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Synopsis Animals have to coordinate a large number of muscles in different ways to efficiently move at various speeds

and in different and complex environments. This coordination is in large part based on central pattern generators

(CPGs). These neural networks are capable of producing complex rhythmic patterns when activated and modulated

by relatively simple control signals. Although the generation of particular gaits by CPGs has been successfully modeled at

many levels of abstraction, the principles underlying the generation and selection of a diversity of patterns of coordi-

nation in a single neural network are still not well understood. The present work specifically addresses the flexibility of

the spinal locomotor networks in salamanders. We compare an abstract oscillator model and a CPG network composed

of integrate-and-fire neurons, according to their ability to account for different axial patterns of coordination, and in

particular the transition in gait between swimming and stepping modes. The topology of the network is inspired by

models of the lamprey CPG, complemented by additions based on experimental data from isolated spinal cords of

salamanders. Oscillatory centers of the limbs are included in a way that preserves the flexibility of the axial network.

Similarly to the selection of forward and backward swimming in lamprey models via different excitation to the first axial

segment, we can account for the modification of the axial coordination pattern between swimming and forward stepping

on land in the salamander model, via different uncoupled frequencies in limb versus axial oscillators (for the same level

of excitation). These results transfer partially to a more realistic model based on formal spiking neurons, and we discuss

the difference between the abstract oscillator model and the model built with formal spiking neurons.

Introduction

Animals change gait to locomote at different speeds

or in different environments or to reach specific

goals, each gait being characterized by a specific

pattern of activation of the muscles. In both inver-

tebrates and vertebrates, the proper coordination of

muscles for locomotion relies to a large extent on

neural networks called central pattern generators

(henceforth CPGs), which are capable of generating

coordinated rhythmic outputs from simple input sig-

nals such as tonic excitation (Grillner 2006). The

CPG networks for locomotion in vertebrates are

located in the spinal cord and are modulated by

descending commands from the brain stem and by

sensory feedback (Rossignol et al. 2006; Ryczko and

Dubuc 2013).

Here, we consider possible designs for a flexible

salamander’s CPG capable of generating a wide range

of intersegmental coordination patterns. As one of

the living animals closest to early tetrapods—its

morphology has been relatively stable for the past

150 million years (Gao and Shubin 2001)—and as

an amphibian, the salamander is a good candidate

for investigating the neural and morphological

changes that accompanied the transition of verte-

brates from aquatic habitats to land. Its nervous
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system is relatively simple for a tetrapod

(Nieuwenhuys et al. 1998), showing remarkable sim-

ilarities to that of the lamprey (Ryczko et al. 2010b),

a primitive jawless fish that uses an anguilliform

swimming gait close to that of the salamander.

These similarities allow us to build on the vast liter-

ature on lampreys. The lamprey has one of the best-

documented and most extensively modeled central

nervous systems among vertebrates. The relative sim-

plicity of its nervous system makes modeling studies

more tractable, and yet much of the knowledge

gained can be used as a guide to understand the

locomotor network of other vertebrates (Grillner

2003).

Modeling work on salamander locomotion has

concentrated on swimming and forward stepping

on land. During swimming, electromyographic re-

cordings of epaxial muscles show waves of muscle

activation traveling from the head to the tail and

alternating between the left and right sides of the

body, while during forward stepping on land, a syn-

chronous activation of ipsilateral muscles (i.e., a

standing wave) is typically observed in the trunk

(Frolich and Biewener 1992; Delvolvé et al. 1997).

However, experimental data indicate that the

salamander’s spinal networks are capable of a large

diversity of intersegmental coordination patterns in

the isolated spinal cord (Ryczko et al. 2009) and

in the intact animal (Cabelguen et al. 2010). For

example, rostrocaudal traveling waves are some-

times observed in the trunk during forward stepping.

