
ARTICLES
PUBLISHED ONLINE: 23 JUNE 2013 | DOI: 10.1038/NMAT3687

Mobility engineering and a metal–insulator
transition in monolayer MoS2

Branimir Radisavljevic and Andras Kis*

Two-dimensional (2D) materials are a new class of materials with interesting physical properties and applications ranging from
nanoelectronics to sensing and photonics. In addition to graphene, the most studied 2D material, monolayers of other layered
materials such as semiconducting dichalcogenides MoS2 or WSe2 are gaining in importance as promising channel materials for
field-effect transistors (FETs). The presence of a direct bandgap in monolayer MoS2 due to quantum-mechanical confinement
allows room-temperature FETs with an on/off ratio exceeding 108. The presence of high-κ dielectrics in these devices enhanced
their mobility, but the mechanisms are not well understood. Here, we report on electrical transport measurements on MoS2

FETs in different dielectric configurations. The dependence of mobility on temperature shows clear evidence of the strong
suppression of charged-impurity scattering in dual-gate devices with a top-gate dielectric. At the same time, phonon scattering
shows a weaker than expected temperature dependence. High levels of doping achieved in dual-gate devices also allow the
observation of a metal–insulator transition in monolayer MoS2 due to strong electron–electron interactions. Our work opens up
the way to further improvements in 2D semiconductor performance and introduces MoS2 as an interesting system for studying
correlation effects in mesoscopic systems.

Molybdenum disulphide (MoS2) is a layered transition-
metal dichalcogenide semiconductor1 with potential
applications that could complement those of graphene.

As neighbouring layers in transition-metal dichalcogenide crystals
are weakly bound through van der Waals interactions, single
atomic crystals composed of one or several layers can be extracted
using the micromechanical cleavage technique2 or liquid-phase
exfoliation3,4. Large-area MoS2 can also be grown using techniques
such as chemical vapour deposition5,6. The strong covalent bonding
betweenmetal and chalcogenide atoms results in a high mechanical
strength7 of MoS2 membranes8 and electrical breakdown current
densities at least 50 times higher than in copper9. In contrast
to graphene, the presence of a bandgap in monolayer MoS2 and
other semiconducting dichalcogenides allows the fabrication of
transistors that can be turned off and used as switches10. Logic
circuits11 and amplifiers12 with high gain based on monolayer
MoS2 have also been demonstrated, and superconductivity in
20-nm-thick MoS2 was achieved at high electron concentrations
using ionic-liquid gating13.

Monolayer MoS2 has electronic and optical properties that are
fundamentally different from those of thicker layers owing to
quantum-mechanical confinement14,15. Bulk MoS2 is an indirect
gap semiconductor whereas single-layer MoS2 has a direct gap14–17.
The lack of inversion symmetry results in strong coupling of
spin and valley degrees of freedom18–20 and could be used in
devices based on the valley Hall effect21. The atomic-scale thickness
(6.5 Å) of monolayer MoS2, smaller than the screening length, also
allows a large degree of electrostatic control over the electrical
conductivity. Together with the absence of dangling bonds, this
would allow transistors based on monolayer MoS2 to outperform
silicon transistors at the scaling limit22,23.

Previous measurements have shown that the room-temperature
mobility of bulk MoS2 is in the 200–500 cm2 V s−1 range and is
limited by phonon scattering24. Exfoliation of single layers onto
SiO2 results in a decrease of mobility down to the 0.1–10 cm2 V s−1
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range2,10. Charge traps25 present at the interface between the
substrate and the MoS2 layer have recently been proposed as the
dominant cause for such low room-temperature mobility in MoS2
devices. Understanding the origin of this mobility degradation
and finding a way to restore the mobility to bulk values or even
further enhance it would allow us to unlock the full technological
potential of this material.

The encapsulation of monolayer MoS2 in a high-κ dielectric
environment26 was shown to result in an increase of the room-
temperature mobility10. This was tentatively assigned to reduced
Coulomb scattering due to the high-κ dielectric environment26 and
possible modification of phonon dispersion in MoS2 monolayers.
An increase of mobility with the dielectric deposition, similar to
that in monolayers, was also observed in multilayer samples27,28
and monolayer samples with polymer gating29. Previous mobility
estimates for monolayer MoS2 are however based on two-contact
measurements and lack the information on their temperature
dependence. More accurate measurements are needed to gain a
better understanding of the various mechanisms that could limit
the mobility in monolayer MoS2. In the phonon-limited high-
temperature part, the mobility is expected to follow a µ ∼ T−γ
temperature dependence with γ = 1.69 and mobility reaching
a room-temperature value ∼410 cm2 V s−1 according to first-
principles calculations30. The deposition of a top-gate dielectric is
expected tomechanically quench the homopolar phononmode and
reduce the coefficient γ to 1.52.

