
Abstract
Software robustness is an ever-challenging problem in the face of
today's evolving software and hardware that has undergone recent
shifts. Instruction-grain monitoring is a powerful approach for
improved software robustness that affords comprehensive runtime
coverage for a wide spectrum of bugs and security exploits. Unfor-
tunately, existing instruction-grain monitoring frameworks, such
as dynamic binary instrumentation, are either prohibitively expen-
sive (slowing down applications by an order of magnitude or
more) or offer limited coverage.

This work introduces BugSifter, a new design that drastically
decreases monitoring overhead without sacrificing flexibility or
bug coverage. The main overhead of instruction-grain monitoring
lies in execution of software event handlers to monitor nearly
every application instruction to check for bugs. BugSifter identi-
fies common monitoring activities that result in redundant
monitoring actions, and filters them using general, light-weight
hardware, eliminating the majority of costly software event han-
dlers. Our proposed design filters 80-98% of events while
monitoring for a variety of commonly-occurring bugs, delegating
the rest to flexible software handlers. BugSifter significantly
reduces the overhead of instruction-grain monitoring to an average
of 40% over unmonitored application time. BugSifter makes
instruction-grain monitoring practical, enabling efficient and
timely detection of a wide range of bugs, thus making software
more robust.

1 Introduction

Software robustness is a key challenge for application develop-
ers because recent shifts in hardware design have led to more
complex software [11]. Bugs not only decrease productivity, but
also introduce vulnerabilities that can lead to security breaches and
catastrophic system failures [2]. Dynamic instruction-grain moni-
toring [46] is a promising approach to find bugs during application
execution by monitoring individual instructions. Flexible instruc-
tion-grain monitoring techniques [10, 13, 45, 58] combine the
flexibility of software [12, 20, 36, 37, 38, 39, 41, 42] with the low
execution overhead of hardware [14, 15, 25, 49, 50, 57, 59]. 

Unfortunately, in spite of architectural support (e.g., running
the program and the monitor on separate cores), state-of-the-art
monitoring approaches that support the full flexibility of software
[10] slow down execution by an order of magnitude on average.
Because monitoring occurs at the granularity of instructions, the
monitor performs a number of actions depending on its functional-
ity (e.g., check for null pointers, check for synchronized memory
sharing, or perform bookkeeping) and as such incurs high software
overhead. Instead, prior work advocates trading off flexibility for

performance through custom accelerators targeting specific moni-
tor functionality [9, 15, 44, 50].

Instruction-grain monitors rely on maintaining metadata per
word of memory to implement their functionality. In this paper, we
make the observation that in the common case, the monitor activity
requires either minimal processing (e.g., most operand checks to
identify pointers do not find one, or checks for exclusive access
rights on local data always succeed) or generalized metadata man-
agement (e.g., allocating metadata on the stack upon function
calls). Common case metadata activity requiring no action can be
found in a diverse set of monitors, ranging from memory access
checking (when accessing allocated data) [36, 37] to reference-
based garbage collection and memory leak detection (when the
operand of an instruction is not a pointer) [4, 32]. For other moni-
tors, common case activity requires a minimal set of actions, as is
the case in race [43] and atomicity violation [29] detectors (when
accessing thread-local data).

We propose BugSifter, architectural support for metadata cach-
ing, lookup, and update that “sifts” metadata in hardware to
identify when and what software action is needed, and otherwise
eliminates software monitoring overhead. We use cycle-accurate
simulation of single- and multi-threaded benchmarks to show that: 
• BugSifter is generally applicable, accelerating bug finding for a

variety of memory, security, and concurrency bugs;
• By executing metadata checks in simple hardware and eliding

redundant metadata updates, BugSifter filters out 80-98% of all
software handlers for instruction events;

• Stack updates on function calls and returns account for up to
40% of the monitors’ execution time. A programmable func-
tional unit that performs stack updates can virtually eliminate
this overhead;

• A BugSifter design with a 4KB metadata cache enables a state-
of-the-art flexible monitoring system, LBA [10], to achieve an
average slowdown of only 40%, obviating the need for moni-
tor-specific accelerators.
The rest of the paper is organized as follows: Section 2 presents

the background on software bugs and instruction-grain monitoring.
In Section 3, we present our observations that motivate the Bug-
Sifter design, while Section 4 details the proposed design. Section
5 describes the range of monitors efficiently accelerated by Bug-
Sifter and spectrum of bugs that these monitors cover. Section 6
and 7 feature our methodology and experimental results, respec-
tively. Section 8 discusses the related work, and Section 9
concludes the study.

2 Background

2.1 Bugs in Software
Developing effective bug-finding tools first requires an under-

standing of types of bugs found in existing software. To that end,
researchers have analyzed and classified bugs in a variety of appli-
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cations, concluding that a broad spectrum of bugs falls within three
dominant bug categories: semantic, memory, and concurrency [26, 
28]. These categories can be summarized as follows:

Semantic: Bugs that arise in code that is inconsistent with the
design specification or programmer’s intent, examples being miss-
ing features and improper exception handling. Due to the
dependance on semantic information, this bug category is not well
accommodated by automated bug-finding tools.

Memory: Bugs caused by incorrect handling of memory, such
as memory leaks, accesses to uninitialized memory, accesses to
memory that has been freed (dangling pointers), null pointer deref-
erences, and double frees. In addition, the bulk of non-semantic
security-related bugs, which enable attackers to exploit program
design flaws to compromise systems (e.g., through buffer overflow
and stack smashing attacks), can be classified as a special class of
memory bugs [26].

Concurrency: Bugs that occur as a result of interaction of mul-
tiple threads. Lu et al. identify three major classes of concurrency
bugs, namely (1) data races, (2) atomicity violations, and (3) dead-
lock-causing bugs [28]. An important property of concurrency
bugs is their non-deterministic behavior, which complicates repro-
ducibility and debugging.

2.2 Instruction-Grain Monitoring
A number of tools have been developed to assist developers in

finding bugs. These can be grouped into three general categories
[9]: (1) static tools [6, 19, 21] that try to identify problems before
the program runs; (2) post-mortem tools [35, 54, 55] that seek to
establish the cause of an error after the program has crashed; and
(3) dynamic tools [5, 31, 38] that monitor the program at runtime
to identify and/or contain the bugs. 

While the three categories of tools can be considered comple-
mentary, dynamic tools with the ability to monitor at the
granularity of individual instructions possess a unique advantage
stemming from their access to detailed runtime events, such as
memory references and information flow. This capability affords a
wide range of powerful bug-finding tools, generally referred to as
monitors, that span the spectrum from frequently-occurring mem-
ory bugs to hard-to-reproduce concurrency bugs. In addition to
facilitating bug finding at development time, instruction-grain
monitors may be useful in the field by enabling on-the-fly recovery
from errors, reducing susceptibility to security exploits, and
improving damage confinement.