The similarities between lampreys and salaman-

ders have led to the notion that the organization

of the lamprey’s nervous system can serve as a blue-

print for the axial networks of the salamander. This

has been exploited in various modeling studies,

which posit that a lamprey-like swimming circuit

is augmented with neural networks that govern

limb movements (Bem et al. 2003; Ijspeert et al.

2005; Ijspeert et al. 2007; Harischandra et al. 2011;

for a review, see Bicanski et al. 2013a).

Harischandra et al. (2011) have studied the tran-

sitions between two stepping gaits: a walking gait

with traveling waves of muscle activation in the

trunk (similar to the swimming pattern) and

the usual walking trot, with standing waves in the

trunk. In their model, the transitions between

the traveling wave and standing wave patterns in

the trunk were governed by the connections from

limb to axial oscillators. These connections were

global, that is, targeting all axial oscillators, and im-

posed a standing wave in the trunk during trotting.

The connections were weakened during the walking

gait to allow the formation of a traveling wave of

activity in the trunk. This mechanism for the selec-

tion of a traveling or standing wave is similar to that

used in the work of Ijspeert et al. (2007), in which

connections from limb to axial oscillators are silent

during swimming as the limb oscillators are satu-

rated, but active during forward stepping. In both

studies, the extensive couplings from limb to axial

oscillators (Fig. 1A) lead to a poor flexibility of the

trunk and tail activity patterns when the limb oscil-

lators are active, as each limb oscillator forces syn-

chronous oscillations in all of the oscillators to which

it projects.

In the model of Ijspeert et al. (2007), the axial

network is also rigid by itself. This is in contrast to

recent lamprey models, in which an adjustment of

the excitation at one end of the cord can be used to

increase or decrease the intersegmental phase-lag

while keeping it uniform along the body (Kozlov

et al. 2009). The axial network in Fig. 1A would

require adjusting the uncoupled frequency at both

ends of the chain in opposite amounts. An adjust-

ment at only one end would give a gradient of

phase-lags along the cord (Cohen et al. 1982).

We investigated two solutions that may rectify the

above shortcomings of earlier models. One is a net-

work in which the couplings do not constrain the

value of the intersegmental phase-lag but simply

ensure that it is uniform along the cord. The

second is inspired by recent models of the lamprey

CPG, which include an asymmetry between rostro-

caudal and caudorostral intersegmental couplings. In

this approach, we show how the introduction of

asymmetric intersegmental couplings in combination

with local couplings between limb and axial oscilla-

tors (Fig. 1D) yields a flexible CPG network, in

which the uncoupled frequency of the limb oscilla-

tors affects the intersegmental phase-lags along the

cord. This holds true at two levels of abstraction,

in an oscillator network and in a network composed

of formal spiking neurons, which operates on prin-

ciples inspired by biologically detailed models

(Bicanski et al. 2013b). The uniformity of interseg-

mental phase-lags in the networks of the mid-trunk

and tail is preserved. Finally, we show that this

mechanism can account for the transition of gait

between swimming and stepping at both levels of

abstraction.

Methods

The oscillator model

The oscillator model is built on abstract phase oscil-

lators with controlled amplitude. The dynamics of
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Fig. 1 Network topologies. Thicker arrows in (A–D) indicate stronger couplings. (A) Full salamander network configuration in the

abstract oscillator model of Ijspeert et al. (2007), with global couplings from limb (dark gray) to axial (light gray) oscillators. (B) An

example connectivity for an axial CPG that allows for arbitrary intersegmental phase-lags as part of the network state. The phase-lag

can be controlled through transient perturbations applied to one of the boundary segments (dark gray oscillators). (C) Axial network

with dominantly descending intersegmental couplings. The intersegmental phase-lag can be adjusted by varying the uncoupled frequency

of the first segment (dark gray) relative to other oscillators, as in lamprey models (Kozlov et al. 2009). (D) Full salamander network

using local projections from limb (dark gray) to axial (light gray) oscillators and dominantly descending intersegmental couplings.

