUS #10 OF THE 36-BUS 

SYSTEM 

FINDCCT1 FINDCCT2 

iter. #        iter. #     

01 0.2000 yes 01 0.2000 2.978 
02 1.0000 no 02 1.0000 -3.606 

1 0.6000 no 1 0.5625 -0.683 
2 0.4000 yes 2 0.4950 -0.284 

3 0.5000 no 3 0.4700 -0.478 

4 0.4500 yes 4 0.4650 -0.008 
5 0.4750 no 5 0.4625 +0.076 

6 0.4625 yes    
7 0.4700 no    

8 0.4675 no    

9 0.4650 no    

elapsed time: 6.66049 s elapsed time: 3.964 s 

constraints. Results of the application of the algorithm on two 
different systems were presented, and the validity of the 
proposed method was demonstrated. Future work in the field 
is suggested to focus on improving the computational 
efficiency of the process, so that the proposed algorithm can 
be employed as a fast plug-and-play supplement to any 
existing TD simulation setup. 
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