In general, instruction-grain monitors work by maintaining cer-
tain invariants and checking that these invariants hold for each
application event of interest. Invariants might specify that every
accessed memory location has been allocated and initialized, or
that the value used as a jump target is not tainted. Events of interest
may include instructions, memory accesses, function calls and
returns, as well as high-level operations (e.g., malloc and free). To
assist analysis, monitors maintain bookkeeping information, or
metadata, about application memory and registers. Depending on
the event, the relevant metadata are checked against the invariant
and/or updated with a new value. 

A code snippet for a representative monitor, along with a slice
of monitored application code, is shown in Figure 1. The monitor
performs propagation-based analysis used by a number of bug-
finding tools (e.g., MemCheck, which checks whether every refer-
enced memory location has been initialized). In the example, each
application instruction triggers a software handler associated with
the monitor. For each of the instruction’s source operands that are
in memory, the handler accesses and checks the metadata. If the
metadata value differs from the invariant (e.g., a referenced mem-
ory location has not been allocated or initialized), an action is
taken to inform the user and/or the runtime. The handler also
updates the metadata for destination operands based on the meta-
data state of the source operands.

2.3 Existing Approaches to Instruction-Grain Monitoring
A number of projects have targeted effective instruction-grain

monitoring. Broadly speaking, the approaches can be classified as
software-only or hardware-assisted. Here, we briefly summarize
the chief attributes of these schemes; a comprehensive discussion
of existing techniques is provided in Section 8.

Software-only schemes, such as Valgrind [38], rely on dynamic
binary instrumentation and provide full generality in terms of the
types of monitors they support. However, this flexibility comes at a
steep performance penalty of 10-100x [36, 38, 48], since for each
application event, a software handler is dispatched to check and/or
update metadata. Researchers have proposed monitoring tools that
leverage algorithm-specific optimizations to reduce the perfor-
mance overhead, yet even in those cases the slowdown is
substantial (e.g, 8x for a software race detector [20]).

To mitigate the performance bottleneck, researchers have
investigated hardware-assisted solutions. The most general hard-
ware-assisted scheme is LBA [10], which supports unmodified
applications and provides hardware acceleration for dispatching
software handlers, thus obviating the instrumentation overhead.
However, the actual monitoring functionality is not accelerated
and is fully executed in software. Hardware-assisted schemes are
either customized for a specific monitoring algorithm (e.g., [18, 
22]), or support a limited range of monitors (e.g., [9, 50]). In addi-
tion, hardware-assisted monitors commonly modify the application
so as to allocate their metadata in the application’s address space,
necessitating extra actions to ensure that metadata are protected
(i.e., from a potential security attack or an overwrite by the appli-
cation code). 

2.4 Summary
Instruction-grain monitoring holds the promise of enabling

highly effective on-the-fly bug finding for a broad class of bugs,
including hard-to-reproduce concurrency bugs and malicious secu-
rity exploits. Today’s approaches to instruction-grain monitoring
force a compromise between performance and generality. Mean-
while, increasing software complexity demands (a) full generality
to cover a broad range of bugs and support a variety of algorithms
within a common bug-finding framework, and (b) good perfor-
mance to enable continuous monitoring in development, and
ideally in the field, to maximize coverage, resilience, and security.

3 BugSifter Motivation

BugSifter targets fully generalized monitoring with low run-
time overhead. To motivate the BugSifter design, we first identify

Application code

//function call
call foo 
//function return

foo:
push %ebp
mov %esp,%ebp
mov  0xc(%ebp),%eax
add 0x8(%ebp),%eax
leave
ret

Handler for function call/return (> 100 instr. each)

Handlers for instructions (~ 10-20 instr.) each
reg_to_reg (UINT src_reg, UINT dst_reg)

mem_to_reg (UINT src_mem, UINT dst_reg)

stack_update (UINT Addr, UINT L)
{
//set metadata for stack frame of size L
for (int i=0; i<L; i+=4)
set_mem_metadata (Addr+i, VALUE);

}

mem_op_reg(UINT src_mem, UINT dst_reg)
{
UCHAR src_value = 

get_mem_metadata(src_mem);
if (src_value != INVARIANT){ 
//Bug! record , inform runtime , etc.

}
set_reg_metadata(dst_reg, src_value);

}

Figure 1.   A simple instruction-grain monitor
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common high-level functionality inherent in a wide range of moni-
tors. Next, we provide the intuition for how simple and fully
general mechanisms can eliminate much of the run-time overhead
incurred through commonly occurring monitoring activities.

3.1 Generalized Monitor Functionality
The existence of different bug types dictates that monitors

should be specialized for each particular type of a bug. Moreover,
for a given bug type, several bug-finding algorithms may exist that
differ in their coverage guarantees, resource requirements, imple-
mentation complexity, etc. Despite the resulting diversity of bug-
finding tools and algorithms, we find that virtually all monitors
have functionally-similar characteristics at a high level. These can
be summarized as follows, with Figure 1 serving as an illustrative
example:

• Simple checks and updates: The bulk of monitoring activity
in response to individual application instructions involves some
combination of metadata accesses, metadata checks against an
invariant, and metadata updates. As most instructions in ISAs
of contemporary general-purpose processors operate on one or
two source operands and update one destination operand, the
per-instruction handlers typically manipulate three small pieces
of metadata or less, with each metadata item associated with a
given application register or memory location.

• Stack updates: Software engineering practices call for abstrac-
tion and encapsulation of functionality, leading to software
with many short functions and frequent function invocations at
execution time. At each function call (return), a frame is allo-
cated (deallocated) on the application stack. We refer to both
types of activity as a stack update. Stack updates must be shad-
owed by the monitor to properly track what memory has been
allocated to an application. As a result, each function call and
return event in the application triggers a handler in the monitor
that sets a region of metadata memory to a known value (e.g.,
allocated+uninitialized upon a call, unallocated upon a return). 

• Complex or uncommon functionality: Occasionally, moni-
tors invoke functionality that is different from the two cases
above. This happens whenever the application executes an
uncommon instruction (e.g., containing more than two source
operands), performs a high-level event of interest (e.g., malloc
or free), initializes the metadata, or when an invariant check
fails on the monitor side. 