(E) Schematic representation of the default connectivity (descending intersegmental couplings only) within and among segments in the

integrate-and-fire model. Note that the full model consists of 16 axial segments and 2 limb segments (one half-center per limb). Limb

segments do not receive connections from the axis. Diagonally opposed half-centers are coupled with inhibitory connections.

Excitatory neurons (E) and inhibitory neurons (I) are represented in light and dark gray, respectively. Only connections originating from

the upper-left quadrant (i.e., originating from one hemisegment) are shown. See Table 3 for densities of all connections.
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each oscillator is described by the following equa-

tions:

_�i ¼ 2��i þ
X

j
wijrj sinð�j � �i � ’ijÞ ð1Þ

_ri ¼ aðRi � riÞ ð2Þ

xi ¼ rið1þ cos �iÞ ð3Þ

Here, �i is the phase of oscillator i (the phase of an

uncoupled oscillator increases linearly). The oscilla-

tory output xi is calculated from the cosine of the

phase and is maximal when the phase is a multiple

of 2�. ri is the amplitude, �i the uncoupled fre-

quency, Ri the target amplitude, and a is a constant.

The coupling from oscillator j to oscillator i is char-

acterized by a weight wij and phase bias ’ij. Different

connectivities were considered as described in the

‘Results’ section and illustrated in Fig. 1A–D; arrows

in the figure correspond to nonzero weights wij in

the corresponding coupling term of Equation (1).

The phase bias ’ij for intersegmental couplings de-

pends on the model, but for couplings between two

axial oscillators in the same segment or between two

limb oscillators, it is always � (i.e., 50% of a cycle) in

order to maintain an antiphase relationship.

The neuron model

The formal spiking neuron model is a standard

integrate-and-fire (henceforth IF) neuron, extended

by adaptation variables [see Equation (4)], where u

denotes the membrane potential, g the leak conduc-

tance, and Erest the resting potential. The two adap-

tation variables (oi) act on different time scales (in

the order of 100 ms versus 1000 ms) and are scaled

by constants ai. I and R are the input current and

the input resistance. The sum indicates the summa-

tion of all synaptic currents (syn stands for NMDA,

AMPA or GLYC), with gsyn the synaptic conductance

and wsyn the synaptic weight.

� _u ¼�gðu � Erest Þ � a1o1 � a2o2 þ RI

þ
X

wsyngsynðu � ErevsynÞ
ð4Þ

�w i
_oi ¼ �oi ð5Þ

�syn _gsyn ¼ �gsyn ð6Þ

When the neuron reaches the firing threshold, the spike

time is recorded, the membrane potential is reset, and

the adaptation variables are incremented by �oi with

each spike and then decay exponentially [see Equation

(5)]. After a spike, the neuron is clamped to the resting

membrane potential value for a refractory period of

5 ms. Inhibitory and excitatory synaptic conductances

are incremented by �gsyn after each received spike and

are also subject to exponential decay, as per Equation

(6) (Vogels and Abbott 2009). Inspired by the model-

ing studies on the lamprey (Tråvén et al. 1993), and

recently the salamander (Bicanski et al. 2013b), excit-

atory postsynaptic potentials have a slowly decaying N-

methyl-D-aspartic acid (NMDA)-like component and

a fast (�)-a-amino-3-hydroxy-5-methylisoxazole-4-

propionic acid (AMPA)-like component. All neuron

parameters are summarized in Table 2. Synaptic

weights are given in Table 3.