Here, we report on mobility measurements in monolayer MoS2
based on the Hall effect. This allows us to remove the effect of
contact resistance and also directly measure the gate-modulated
charge density and gate capacitance necessary for the accurate
measurements of the field-effect mobility. Our devices are FETs in
single- and dual-gate configurations shown in Fig. 1. Degenerately
doped Si wafers covered with 270 nm thermally grown SiO2 serve as
the substrate and back-gate. MoS2 flakes are shaped into Hall bars
using oxygen plasma etching. A 30-nm-thick HfO2 layer deposited
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Figure 1 | Fabrication of single-gated and dual-gated MoS2 devices. a, Optical image of the MoS2 dual-gated device used in our measurements. The inset
shows the single-gate version of the same device before ALD deposition of HfO2 and top-gate electrode fabrication. Scale bars, 5 µm. b, Cross-sectional
views of devices based on single-layer MoS2 in a single-gate (top) and dual-gate (bottom) configuration. Gold leads are used for the source, drain and
voltage probes (V1,V2,V3 and V4). Voltage probes have been omitted from the drawing. The silicon substrate, covered with a 270-nm-thick SiO2 layer was
used as the back gate. The top-gate dielectric is a 30-nm-thick HfO2 layer.

by atomic layer deposition (ALD) forms the top-gate dielectric. The
optical image of one of our top-gated devices is shown in Fig. 1a.

We have performedmeasurements onmultiple devices in single-
and dual-gate configurations (Fig. 1b; for more details on devices
see Supplementary Table S1). By using the top gate we can induce
stronger electrostatic doping of our monolayer MoS2 owing to the
higher dielectric constant and smaller thickness of the HfO2 layer
(εr2 ∼ 19, dox2 (HfO2)= 30 nm) compared with the bottom-gate
SiO2 (εr1∼ 3.9, dox1 (SiO2)= 270 nm). For both types of device, we
measure the four-probe conductance defined as G= Ids/(V1–V2),
where Ids is the drain current and V1–V2 is the measured voltage
difference between the voltage probes.

A typical conductance, G, dependence on the gate voltage
for a single-gate device is shown in Fig. 2a, measured up to
the back-gate voltage Vbg = 40V that corresponds to a charge
concentration of n2D ∼ 3.6 × 1012 cm−2 calculated using the
parallel-plate capacitor model, with n2D = Cox11Vbg/e, where
Cox1= ε0εr1/dox1, ε0= 8.85×10−12 Fm−1, e = 1.602× 10−19 C is
the elementary charge and 1Vbg = Vbg–Vbg,th. The value of
threshold voltage Vbg,th varies for each device and is close to its
pinch-off voltage estimated from the conductance curves. We find
that the temperature variation of G in a single-gate monolayer
device (Fig. 2b), in the high-temperature regime (80K≤T≤280K),
can bemodelled with thermally activated transport:

G=G0(T )e−Ea/kBT

where Ea is the activation energy, kB is the Boltzmann constant and
G0(T ) is the temperature-dependent parameter extracted from the
fitting curves. The good agreement of the data with the activation
transport model at higher temperatures is suggestive of charge
transport that is thermally activated. At temperatures T ≤ 80K
we observe that the variation of G weakens for almost all Vbg
values. This can be explained with hopping through localized
states becoming dominant at lower temperatures25, driving the
system into a strongly localized regime. The inset of Fig. 2a shows
double sweeps of Ids–Vds characteristics for several temperatures

at Vbg = 30V with negligible hysteresis for all temperatures and
nonlinear behaviour vanishing completely for temperatures above
40K, excluding the possibility of the contact resistance or Schottky
barrier influencing the mobility extraction. Figure 2c shows the
temperature dependence of mobility in this device. Mobility is
extracted from the conductance curves in the 30–40V range of
back-gate voltage Vbg, using the expression for field-effect mobility
µ = [dG/dVbg] × [L12/(WCox1)]. The temperature dependence is
characterized by a peak at ∼200K. Below 200K, we observe a
decrease of the mobility as the temperature is lowered down to
4K. This behaviour is consistent with mobility limited by scattering
from charged impurities31. Increasing the temperature above 200K
also results in a strong decrease of the mobility from the peak value
of 18 cm2 V s−1, related to electron–phonon scattering that becomes
the dominant scattering mechanism at higher temperatures30. We
fit this part of the curve with the generic temperature dependence
of the mobility µ ∼ T−γ , where the exponent depends on the
dominant phonon scattering mechanism. From the fit we find the
value of γ ≈1.4, in good agreement with theoretical predictions for
monolayer MoS2 (γ ≈ 1.69; ref. 30).