Figure 2(a) breaks down the monitors’ execution time into (i)
simple metadata checks and updates for applications’ instructions,
(ii) metadata stack updates in response to applications’ stack frame
allocations and deallocations, and (iii) all other activities. The six
monitors presented in the figure cover the majority of non-seman-
tic bugs described in Section 2.1. Details related to monitor
functionality can be found in Section 5.1. Our workloads,
described in Section 6, consist of SPEC2000 integer benchmarks
using the full test input and 10 billion instructions of the reference
input; for LockSet and AtomCheck, we use a set of multithreaded
benchmarks.

As the figure shows, nearly all of the monitors’ execution time
is spent on processing simple instructions and stack updates. Com-
plex instructions and uncommon events together account for less
than 5% of the run time for all monitors. Monitoring of simple
instructions dominates the execution profile; however, stack
updates consume over 30% of the execution time in two out of six
monitors due to a large number of instructions (over 100, on aver-
age) committed by the stack update handlers iterating through a
memory region.

3.2 Accelerating the Common Events
BugSifter accelerates monitor execution through light-weight

hardware support for the two common application event types:
simple instructions and stack updates. BugSifter also facilitates
rapid access to metadata for all monitoring activities, both acceler-
ated and software-handled. Here, we explain the intuition behind
the accelerators and leave the detailed description of the BugSifter
design for Section 4.

Accelerating instruction events: BugSifter uses a simple
event filtering mechanism that relies on two observations to elide
the execution of costly software handlers. First, most of the time
applications behave correctly and the metadata match the expected
invariant (e.g. memory accesses reference memory that has been
allocated and initialized). We refer to these events as clean checks,
which are performed in hardware, avoiding handler execution in
case the check succeeds. Second, propagation event handlers that
copy metadata values from source to destination operands com-
monly update the metadata with the same value, because metadata
are stable (e.g., memory that has been initialized remains initial-
ized while the actual value in application memory may change).
We call these events redundant updates and filter the associated
handlers as they do not affect the metadata state. 

Figures 2(b) and 2(c) show the percentage of instruction event
handlers that can be elided as they fall into either the clean check
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or redundant update category. For AddrCheck, we can filter almost
all instruction events due to clean checks, because applications
access allocated memory. BugSifter filters 87% of instruction
events for MemCheck due to both clean checks and redundant
updates. The filtering rate for MemCheck is lower than that for
AddrCheck due to metadata initialization. MemLeak has a filtering
rate of 80% because most of the applications data are not pointers.
TaintCheck has a filtering rate of 80% because metadata are stable
and clean. As most application data are accessed by a single-
thread, BugSifter filters 87% of events for LockSet. AtomCheck
partially filters 98% of instruction events due to clean checks (we
explain partial filtering in Section 4.2.1). Overall, we show that 80-
98% of instruction event handler dispatch can be eliminated,
thereby virtually eliminating monitoring overhead. 

Accelerating stack update events: Stack update events,
namely function calls and returns, contribute up to 40% of the
monitoring execution time, as shown in Figure 2(a). These han-
dlers set a large range of metadata to a predefined value and do not
check for bugs directly. BugSifter efficiently accommodates stack
update events through a dedicated hardware unit that performs
multi-block writes, thereby eliding the associated event handler
dispatch which would unnecessarily add more overhead. Accord-
ing to our profiling results, most stack update events (> 97%) can
be handled in hardware, virtually eliminating the overhead of the
respective software handlers.

Accelerating metadata accesses: Nearly all monitoring activi-
ties involve accesses to the metadata. We accelerate accesses to
metadata through a dedicated metadata cache, similar to prior pro-
posals [49, 50].

4 BugSifter Design

We detail the BugSifter design in the context of a generic mon-
itoring framework by first presenting the baseline system
organization, followed by the set of extensions necessary to enable
BugSifter’s functionality.

4.1 Baseline System
Our baseline design is shown in Figure 3. While the application

is executing, the event capture logic creates an event stream queue,
or log, from the committed instruction stream, such as in Log-
Based Architectures (LBA) [10]. The event queue is memory-
mapped into the L2 cache, and does not require dedicated storage.
Each entry of the event stream consists of information such as the
event category, program counter, input/output operand identifiers
and data addresses, and function arguments. Event stream entries
are compressed to an average size of less than one byte [10].

A separate monitor thread removes and processes the events
from the head of the event queue. Each event triggers an appropri-
ate software handler to be executed by the monitor. Event handler
dispatch is assisted by light-weight logic that communicates with
the core to dispatch the correct event handler using a jump table of
function pointers [10].

The application (producer) and monitor (consumer) threads are
not synchronized and the communication between them is

restricted to the event queue. To contain the effects of bugs and
prevent the propagation of errors beyond the application level, the
OS stalls the application thread at system call boundaries, allowing
the monitor to catch up with the application thread by processing
all queued events.

While Figure 3 shows the application and monitor threads run-
ning on separate cores, neither the baseline system nor the
proposed BugSifter extensions are restricted to this design point.
Nonetheless, in order to limit the scope of the design and evalua-
tion, the two-core organization is assumed from here on and
analysis of a single-core system is left as future work. Similarly,
both the design and evaluation are performed in the context of the
IA32 ISA, which is neither a limitation nor an advantage.

4.2 BugSifter Architecture
Figure 4 shows BugSifter extensions to the baseline design

described in Section 4.1. To enable filtering of instruction events,
BugSifter uses a configurable filter table and light-weight filter
logic. For accelerating stack updates, BugSifter introduces a stack
update unit. Finally, to speed up all aspects of monitor execution,
including the filtering, stack updates, and software handlers, Bug-
Sifter allows for fast metadata access via a metadata cache and
metadata register file (metadata RF). We next explain how these
simple hardware extensions support the common behavior of both
applications and monitors to accelerate bug finding while main-
taining generality and flexibility on the monitoring side.

4.2.1 Handling instruction events
When BugSifter receives an event, it accesses the filter table to

check if the event is filterable. The table has an entry for each fil-
terable event type that indicates the appropriate filtering action:
clean check, redundant update, or stack update. In the evaluated
design, the table has 30 entries that cover the heavily-used subset
of the IA32 ISA. Because in IA32 most instructions have up to two
operands (register or memory), events that have more than two
operands (for source and destination combined) are classified as
uncommon and handled in software.

To facilitate filtering, BugSifter uses a small set of programma-
ble registers that store values of monitor-specific invariants as well
as the metadata factor, defined as the ratio between the application
word size (e.g., four bytes) and the monitor metadata item size
(e.g., one byte). The filter logic uses the metadata factor for access-
ing and selecting the correct words in the metadata cache. 