The IF network

Figure 1E depicts the segmental and intersegmental or-

ganization of the basic IF network model for the sala-

mander’s spinal CPG used in this study. Each side of

the symmetric segmental network consists of 25 spar-

sely interconnected excitatory neurons, which drive a

population of 20 inhibitory neurons, which in turn

project to the contralateral side of the segment. The

connection densities within the salamander’s spinal

networks are unknown and have been treated as open

parameters. The ratio between the number of excit-

atory and inhibitory neurons was inspired by the

work of Cheng et al. (2002). Recent experimental

data suggest that excitatory cross-connections exist be-

tween half-centers (Ryczko et al. 2010a). It is unknown

whether these target contralateral excitatory interneu-

rons or contralateral motoneurons in the salamander

(for the lamprey, see Buchanan 1982; Buchanan and

McPherson 1995; for review, see Ryczko et al. 2010b).

In the present study, we omit motoneurons and the

commissural excitatory connections. The axial network

consists of 16 identical segments. Intersegmental con-

nections from ipsilateral excitatory neurons and con-

tralateral inhibitory neurons extend only caudally in

the default network (network 1, see Table 3). The

limb oscillators are implemented as two separate

segmental networks (Note that these simplified limb

oscillators only generate the rhythm of the limb net-

works. Actual limb centers that control multi-joint

limbs require more complex networks). Half-centers

of the limbs project only to the nearest two axial

segments, with decreasing connection probability.

Limb-to-axis connections are inhibitory toward the

contralateral side and excitatory toward the ipsilateral

side. Variants of the default network include ascending

intersegmental connections in the axis (network 2, see

Table 3) and two variants of network 2 with slight

modifications of the connectivity (networks 3 and 4,

see Table 3) that help recover the performance of the
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default network. All parameters are summarized in

Table 3.

Quantification of gait parameters

The patterns of activity of the various networks are

characterized by measuring two quantities: the oscil-

lation or bursting frequency and the phase-lag be-

tween the oscillations or bursts in consecutive

segments. In the IF model, spikes are counted at

each time-step and for each hemisegment. A cubic

spline fit from the Mathworks Matlab spline toolbox

(function csaps) is applied to obtain a smooth signal.

A heuristic algorithm is used to determine the onset

and offset of each burst, as described in Fig. 2. The

timing of the burst is calculated from the centroid of

the surface enclosed by the onset, the offset, and the

spline curve. The same method is applied to the

output signal of the oscillators, without the spline

filtering, since no spikes are present in this case.

The zero-crossings of the oscillations are used as

onsets and offsets.

Results and discussion

In the following, we present our iterative approach

to modeling a flexible salamander’s CPG, starting

with the more abstract models.

The coordination pattern as a network state

CPGs are traditionally conceived as producing a spe-

cific pattern of activity for given inputs from the

brain and sensory feedback. In the case of multistable

networks, the same parameters can support a few

different patterns of activity and a transient pertur-

bation of the network state suffices to switch from

one pattern to another (Briggman and Kristan 2008).

Here, we extend this notion of multistability and

consider the speculative hypothesis that the CPG net-

work might support a continuum of coordination

patterns. In the case of the salamander’s axial CPG,

the role of the intersegmental couplings would then

not be to establish a particular phase-lag, but to

ensure the uniformity of the phase-lag—any phase-

lag—in a part of the spinal cord (e.g., the mid-trunk

or the tail). Such a network would store the inter-

segmental phase-lag as part of its state. The phase-lag

could be altered at any time by perturbing a part of

the network, causing a modification of the local

phase-lag that the couplings would then replicate in

the rest of the network.

In the abstract oscillator framework, we can

explicitly design a network with this property.

Restricting the analysis to the axial CPG, we can

use, for example, the axial network of Fig. 1B, with

identical coupling weights wij and phase biases ’ij¼ 0

for all intersegmental couplings (i.e., symmetrical

ascending and descending couplings). Note that

compared with the axial network of Fig. 1A, we

have removed couplings from the second segment

to the first segment, and from the second-to-last

segment to the last segment. As a result, every oscil-

lator receives either no intersegmental coupling (first

and last segment, dark gray oscillators) or couplings

both from their rostral and caudal neighbor. Both

couplings have the effect of ‘‘pulling’’ the receiver

to oscillate in phase with the sender. The effect is

strongest for the coupling from the oscillator that

has the largest phase difference to the receiver. The

receiver will thus be attracted toward this oscillator

until the attraction from the caudal and rostral

neighbors is balanced, that is, until the phase-lag

from the rostral neighbor to the receiver equals the

phase-lag from the receiver to the caudal neighbor.