We now examine dual-gated devices. Figure 3a shows a typical
top-gating dependence of the four-contactG and sheet conductivity
σ , defined as σ = GL12/W with L12 = 1.55 µm and W = 1.9 µm
being the distance between the voltage probes and the device
width, respectively. The use of the top gate allows a higher degree
of doping, up to n2D ∼ 3.6× 1013 cm−2 (Supplementary Fig. S1),
much higher than typical values for single-gated devices (n2D∼ 4×
1012 cm−2). We observe here an insulating behaviour that persists
untilVtg=2.2V.At this point, corresponding ton2D∼1×1013 cm−2
(as measured from the Hall effect), monolayer MoS2 enters a
metallic state and the associated metal–insulator transition32 (MIT)
is observed, the first of its kind in a 2D semiconductor (Fig. 3a).
This transition manifests itself as a crossing-over between conduc-
tance versus gate voltage curves acquired at different temperatures,
indicating two different regimes. For gate voltages corresponding to
charge densities smaller than n2D∼ 1×1013 cm−2, monolayer MoS2
behaves as a classical semiconductor with conductance decreasing
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Figure 2 | Electron transport in single-gate monolayer MoS2 supported on
SiO2. a, G as a function of Vbg for a single-gate monolayer MoS2 device
acquired at different temperatures. The inset shows double sweeps of
Ids–Vds characteristics for several temperatures at Vbg= 30 V with
negligible hysteresis for all temperatures. b, Arrhenius plot of G for different
values of Vbg. Solid lines are linear fits to the data showing activated
behaviour for limited regions of T and Vbg (charge density). c, The
dependence of µ on T shows a pronounced low-temperature regime
consistent with transport dominated by scattering from charged impurities.
Above∼200 K, µ is limited by phonon scattering and follows a µ∼ T−1.4

dependence. Error bars are estimated on the basis of uncertainties in
determining the voltage drop across the channel.

as the temperature is decreased, whereas for higher gate voltages,
corresponding to charge densities above n2D ∼ 1× 1013 cm−2, the
conductance increases as the temperature is decreased, which is the
hallmark of metallic behaviour. In the inset of Fig. 3a are shown
double sweeps of Ids–Vds characteristics for several temperatures at
Vtg = 0V with negligible hysteresis for all temperatures, excluding
the possibility of hysteresis influencing our conclusions related

to MIT. Fig. 3b shows the temperature dependence of the device
conductance for different values of the charge density n2D. We
can see here more clearly that above the critical charge density
of 1× 1013 cm−2, the conductance of monolayer MoS2 increases
with decreasing temperature, which is the manifestation of metallic
behaviour. For charge densities smaller than 1×1013 cm−2, the con-
ductance decreases with the temperature, corresponding to semi-
conducting behaviour. This striking feature occurs when the con-
ductivity is of the order of the quantum conductance e2/h, the min-
imum ofmetallic conductivity, which was considered not to exist in
2D electronic systems according to the scaling theory of localization
based on non-interacting electronic gases proposed in 197933.

The first step in our analysis is to define the critical point of
the MIT. Inspecting Fig. 3a, we can see that each two consecutive
isotherms of G(Vtg) cross each other at some value of Vtg. These
intersections are temperature dependent, so an unambiguous
determination of the transition is not possible. Fortunately,
at temperatures under 80K, the crossing point seems to be
independent of the temperature and emerges at a well-defined
point Vtg = 2.2V, clearly separating the metallic and insulating
phases. This transition point is the direct consequence of quantum
interference effects of weak and strong localization. At lower
carrier concentrations (< n2D ∼ 1× 1013 cm−2) the system is in
the insulating state and strong localization34 prevails. This charge
density is comparable to that recorded for 20-nm-thick MoS2
(ref. 13). As the top-gate bias is increased above Vtg = 2.2V
(concentration above n2D∼1×1013 cm−2), the system is driven into
a metallic phase and weak localization seems to be the dominant
effect. The observed quantum critical point of MIT in our devices
is the consequence of a strongly correlated 2D electron gas35. As the
system is confined in two dimensions, strong Coulomb interactions
between electrons could cause a large ratio36 rs between potential
(Coulomb, EC) and kinetic (Fermi, EF) energy:

rs=
EC

EF
=

nv
a∗B
√
πn2D

=
nvm∗e2

4πεh̄2
√
πn2D

where nv is the number of degenerate valleys in the spectrum,
a∗B = (4πεh̄2)/(m∗e2) is the effective Bohr radius, with ε being
the dielectric constant and m∗ is the effective electron mass. A
system with rs� 1 cannot be considered as non-interacting and
the conclusion of scaling theory of localization33 is not valid in
this regime. In the case of monolayer MoS2 we obtain rs ≈ 4.2,
considering m∗ = 0.45mo (ref. 22), ε = 7.3εo (ref. 37), a double-
degenerate conduction band around the K point (nv = 2) and an
electron concentration at the transition of n2D∼ 1×1013 cm−2.
This value is similar to those previously measured in the case of
GaAs/AlGaAs heterostructures38 (rs ∼ 4–5) and Si metal–oxide–
semiconductor FETs39 (rs ∼ 8). This shows that monolayer MoS2
is a very attractive 2D system with strong Coulomb interactions,
making the high-rs regime easier to reach than in cleaner Si
metal–oxide–semiconductor FETs or n-GaAs-based devices40. The
reason for this is the relatively high effective mass (for Si: 0.19 mo;
n-GaAs: 0.07 mo) and lower dielectric constant (for Si: 11.7 εo;
n-GaAs: 12 εo) of monolayer MoS2.

We can now also investigate the Ioffe–Regel criterion41–43 for
2D semiconductors, which predicts the existence of a MIT when
the parameter kF · le satisfies the criterion kF · le ∼ 1, with the
Fermi wave vector kF =

√
2πn2D, and mean free path of electrons

le = h̄kFσ/n2De2. According to this criterion, for kF · le� 1 the phase
is metallic whereas for kF · le� 1, the phase is insulating. For our
device, at the crossing point of Vtg = 2.2V, we have kF · le ∼ 2.5, in
good agreement with the theory. Our other devices also exhibit kF ·le
close to 2 (Supplementary Table S1).

The temperature dependence of the mobility is extracted from
conductance curves in the Vtg = 1–5V range, using the expression
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Figure 3 | Electron transport in dual-gated monolayer MoS2. a, G and σ for
different values of Vtg and T. For low values of Vtg, σ decreases with T.
Above Vtg∼ 1–2 V, monolayer MoS2 enters a metallic state, with increasing
σ as T is decreased. The inset shows double Ids–Vds sweeps.
b, T-dependence of σ for different values of n2D. c, µ is practically
independent of T under 30 K, indicating screening of charged impurities
due to deposition of the top-gate dielectric. Above∼100 K, µ decreases
owing to phonon scattering and follows a T−γ dependence with
γ =0.55–0.78. The strongly reduced value of the exponent γ with respect
to the single-gated device (γ = 1.4) is indicative of phonon mode
quenching. Error bars are estimated on the basis of uncertainties in
determining the voltage drop across the channel.

for field-effect mobility µ = [dG/dVbg] × [L12/(WCtg,Hall)], with
capacitance Ctg,Hall extracted from Hall-effect measurements. For
all dual-gate devices that we have characterized, we observe
a monotonous increase of the mobility as the temperature is
decreased with a saturation at low temperatures. Figure 3c shows
the temperature dependence of mobility for the main device
presented here. The mobility at 4 K is 174 cm2 V s−1, reaching

63 cm2 V s−1 at 240K for n2D ∼ 1.35×1013 cm−2. This is a distinct
difference from devices fabricated in a single-gate configuration
(Fig. 2c).We relate this behaviour to effective damping of Coulomb
scattering on charged impurities due to the presence of the high-κ
dielectric and the metallic top gate that changes the dielectric
environment ofmonolayerMoS2 (ref. 27). At low temperatures, the
influence of charged impurities on mobility is stronger for lower
electron densities. For example, at 10 K for n2D∼ 0.76×1013 cm−2
we extracted a mobility of 132 cm2 V s−1 whereas for n2D ∼ 1.35×
1013 cm−2 we extracted a mobility of 184 cm2 V s−1. In the phonon-
limited part between 100 and 300K, the mobility can be fitted
to the expression µ ∼ T−γ , with the exponent γ being in the
0.55–0.78 range for electron concentrations n2D between ∼ 0.76×
1013 cm−2 and 1.35×1013 cm−2 (Fig. 3c). For all of our double-gated
monolayer devices we find this exponent to be between 0.3 and 0.78,
whereas for one double-layer device we find a value of 1.47. These
values for monolayer MoS2 are much smaller than the theoretically
predicted value of γ ≈ 1.52 (ref. 30) or bulk crystals (γ ≈ 2.6;
ref. 24). This indicates that in addition to the quenching of the
homopolar phonon mode, other mechanisms might influence the
mobility of monolayer MoS2 in dual-gated devices, for example,
phonon screening induced by the metallic top gate or a change
in the strength of electron–phonon coupling. Further theoretical
modelling could shedmore light on thesemechanisms.