Figure 5 shows the steps in the filtering process. For clean
checks and redundant updates, BugSifter reads metadata from the
metadata cache and metadata RF based on the instruction source
and destination operands (steps 1 and 2). To enable one-cycle
metadata access, the metadata RF has two ports and the metadata
cache has one port. For instructions with two memory operands,
the metadata cache is accessed twice over two consecutive cycles.

event
queue L2

Monitorevent
dispatch

logic

Application
Core

L1-D

Core

L1-D

event
capture

logic

Figure 3.  Baseline system
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Once the operand metadata is available, BugSifter evaluates the
filter condition in the filter logic (step 3). For clean checks, the
logic compares the operands to the invariant value (read in step 2).
For redundant updates, the logic compares the source and destina-
tion operand metadata, and filters the event if their values match. 

Events that cannot be filtered are sent to the event handler dis-
patch. These events include uncommon instruction events (<5% of
the total dynamic instructions), events that update the metadata
(e.g., on initialization), and high-level events, such as malloc and
free, which contribute less than 3% to the monitor execution time.
Stack update events are handled by a dedicated hardware unit
described below.

In some cases, an instruction event first performs a check and
based on the check’s outcome, it executes either a sole update or a
more complex routine that includes multiple checks and updates.
BugSifter efficiently supports such cases by filtering one of the
actions in hardware (e.g., the first check) and consequently dis-
patching a simplified software handler. For instance, in the
AtomCheck monitor, BugSifter uses the filter logic to check if a
memory location was last referenced by the same thread. If the
check succeeds, which is the common case, a simple software han-
dler is dispatched to update the metadata; if the check fails, a
complex handler runs to check whether there is a potential atomic-
ity violation. While both cases require software execution, the
hardware check eliminates more than 2/3 of the instructions exe-
cuted by a software-only handler for the common case. The
eliminated instructions include the code to perform the check, con-
trol flow instructions, and register spills and fills. We refer to this
type of filtering as partial filtering and present more use cases of it
in Section 5.2.

4.2.2 Handling stack-update events 
Stack update handlers (i.e., function calls and returns) set con-

secutive metadata addresses to a predefined value. As Figure 2(a)
shows, four out of the six studied monitors handle stack updates,
which constitute up to 40% of the monitor execution time. Unlike
all prior proposals for hardware-supported monitoring systems that
ignored stack updates, BugSifter accelerates the majority of stack
update handlers. 

BugSifter introduces a configurable stack update unit to accel-
erate the execution of stack update events. The stack update unit
takes the stack frame’s starting address (esp, in IA32) and length as
parameters. Because the metadata cache is indexed by the applica-
tion virtual address, the stack update unit can use the stack pointer

(esp) to directly calculate the address(es) of the metadata block(s)
covered by the stack frame.

Using a simple finite state machine (FSM), the stack update
unit issues writes to the metadata cache to set the target range of
addresses to one of two predefined values (one value on function
calls and another on function returns). The stack update unit can
use either the block-wide or sub-block interface of the metadata
cache to minimize the number of write operations; this interface is
similar to that in contemporary processors that support write com-
bining to reduce write activity in L1-D. The number of metadata
cache block writes is dictated by the length of the stack frame,
encoded in the event descriptor. 

In addition to performing bulk writes, the stack update unit is
general enough to handle simple stack-updating instructions, such
as push and pop in IA32. For both range and individual stack
address updates, BugSifter handles stack events in hardware by (1)
configuring the filter table to recognize them, (2) forwarding them
directly to the stack update unit, and (3) executing them using the
range update FSM, thus completely eliding software intervention.

In order to minimize hardware complexity, stack events that
update a region whose size exceeds that of the metadata cache are
not filtered and are handled in software instead. Whenever such an
event is encountered, the dispatched handler first invalidates the
contents of the metadata cache (a performance optimization), and
then processes the stack update event in software. Stack frames
whose size exceeds the metadata cache size are rare (<3%). More-
over, such large frames typically correspond to long-running
functions, which amortize the cost of the software stack update
handler.

4.2.3 Metadata cache
BugSifter provides low-latency metadata lookups and updates

through a dedicated cache, which accelerates metadata accesses for
all monitoring activities [49, 50]. In principal, a dedicated cache
for metadata is not required, and the metadata could be cached in
the L1-D. However, we find that a small dedicated cache improves
filtering performance by enabling single-cycle lookups and
reduces the pressure on the L1-D. The filtering hardware accesses
the metadata cache directly. To enable the software handlers to
leverage the metadata cache, we extend the ISA with new Load
Metadata and Store Metadata instructions. Conventional loads and
stores access the L1-D unaffected.

4.2.4 Monitoring of parallel applications
BugSifter’s single core/process approach is orthogonal to paral-

lel monitoring techniques and platforms. If application threads are
time-sliced on the same core, only one BugSifter instance is suffi-
cient. In monitoring systems where the application threads run on
different cores [24, 52], each core would need one BugSifter
instance. In this case, the metadata caches should be maintained
coherent. A simple way to support coherence, given BugSifter’s
virtually-addressed metadata caches, is to make L1-D inclusive to
the metadata cache and maintain backpointers in L1-D [7]. 

Prior work [24, 52] has also proposed solutions to ensure meta-
data atomicity and enable parallel monitoring under different
memory ordering models. The proposed mechanisms are applica-
ble to BugSifter; however, parallel monitoring is outside the scope
of this paper. 

4.3 BugSifter Design Summary
BugSifter uses simple, configurable hardware mechanisms to

efficiently accelerate a range of monitors by (1) filtering instruc-
tion events, (2) eliminating stack update overheads, and (3)
minimizing delays on metadata accesses across all monitoring
activities. BugSifter keeps hardware complexity low through the
use of a compact 4KB metadata cache, a metadata RF with eight
32-bit registers, a configurable filter table with 0.2KB of state, and

event from 
dispatch logic

mem
(source)

MD 
RF

from MD$

filtered?
Yes: next event
No: execute handlerread 

MD[ebx]

eventID src dst cc ru
mov mem, rd
mov rs, rd

jump rs

1 1 1
1 1 1

1 1

su

filter table

read 
MD[A] INV

reg
(dest)

1

2

2 2

instr. event
mov A, ebx

cc: clean check
MD[A] ?= INV

MD[ebx] ?= INV

3

BugSifter

Figure 5.   BugSifter filtering example. MD stands for metadata,
INV stands for invariant, and cc, ru, and su stand for clean check,
redundant update, and stack update, respectively
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some trivial logic. Finally, BugSifter maintains full flexibility
through software event handlers for dealing with rare instructions
and infrequent events.