The couplings thus have the desired effect of estab-

lishing a uniform intersegmental phase-lag along the

cord, without constraining the actual value of the

phase-lag. Instead, the phase-lag is determined by

the phase of the oscillators in the first and last seg-

ments, which receive no coupling from other seg-

ments: the sum of the intersegmental phase-lags

established by the network will be equal to the

Fig. 2 Automated processing of spike data generated by the IF

model. The number of spikes in a hemisegment is counted at

each time-step of 1 ms (thin black line, only one tenth of data

points shown for clarity) and filtered with a cubic spline fit (thick

black line). The onset and offset of each burst are estimated by

tracing a line from the local maximum to the local minimum on

each side (dashed lines) and finding the points on the spline curve

that are furthest away from these lines (open markers). The burst

time is calculated as the centroid (filled marker) of the surface

delimited by the spline curve and the two open markers.
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difference in phase between the first and last seg-

ment, modulo 2�. The distribution of intersegmental

phase-lag produced by the network is shown in

Fig. 3A. The phase-lag can be changed by perturbing

one of the boundary segments. This provides a

simple mechanism for the control of the oscillation

pattern. For example, Fig. 3B illustrates how a tran-

sient perturbation to the first segment can be used to

obtain a different oscillation pattern. Here, the per-

turbation is added to the derivative of the phase

variable in Equation (1). A positive value accelerates

the first segment and thus increases the phase-lag to

the second oscillator, which will be replicated by the

couplings in the rest of the network. A longer per-

turbation will yield an even higher phase-lag between

the first and second oscillators, and eventually a

higher intersegmental phase-lag in the whole

network.

A lamprey-inspired flexible network

We present here an alternative design for a flexible

CPG network. The design is more conventional than

that of the previous section, being directly inspired

by models of the lamprey CPG. Using a detailed

simulation of the lamprey CPG based on the

Hodgkin–Huxley formalism, Kozlov et al. (2009)

showed that the intersegmental phase-lag could be

increased or decreased by adjusting the amount of

excitation provided to the first CPG segments, com-

pared with the rest of the spinal cord. However, they

mention that an asymmetry in the rostrocaudal

versus caudorostral intersegmental couplings (using

more extensive projections in the rostrocaudal direc-

tion) is important for maintaining a uniform phase-

lag along the body. A schematic representation of a

lamprey network with asymmetrical couplings is

shown in Fig. 1C.

In the model of Fig. 1B, transient perturbations to

the first oscillators were sufficient to change durably

the intersegmental phase-lag in the whole network.

In the model of Fig. 1C, however, a persistent in-

crease or decrease of the intrinsic frequency of the

first oscillators is required to maintain a higher or

lower intersegmental phase-lag, respectively. As soon

as the adjustment is removed, the phase-lag will

revert to the nominal value ’ij.

We built a model of the salamander CPG based on

the second principle (Fig. 1C), by taking the network

of Fig. 1A and not only removing most of the cou-

plings from limb to axial oscillators but also intro-

ducing an asymmetry in the intersegmental couplings

by using five times higher coupling weights in the

Fig. 3 (A) Distribution of phase-lags obtained with 1000 simulations of the network of Fig. 1B and random initial conditions, with �i¼ 1

and Ri¼ 1 for all oscillators, wij¼ 5 and ’ij¼ 0 for all couplings, and a¼ 1. For each simulation, the mean and standard deviation across

positions along the cord and across all oscillations were calculated. (B) The bottom part of the figure shows the output of the left

oscillator in each segment (thin black lines) and the area used to calculate the timing of the oscillation (light gray). The lag between

consecutive segments is illustrated with thick black lines. A transient perturbation of 1 s applied to the first segment (top part of the

figure) makes the network switch from negative to positive phase-lags.