Just as in the case of single-gated devices, we model the
temperature dependence of G in the insulating regime of our
double-gated devices with thermally activated behaviour (Fig. 4a).
Here, we observe that the activated behaviour fits our data very
well in the 100–250K temperature range, with extracted activation
energies Ea shown in Fig. 4b.

We have performed Hall-effect measurements on all MoS2
devices covered with a dielectric layer presented here to accurately
determine themobility, density of charge carriers and the capacitive
coupling of MoS2 layers to control gate electrodes (bottom or
top gates). Figure 5a shows the transverse Hall resistance Rxy of
our main dual-gated monolayer device, which follows a linear
dependence on the magnetic field B. From the inverse slope of Rxy
we can directly determine the electron density n2D in the MoS2
channel. The variation of the electron density extracted from Rxy
as a function of the top-gate voltage Vtg is shown in Fig. 5b. The
slope of this dependence gives directly the capacitance Ctg,Hall =

3.17× 10−7 F cm−2 used in calculation of the field-effect mobility
(Fig. 3c). We also directly measure the capacitive coupling between
the channel and the bottom gate in devices where theMoS2 channel
is covered with a dielectric layer and in devices with disconnected
top gates and compare them with the geometric capacitance per
unit area calculated using the parallel-plate capacitance model
Cgeom = ε0εr/dox,bottom, where dox,bottom is the thickness of the
bottom-gate oxide10. We find that encapsulation in a dielectric
can increase the capacitive coupling from Cgeom by a factor of 2.4,
similarly to graphene devices45, and disconnecting the top gate
increases the capacitive coupling by a factor of 53 (Supplementary
Fig. S4). These measurements prove that the capacitance can
be underestimated in a complicated dielectric environment, both
in the case of disconnected top gates10–12 and encapsulation44,46,
resulting in mobility values that are probably overestimated. To
accurately measure the field-effect mobility of FETs based on 2D
materials one needs to measure the actual capacitance using either
cyclic voltammetry28 orHall-effectmeasurements as outlined here.

In conclusion, we have performed conductance and mobility
measurements on monolayer MoS2 FETs in single- and dual-
gate configurations. Using a top gate and solid-state dielectrics,
we were able to tune the charge carrier density to more than
n2D ∼ 3.6×1013 cm−2, inducing the transition from the insulating
to the metallic phase in monolayer MoS2. A quantum critical point,
separating the metallic phase, stabilized by electronic interactions,
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from the insulating phase, where disorder prevails over the
electronic interactions, has been identified. This transition point
is in good agreement with theory and shows that monolayer
MoS2 could be an interesting new material system for investigating
low-dimensional correlated electron behaviour. The MIT could
also be used for new types of switch, especially fast optoelectronic
switches based on differences in optical transmission inmetallic and
insulating states47. In addition to allowing high charge densities,
the high-κ HfO2 used as the top-gate dielectric also changes the
dielectric environment and effectively screens Coulomb scattering,
which results in mobility improvement in dual-gate devices.
Furthermore, the presence of the top-gate dielectric and metal
electrode results in a quenching of the homopolar mode, which
is polarized in the direction normal to the layer, leading to a
strong decrease of the mobility exponent γ in µ ∼ T−γ . Our
results provide a new picture of the mobility issue in different
configurations of MoS2 devices, which should shed new light on
the directions for further improvements in device quality and
characterization techniques.

Methods
MoS2 flakes were exfoliated from molybdenite crystals (SPI Supplies Brand
Moly Disulphide) by the Scotch-tape micromechanical cleavage technique.

ALD was performed in a Beneq system using the reaction of H2O with
tetrakis(ethyl-methylamido)hafnium. Electrical characterization was carried
out using National Instruments DAQ cards, SR570 current preamplifiers,
SR560 low noise voltage preamplifiers, and an Oxford Instruments Heliox
cryo-magnetic system.
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