5 Monitors 

To demonstrate BugSifter’s generality, we use a suite of six
diverse monitors that target a broad spectrum of bugs. We also dis-
cuss a number of other bug-finding tools that can be effectively
accelerated by BugSifter. Together, these tools cover the vast
majority of non-semantic bugs described in Sections 2.1.

5.1 Targeted Monitors 
We currently use six monitors in our evaluation of BugSifter to

demonstrate bug finding across a wide range of erroneous applica-
tion behavior. These monitors effectively cover a number of
memory, security, and concurrency bugs described in Sections 2.1.

The monitors are as follows: (i) AddrCheck checks whether every
memory access is to an allocated region of memory [36]; (ii) Mem-
Check extends AddrCheck to detect the use of uninitialized values
[37, 38]; (iii) MemLeak observes the use of allocated memory and
identifies memory leaks through reference counting [32]; (iv)
TaintCheck detects overwrite-related security exploits (e.g., due to
format string vulnerability) [39]; (v) AtomCheck detects atomicity
violation by checking access interleavings [29]; and (v) LockSet
detects data races by checking whether accesses to shared memory
locations are protected by a consistent set of locks [42]. Table 1
summarizes the monitors and how they are supported in BugSifter. 

AddrCheck sets ranges of metadata in response to memory
management events (e.g., malloc) and checks that accesses go to
allocated memory regions, which is the common case. AddrCheck
has a metadata factor of eight, keeping one bit of metadata per
application byte to encode two states (allocated or unallocated). 

Table 1. Monitor functionality and how BugSifter filters instruction events (i.e., clean checks and redundant updates). M stands 
for metadata of memory/registers. The events are based on IA32. Each enumerated monitor functionality on the left maps to the 
corresponding enumerated BugSifter action on the right

Monitor BugSifter 

M
em

or
y 

b
ug

s

A
dd

rC
he

ck Purpose: Check whether every memory access goes to 
an allocated region of memory
1)The metadata are checked for unallocated memory 
accesses

Filterable action: checks
1) BugSifter action: clean check 
Example: mov mem(saddr), %rd 
filtered if (M[saddr] == allocated )

M
em

C
he

ck

Purpose: Extend AddrCheck to detect the use of unini-
tialized values
1) Metadata values are propagated through instructions, 
such as mov
2) An error occurs when uninitialized data are used in 
critical ways, such as pointer dereference [37, 38]
3) After an error, the operands are set to initialized to 
avoid error cascading

Filterable actions: checks & updates
1) BugSifter action: redundant update
Example: mov %rs, %rd
filtered if (M[rs] == M[rd])
2) BugSifter action: clean check
Example: mov mem(saddr), %rd
filtered if (M[rd] == M[saddr] == initialized )
3) BugSifter action: event handler dispatch

M
em

L
ea

k

Purpose: Perform reference counting to identify memory 
leaks
1) Metadata values are propagated through instructions, 
such as mov.
2) When propagating a pointer or overwriting one with 
Non-Pointer value, MemLeak updates a reference 
counter if the destination pointer does not reside on the 
stack [32]

Filterable actions: checks & update
1a) BugSifter action: clean check
Example: mov mem(saddr), %rd
filtered if (M[rd] == M[saddr] == non-pointer)
1b) BugSifter action: redundant update
Example: mov %rs, %rd 
filtered if (M[rs] == M[rd])
2) BugSifter action: event handler dispatch

Se
cu

ri
ty

 b
u

gs

Ta
in

tC
he

ck

Purpose: Detect overwrite-related security exploits (e.g., 
format string vulnerabilities)
We configure BugSifter according to the policies in [39]
1) Metadata values are propagated through instructions, 
such as mov
2) An error occurs when tainted data are used in critical 
ways, such as jump target
3) Certain instructions need to be handled in a special 
way 

Filterable actions: checks & updates
1) BugSifter action: redundant update 
Example: mov %rs, %rd 
filtered if (M[rs] == M[rd])
2) BugSifter action: clean check 
Example: jne %rs (indirect jump)
filtered if (M[rs] == untainted )
3) BugSifter action: event handler dispatch. 
Example: xor an operand with itself resets the operand 
to untainted 

C
on
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rr

en
cy
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s

A
to

m
C
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ck

Purpose: Identify atomicity violations based on the 
interleavings of accesses by different threads
1) Upon a memory access, AtomCheck first checks if 
the current and the previous access have been performed 
by the same thread (accessing a global table)
True: just update the thread-local metadata table
False: obtain the necessary information from the thread-
local metadata tables, and check the interleaving of the 
last three memory accesses to a memory location

Partially filterable actions: checks
1) BugSifter action: clean check 
(i.e., partially filter an accesses to a memory location 
that was last referenced by the same thread)
Example: mov mem(saddr), %rd
filtered if (M[saddr] == current-thread)
True: execute a simple handler in software
False: execute a complex handler in software

L
oc

kS
et

Purpose: Detect data races by checking whether 
accesses to shared memory locations are protected by 
consistent sets of locks
1) Upon a memory access, the memory metadata are 
checked to detect if the memory location is protected by 
a consistent set of locks 

Filterable actions: checks
1) BugSifter action: clean check 
(i.e., filter accesses to thread-local data)
Example: mov mem(saddr), %rd
filtered if (M[saddr] == thread-local)
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MemCheck and TaintCheck propagate metadata values from an
instruction’s source operand(s) to its destination operand and per-
form checks to ensure correctness. Commonly, these actions do not
change metadata (source and destination metadata are the same)
and the checks simply confirm that an access is legitimate (e.g.,
use of initialized values for MemCheck, non-malicious use of data
for TaintCheck). MemCheck has three metadata states (i.e., unallo-
cated, uninitialized, and initialized) and TaintCheck has two
metadata states (untainted and tainted). For these two monitors, we
use two bits of metadata per application byte, or a metadata factor
of four. This ratio enables us to access 1-byte of metadata for com-
mon 4-byte operands, avoiding sub-byte update costs. This
optimization is not necessary for AddrCheck as it rarely updates
the metadata.

MemLeak performs reference counting to identify memory
leaks. MemLeak maintains one metadata word per application
word, which is a pointer to the context of the corresponding malloc
and a null value otherwise. The context includes a unique ID, the
PC, and a reference counter. At the end of the program’s execution,
non-freed heap objects having a zero value counter are identified
as memory leaks. In addition to the main metadata map, BugSifter
uses an auxiliary map that just keeps pointer/non-pointer informa-
tion, requiring one bit of storage per application word. BugSifter
caches the auxiliary map to filter out instructions with no pointer
operands, while the full map is maintained in software.