Table 1 Parameter values for the lamprey-inspired oscillator

model of Fig. 1D

ei 1 (axial oscillators)

0.5 (limb oscillators)

dth
i 5 (axial oscillators)

2.5 (limb oscillators)

wij 5 (lateral and descending couplings)

1 (ascending couplings)

’ij 11.1% (descending couplings)

�11.1% (ascending couplings)

a 5
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rostrocaudal direction (Fig. 1D). The parameter values

are given in Table 1. Using different uncoupled fre-

quencies for the limb and axial oscillators in this net-

work results in a continuous range of phase-lags and

oscillation frequencies, as shown in Fig. 4.

The mechanism of intersegmental phase-lag mod-

ulation can be understood intuitively. With caudor-

ostral couplings being weaker than rostrocaudal

couplings, a segment will entrain a slower caudal

neighbor to a frequency close to its own. However,

the slower segment will only follow the faster one

after a delay, increasing the phase-lag between the

two segments. This effect propagates along the axis,

ensuring a uniform frequency and phase-lag in the

whole chain. The effect of a slow segment on a faster

caudal neighbor is similar, except in that it is now

the rostral segment that will lag on the caudal one,

causing a decrease in the phase-lags, which can even

become negative.

This mechanism regulates the phase-lag in a similar

manner to the trailing oscillator hypothesis proposed

for the lamprey CPG (Matsushima and Grillner 1992).

However, in this work the authors proposed equivalent

couplings in rostrocaudal and caudorostral directions.

In the present model, we find that in order to maintain

a uniform phase-lag along the chain of oscillators,

asymmetric couplings are important. Symmetric inter-

segmental couplings would lead to an attenuation of

the effect of the frequency difference as it propagates

down the axis, since a segment would not adapt to the

frequency of its rostral neighbor, but rather a value

between its intrinsic frequency and that of its neighbor.

As a consequence, nonuniform phase-lags develop

along the axis. To obtain uniform phase-lags, one has

to adjust the uncoupled frequency of the first and last

segments in opposite amounts (Cohen et al. 1982).

As mentioned previously, the lamprey model of

Kozlov et al. (2009) showed similarly that intersegmen-

tal coupling asymmetry was important to generate a

uniform phase-lag along the cord. There is ample ex-

perimental evidence for such asymmetry in the lam-

prey, though there is conflicting evidence regarding the

direction of the dominant couplings (Hill et al. 2003).

In the model of Kozlov et al. (2009), a lasting increase

or decrease of the excitation to the first segments is

used to select between forward and backward swim-

ming, that is, between positive and negative interseg-

mental phase-lags (Fig. 1C). In our model, this

adjustment of the excitation is replaced by the influ-

ence of the limb oscillators on the first axial segment

(Fig. 1D). Using different frequencies for the limb and

axial oscillators, we can control independently the fre-

quency and intersegmental phase-lag in the network

(Fig. 4).

Selection of a model based on experimental data

The network of Fig. 1B is very sensitive to perturbations

of the phase or uncoupled frequency of the boundary

oscillators. A slight difference in the frequency of a

sensitive oscillator would lead to a continuous drift

in phase-lags (Fig. 3B). This is in contradiction with

the observation in the lamprey that local sensory feed-

back can entrain the whole network to the frequency of

mechanical oscillations applied at one end (McClellan

and Sigvardt 1988; Williams et al. 1990). Moreover,

recordings from isolated salamander spinal cords

Fig. 4 Frequency and phase-lag in the flexible oscillator model. The network frequency (A) and intersegmental phase-lag (B) in the

network of Figure 1D can be adjusted independently by varying the uncoupled frequency of the axial and limb oscillators (horizontal

and vertical axes, respectively). The network frequency is determined by the uncoupled frequency of the limb centers. The phase-lag

increases with increasing limb frequencies and decreases with increasing axial frequencies. White crosses on black background indicate

parameter values for which the limb and axial oscillators would not reach frequency locking.
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show cycle-to-cycle variabilities in phase-lags but no

systematic drift (Fig. 5, see also Ryczko et al. 2010a).