LockSet identifies accesses to data that are not protected by a
consistent set of locks. LockSet’s metadata include information
about the state of an application word (uninitialized, thread-local,
read-shared, and write-shared), and a pointer to the corresponding
lockset for shared memory locations. Overall, LockSet keeps one
metadata word per application word (i.e., metadata factor of one). 

AtomCheck detects atomicity violation by checking access
interleavings. For this purpose, AtomCheck maintains information
about the last access by each thread to each memory location. The
main structures are (i) a global table to keep the id of the thread
that last referenced each memory location, and (ii) local per-thread
tables to keep the type (Read/Write) of the last access by each
thread. AtomCheck encodes the thread id in one byte, and main-
tains one piece of metadata per application word (i.e., metadata
factor of four). For each memory access, AtomCheck first checks
the global table and the current thread id. If they match (i.e., the
memory location was previously referenced by the same thread),
which happens in the common case, a simple software handler is
dispatched to update the metadata of the local table for the current
thread. Otherwise, a complex handler is dispatched to check if
there is a potential atomicity violation. BugSifter performs partial
filtering for AtomCheck by caching the global table and checking
if an access falls into the common case. 

5.2 Additional Monitors
The above monitors cover a range of bug types while keeping

the evaluation tractable and focused. To further stress the general-
ity of BugSifter, we now describe several additional bug-finding
tools that can be efficiently accelerated by the proposed design.

Pointer-related monitors perform checks to confirm the cor-
rect use of pointers. For example, Hardbound [17] proposes a
bounded pointer primitive to identify illegitimate accesses due to
mistakes in pointer arithmetic and array indexing. To monitor heap
objects, it is sufficient to intercept malloc-family calls. Compiler
support is necessary to initialize pointer metadata for the non-heap
objects. BugSifter can filter accesses to non-pointer data, which
correspond to the 80% of the application events. 

Type safety monitors perform a type check upon a memory
access. Metadata are updated when a memory location is written.
Compiler support is required to insert type annotations in the appli-
cation code [27]. BugSifter filters accesses to initialized data with
the same type. The filtering rate is expected to be comparable to

MemCheck (around 87%), because type-safety monitors follow
identical propagation rules, and check if application accesses ini-
tialized data that have the same type. 

Race detectors that use vector-clock based algorithms (e.g.,
ThreadSanitizer [43], FastTrack [20]) can benefit from BugSifter,
which can identify accesses to thread-local and/or lock-protected
data. On such accesses, BugSifter dispatches simpler handlers,
which just update the (Read/Write) vector clock for the accessed
memory location. This partial filtering, which is similar to Atom-
Check, elides the expensive full check of vector clocks. The
filterable accesses account for 80% of the application memory
accesses according to our results for LockSet, which corroborate
prior work [22].

6 Methodology

Without any loss of generality, we evaluate BugSifter by
extending the baseline LBA system. We perform our experimental
evaluation with both (i) the baseline LBA system and (ii) the base-
line LBA enhanced with BugSifter. We implement the baseline
LBA by extending the Simics [51] full-system simulator with
event capture and event dispatch support. Table 2 describes our
simulation setup. We model a dual-core IA32 system, running the
application on one core and the monitor on the other core. Bug-
Sifter uses a 4KB, two-way associative metadata cache, and an 8-
entry metadata RF, each with one-cycle access latency. To estimate
the energy implications of BugSifter’s metadata cache optimiza-
tions, we use Cacti v.5.3 [1] to model the SRAM structures in
45nm.

Our studies are performed on the six monitors described in
Section 5.1. For LockSet, we perform stack updates and check all
memory accesses (stack/non-stack) to provide end-to-end cover-
age. For AtomCheck, stack updates (i.e., due to function calls/
returns) do not need to be processed because AtomCheck keeps
information for the last access (in the stack) locations across func-
tion calls. We consider two variants of AtomCheck that differ in
the monitoring policy of the stack accesses. The first variant iden-
tifies the presence of potential atomicity violations in the stack,
while the second variant can provide detailed information regard-
ing the accesses involved. We only present results for the first
variant, and note that the performance trends of the second variant
are identical.

To evaluate performance, we use the SPEC2000 integer bench-
marks for all the monitors except AtomCheck and LockSet. We
choose these benchmarks because they are CPU-intensive and
stress instruction-grain monitoring. In order to keep the simulation
time tractable, we present results for the test inputs, as we find that
BugSifter achieves the same filtering rate for the test and ref input
(Figures 2(b) and 2(c)). For AtomCheck and LockSet, we use five
multithreaded benchmarks: bzip uncompression [40], water from
the SPLASH suite [53], and blackscholes, streamcluster, and
swaptions from PARSEC [3]. Each benchmark is restricted to run
on one core in a time-sliced manner. Our results present the slow-
down as the CPI of the monitored application normalized to the

Table 2. Simulation Setup

Simulator Parameters

Private L1-I 16KB, 64B line, 2-way assoc., 
1-cycle access lat.Private L1-D

Shared L2 512KB, 64B line, 8-way, 
10-cycle access lat., 4 banks

Main memory 200-cycle latency

Log buffer 64KB, 1B per compressed record 
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unmonitored application’s CPI. A slowdown of one corresponds to
zero monitoring overhead.

We also compare BugSifter with LBA+3ACC [9], an LBA sys-
tem enhanced with three accelerators. The first accelerator, unary
inheritance tracking (IT), targets the overhead of TaintCheck and
MemCheck. Unary inheritance tracking uses hardware to acceler-
ate only instructions with one source operand, adding extra
overhead or sacrificing bug coverage for two-source operand
instructions. The second accelerator, idempotent filter (IF), stores
addresses to filter redundant metadata checks, but requires fre-
quent storage flushing (upon stack-update, malloc, free, etc.). The
third accelerator, a metadata TLB, maps an application address to a
memory metadata address in hardware. The three accelerators
reduce the slowdown of the six monitors described above, but may
sacrifice bug coverage. For our experimental setup, we assume an
8-entry IT table, a 32-entry fully-associative IF, and a 1-cycle
latency for the load metadata address instruction. 

7 Results 

In this section, we present the experimental evaluation of Bug-
Sifter, comparing to the baseline LBA. We present a metadata
cache sensitivity analysis and show that a 4KB metadata cache is
sufficient to significantly reduce monitoring overhead. We also
show that BugSifter reduces the energy spent to access L1-D in
comparison to the baseline LBA. Finally, we compare BugSifter
with LBA+3ACC. In comparison to previous work, which has an

overhead of 1-10x, we consistently reduce the monitor slowdown
to less than 1.8x for all studied monitors.

7.1 Slowdown Reduction over Baseline LBA
Figure 6 shows the application slowdown for each benchmark

for both the baseline LBA system and BugSifter. The y-axis shows
the CPI of the monitored application normalized to the CPI of the
unmonitored application. For all benchmarks and all monitors,
BugSifter reduces slowdown significantly. AddrCheck and Lock-
Set overheads are over 6x in the baseline LBA, which is reduced to
1.04x and 1.75x, respectively, in BugSifter. We reduce Mem-
Check’s slowdown from over 10x to 1.27x, and TaintCheck from
over 3x to only 1.09x. TaintCheck has a lower slowdown in the
baseline because, it does not need to process stack-update events.
BugSifter reduces the slowdown of MemLeak from 4.4x to 1.78x.
For parser, twolf, and vpr, the slowdown is above the average,
because they have the lowest filtering rate (50-60%). AtomCheck
has a slowdown of 3.7x in the baseline LBA which is reduced to
1.34x with BugSifter’s acceleration. In the baseline LBA, the mcf
benchmark has the lowest slowdown, and vortex often has the
highest because of their high and low CPI, respectively. Vortex
produces events at a faster rate compared to the rest of the bench-
marks, and hence imposes more stress on the monitor.

7.2 Cache Sensitivity Analysis
We present a sensitivity analysis of the metadata cache size,

which shows that 4KB is, in fact, the sweet spot. Figure 7(a) shows
the effect of varying the cache size on the metadata cache miss rate
across the monitors. The miss rate is averaged across all bench-
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marks and is calculated as the ratio of events that resulted in a miss
to the total number of events. As we increase the cache size to
4KB, the miss rate of all monitors drops below 5%. 

Figure 7(b) shows the slowdown of BugSifter for the six moni-
tors averaged across all benchmarks for different cache sizes. For
the LockSet monitor, smaller metadata caches result in higher
overheads, as high as ~3x for the 512B cache, because LockSet has
a metadata factor of one. We find that a 4KB cache performs well
across all monitors while only adding moderate storage overhead.
The average slowdown with a 4KB metadata cache is 1.34x, and
the maximum (MemLeak) is 1.78x

7.3 Energy Analysis
Because energy consumption is a primary concern in modern

processors, we measure the effect of BugSifter’s filtering and
metadata cache optimizations on energy efficiency. We compare
the energy consumed on accesses to both the instruction and data
caches in the baseline LBA and BugSifter designs. In the case of
BugSifter, we also account for the energy dissipated by accessing
the 4KB metadata cache. 

Because filtering elides the execution of software handlers, we
expect BugSifter to reduce instruction cache energy, as well as the
energy of non-metadata L1-D accesses. While BugSifter does not
reduce the number of metadata accesses, the small metadata cache
acts like a filter that reduces the energy of accesses that hit.

The results match the intuition. For MemCheck, BugSifter
reduces the energy consumption in the first level of the cache hier-
archy to 16% of the baseline. TaintCheck and AddrCheck both
reduce the cache energy to about 30% of the baseline, and for
LockSet, MemLeak and AtomCheck we reduce the energy to 22%,
80% and 80% respectively. The average energy reduction across
the six monitors is 57% and arises through a combination of filter-
ing, which elides the execution of software handlers and their
associated L1-I and L1-D accesses, and the small metadata cache
that reduces the energy spent on metadata accesses.

7.4 Comparing BugSifter with LBA+3ACC
We compare BugSifter’s performance with the state-of-the-art

prior work (LBA+3ACC) that enhances LBA with three hardware
acceleration techniques but limits its bug-finding capability [8].
The three acceleration techniques are unary inheritance tracking,
idempotent filters, and metadata TLBs. The first two techniques
filter the event queue entries to reduce the number of software
event handlers executed, and are monitor-specific. Unary IT
applies only to MemCheck and TaintCheck. Furthermore, Unary
IT assumes that instructions with two source operands always
propagate a clean result to the destination’s metadata; thus, Taint-
Check may not detect all security violations. Idempotent filters
store a small number of addresses of allocated memory in order to
filter subsequent checks. This accelerator only applies to Addr-
Check, LockSet, and only the part of MemCheck’s functionality
that deals with the allocated metadata value. The third technique,
metadata TLB, applies to all monitors and reduces the size of soft-
ware handlers for events having memory operands.

The LBA+3ACC system makes certain assumptions to reduce
overhead, which limits bug coverage. In particular, LBA+3ACC
assumes that MemCheck and LockSet do not monitor the stack,
while on TaintCheck it assumes that instructions with two source
operands are safe. To understand the implications of these assump-
tions and provide for a fair comparison, we also evaluate a variant
of the LBA+3ACC without the coverage-limiting assumptions.

In Figure 7(c), we compare the performance of BugSifter with
LBA+3ACC, both with and without the assumptions, averaged
across all benchmarks. For AddrCheck, we applied a simple opti-
mization that assumes stack memory to be allocated, or clean. This
optimization benefits the two LBA+3ACC systems (i.e., with and

without assumptions), as BugSifter provides hardware support for
stack events.

As the figure shows, excluding AddrCheck, the slowdown for
the LBA+3ACC systems without assumptions is up to 4.7x higher
(MemCheck) than that of BugSifter due to the former’s (a) lack of
hardware acceleration for stack update events, and (b) much lower
filtering rate (25-78% of instruction events for LBA+3ACC, ver-
sus 80-98% for BugSifter). The LBA+3ACC with assumptions
offers better performance than the assumption-free version, but
offers limited bug coverage while still slowing down the execution
by up to 3.3x compared to BugSifter. On MemLeak and Atom-
Check, the two LBA+3ACC systems offer the same performance,
as both only benefit from the Metadata TLB optimization. 

Compared to the baseline LBA system evaluated in
Section 7.1, both LBA+3ACC variants offer some degree of per-
formance improvement. The only exception to this is the
AtomCheck monitor, which sees virtually no performance gain
from 3ACC. AtomCheck benefits only from the Metadata TLB
accelerator that eliminates just three instructions from the software
handlers that often exceed 30 instructions in size. In contrast,
MemLeak also benefits from only the Metadata TLB accelerator,
but with an average initial handler size of eight instructions, the
performance gain is higher. BugSifter, on the other hand, success-
fully accelerates all monitors, including AtomCheck, through a
combination of flexible filtering, hardware-assisted stack updates,
and metadata caching. 