Such stable phase-lags would be unlikely if the slightest

difference in uncoupled frequencies between the

boundary and middle segments of the preparation

were to cause a drift. Although the network of Fig. 1B

is well suited to the generation of a large diversity of

axial activity patterns, it therefore appears to be a bad

fit to biological observations. This led us to select the

lamprey-inspired network of Fig. 1D for further

investigations.

Gait transition in the flexible oscillator model

The model of the salamander spinal cord proposed

by Ijspeert et al. (2007) was successful in reproducing

important features of salamander locomotion, in-

cluding the generation of traveling waves for swim-

ming and standing waves for stepping. In the model,

the formation of standing waves during stepping was

caused by the extensive connections from limb to

axial oscillators (Fig. 1A). The gap in frequencies

between swimming and stepping observed in the

animal was reproduced by using a lower intrinsic

frequency for the limb oscillators, a hypothesis that

was then verified in recordings of isolated parts of

the spinal cord in vitro (Ijspeert et al. 2007). Finally,

using a lower saturation threshold for the limb os-

cillators provided a mechanism for the automatic

transition from stepping to swimming when the

global excitatory drive was increased. This result

mirrors the experimental observation that electrical

stimulation of the mesencephalic locomotor region

(MLR) can elicit swimming or stepping, depending

on the strength of the electrical stimulus (Cabelguen

et al. 2003).

The flexible CPG model of Fig. 1D can reproduce

the transition between the swimming and stepping

patterns without the extensive connections from limb

to axial centers; only local connections are used.

Instead, due to the mechanism of modulation of

phase-lag described above, the lower intrinsic fre-

quency of the limbs’ centers can account both for

the gap in frequencies between swimming and step-

ping and for the formation of a standing wave

during stepping. To model the transition, we intro-

duce a global excitatory drive signal d that represents

the stimulation level in the MLR. This drive deter-

mines the intrinsic frequency and target amplitude of

the oscillators:

vi ¼
eid, d5dth

i

0, otherwise

(

Ri ¼
d, d5dth

i

0, otherwise

(

where dth
i is the saturation threshold of oscillator i,

and ei a constant. Both dth
i and ei are set to lower

values for limb oscillators than for axial oscillators.

All parameter values are given in Table 1. With these

Fig. 5 The salamander spinal cord generates stable phase-lags. (A) Typical rostrocaudal waves of axial activity of two ipsilateral (iVR6

and iVR8) and one contralateral (cVR8) ventral roots of the isolated spinal cord of Pleurodeles waltlii were recorded when pharma-

cologically activated by NMDA (20�M) and D-serine (10�M) (see Ryczko et al. 2010a for methods). (B1 and B2) Magnification of two

parts of the recordings in A. (C) Plot of intersegmental phase-lag recorded between VR6 and VR8 versus time revealed no significant

correlation, indicating a stable phase-lag.
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values, the model reproduces the transition between

swimming and stepping patterns with a simple de-

crease of the drive signal d as shown in Fig. 6.