8 Related Work

Software-only solutions [12, 36, 37, 38, 39, 41, 42] provide
flexibility but are impractical for deployed code due to up to two
orders of magnitude overhead [36, 38, 48]. Hardware-assisted
monitoring provides a trade-off between software flexibility and
hardware performance, but the proposed solutions differ in the
degree of generality, added hardware complexity, and overall mon-
itoring acceleration. In this section we discuss the most closely
related work on flexible monitoring and metadata caches.

8.1 Hardware-assisted monitoring
Early hardware-only proposals implement the monitor directly

in hardware and hardwire the monitoring policy. Examples include
data race detection [57], and propagation tracking [14, 46]. 

Other proposals add a monitoring pipeline to the processor.
Unfortunately, the supported monitors are limited by the imple-
mentation complexity, because their pipelines can only
accommodate fixed-sized metadata per application word, and can-
not implement monitoring algorithms with more complex
metadata, such as AtomCheck, bounded pointers [17] and vector
clocks [43]. For example, MemTracker [50] and FlexiTaint [49]
append an in-order pipeline to an out-of-order one. Among other
fast path optimizations, FlexiTaint includes a form of filtering for
tainting analysis. However, both pipelines supports only up to four
bits of metadata per application word. Another system, Raksha
[15], proposes a separate pipeline that propagates and checks the
metadata transparently to the main processor’s pipeline. Registers,
caches, and memory are extended with fixed 4-bit tags. 

iWatcher [58] and AccMon [56] check memory accesses that
belong to pre-specified (i.e., “watched”) memory ranges but can-
not support propagation tracking monitors, such as MemCheck.
AccMon [56] extends iWatcher to reduce the required monitoring
activity using Bloom filters, but those cannot accommodate fre-
quent metadata state updates (e.g., stack updates) efficiently. 

INDRA [45] and Heapmon [44] use a helper thread to monitor
application’s execution. Heapmon employs filtering to reduce the
overhead of the heap monitoring for MemCheck. However, it does
not target other monitors, and does not provide mechanisms
needed to accelerate stack monitoring (e.g., stack updates). 
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DISE [13] targets the instrumentation cost of software monitors
by augmenting instruction fetch and decode with a “macro-expan-
sion” capability to dispatch handlers on the fly. BugSifter is
orthogonal to DISE and could filter the event stream before the
macro-expansion step.

A number of proposals suggest hardware support for a specific
monitor. Greathouse et al. [22] propose a demand-driven race
detection system that performs monitoring activity only when
there is sharing among threads. Inter-thread sharing is identified by
cache events using performance counters. However, this system
can result in inaccuracies (miss some races), and performance deg-
radation due to false sharing. Atom-Aid [30] leverages
Transactional Memory to detect and survive potential atomicity
violation bugs, by reducing the degree of memory interleavings.
Radish [18] is a software/hardware approach for vector-clock
based race detection, and maintains metadata in L1-D caches in
order to reduce the number of data race checks in software. Radish
requires specialized logic for SIMD-style vector clock computa-
tions. Hardbound [17] is a system that supports bounded-pointer
analysis to provide spatial memory safety for C programs. Watch-
Dog [34] is a hardware-based approach to provide safe and secure
manual memory management. The insights used to provide accel-
eration are specific to pointer use and hence not applicable to other
monitors.

Range cache [47] is a metadata cache designed to handle large,
multi-bit metadata. Unlimited Watchpoints [23] proposes a mecha-
nism for setting watchpoints on an arbitrary number of memory
locations and uses the range cache, along with bitmaps and a loo-
kaside buffer, to handle various spatial metadata patterns. There
are performance benefits when the monitor’s metadata show good
spatial behavior. However, performance benefits are lower when
byte-level watchpoints are necessary, or when the monitor per-
forms frequent range updates that may spawn multiple ranges,
such as stack updates.

Other proposals, such as FlexCore [16, 25], use FPGA tightly
coupled to the processor to implement monitoring support. Hard-
ware-only proposals that incorporate reconfigurable logic are able
to accommodate multiple monitors but face two issues: (i) they
require low-latency access to metadata, which is challenging for

large metadata (e.g., a vector clock per word for FastTrack [20])
and (ii) they require the reconfigurable fabric to be clocked at fre-
quency comparable to the monitored core. BugSifter's filtering
methodology can assist these monitors (i) by identifying whether
an event is filterable by accessing much less metadata kept in an
auxiliary map (common case is encoded with one-two bits) and (ii)
by filtering a large portion of application events allowing the
reconfigurable fabric to run at lower frequency. Similarly, Intro-
spective cores [33] implement monitoring support on a separate
logic die using 3D die stacking. This work is orthogonal to Bug-
Sifter and can benefit from the acceleration and the energy savings
demonstrated in our work.

8.2 Summary
Bug finding and general program monitoring are important

challenges that have received considerable interest from the
research community, which has proposed a number of acceleration
techniques to overcome the performance drawbacks of software-
only schemes. Thus, event filtering has been studied as a way to
accelerate monitoring [17, 44, 49]; however, prior proposals only
considered filtering for a narrow range of behaviors. In contrast,
BugSifter demonstrates a filtering framework capable of accom-
modating a wide range of bug-finding tools. Additionally,
BugSifter is unique in supporting partial filtering that provides a
performance benefit even when software intervention is required.
Finally, BugSifter accelerates stack events that have been ignored
in previous work. The combination of configurable filtering and
stack event acceleration enable a monitoring framework that is
both general and fast.

9 Conclusions

We present BugSifter, a new light-weight hardware design to
speed up instruction-grain monitoring that affords online bug
detection. BugSifter exploits common monitoring behavior to pro-
vide simple, programmable hardware logic to accelerate bug
finding. For frequently occurring instruction events, BugSifter
takes advantage of the fact that most of the time applications
behave correctly (i.e., invariant checks succeed) and that the moni-
tor’s metadata do not need to be updated (i.e., most updates are
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redundant). These observations allow the vast majority of the
costly software handlers invoked in response to instruction events
to be filtered out. Unlike prior work that does not monitor the
stack, BugSifter performs bulk metadata updates in simple hard-
ware to accelerate stack update events, which constitute up to 40%
of the execution time in the software-only monitoring framework.
To accelerate accesses to metadata both for filtered and unfiltered
events, BugSifter uses a dedicated metadata cache. While Bug-
Sifter filters 80-98% of software handlers, it maintains full
flexibility and generality by supporting software handler execution
whenever needed. Our evaluation on single- and multi-threaded
benchmarks using six diverse monitors reveals that BugSifter
reduces the overhead over unmonitored applications from up to 6x
incurred by previous techniques to just 1-1.8x, enabling continu-
ous monitoring in development and in the field. 
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