A gait transition in the IF network

Aside from its utility as a robot controller (Ijspeert

et al. 2007; Ijspeert 2008), the main aim of the

modeling of the CPG is to gain a better understand-

ing of the biological systems under study. Having

found a flexible CPG network based on the abstract

oscillator formalism, some important next steps are

to validate the results with a less abstract model of

the spinal network, to call attention to any difference

in the results between these levels of abstraction, and

Fig. 6 Transition from swimming to walking in the oscillator model. The excitatory drive to the whole network is progressively

decreased. (A) The output of oscillators for the left limbs (dark gray) and left hemicord (light gray) is shown, together with the lags

between consecutive segments (thick lines). (B) The oscillation frequency (solid line) decreases linearly with the drive (dashed line),

until the drive crosses the saturation threshold of the limb oscillators (dotted line) at which point the frequency drops abruptly. (C) As

the limb oscillators come out of saturation, their influence on the trunk network causes a drop in intersegmental phase-lag from 11.1%

to 1.7%.
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finally, to try to establish a correspondence between

abstract oscillator models of CPGs and biologically

detailed models (Kozlov et al. 2009; Bicanski et al.

2013b). To this end, we chose to compare the oscil-

lator model of Fig. 1D to a CPG network composed

of formal spiking neurons. The network depicted in

Fig. 1E is composed of two types of segments, axial

segments and simplified limb segments (see Bicanski

et al. 2013b), that differ mainly in the time scales of

adaptation (Table 2). Simulations of a biophysically

detailed model of salamander spinal segments suggest

that fast rhythms in the salamander, that is, in vivo

activity, rely on adaptation for burst termination

(Bicanski et al. 2013b). Blocking inhibitory connec-

tions between the hemisegments abolishes fast

rhythms. In the lamprey, a similar mechanism may

be involved in burst termination (Buchanan 1999;

Jackson et al. 2005, however compare to Cangiano

and Grillner 2003). In the present model, the time

scale of adaptation determines the lower frequency

range of oscillations for limb segments as compared

with axial segments. Active limbs enforce these

slower rhythms in the axis via local connections

(see network 1, Table 3).

Figure 7 shows the gait transition for the IF net-

work. The transition from swimming to stepping is

achieved by a continuously decreasing drive to the

axial network. Similarly to Ijspeert et al. (2007), the

limb networks are silent during swimming. When the

limbs come out of saturation, the intrinsically slower

limb networks impose their frequency on the axis,

leading to the characteristic jump in frequency (Fig.

7A(2)), and adjust the coordination pattern to pro-

duce a near-zero phase-lag (Fig. 7A(3)), that is, the

standing wave typical for a stepping gait. The default

network (network 1, see Fig. 7A(1–3) and Table 3)

contains only descending intersegmental connections

in the axis.

Adding ascending intersegmental connections

(symmetric to the descending connections in terms

of weights and connection probabilities) severely per-

turbs both gait patterns (network 2, see Fig. 7B(1)

and Table 3). The added inhibitory connections to a

given axial segment originating from caudally located

segments slow down swimming oscillations and de-

crease the phase-lag. During the stepping stage, the

inhibitory connections from the limb segments to

the contralateral axial segments are not sufficient to

suppress an upward traveling wave propagated by the

newly added ascending connections. In the flexible

oscillator model, perturbations to the pattern could

be remedied by decreasing the weight of ascending

connections by 80%. In the IF model, however, scal-

ing the synaptic weights of ascending intersegmental

connections has little to no effect, until the connec-

tions become so weak that their effect is negligible.

On the other hand, reducing the number of rostrally

directed intersegmental connections yields better

results but does not allow for a clean stepping pat-

tern in the trunk (network 2, see Fig. 7B(2) and

Table 3).

To fully recover the gait transition, another adjust-

ment to the connectivity is necessary to compensate

for the out-of-phase excitation received by the last

(i.e., most caudal) trunk segments due to ascending

connections originating in the first tail segments. An

additional inhibitory connection from the pelvic

limb segment to the ipsilateral hemisegment located

one segment rostrally (i.e., above the phase jump of

� in the stepping pattern) restores the gait transition

(network 3, see Fig. 7C(1–3) and Table 3).

Alternatively to the addition of the new limb to

axis connection, performance can also be restored

by cutting the caudorostral intersegmental connec-

tions above the pelvic segment, that is, above the

segment where the hind limbs project to the axis

(network 4, not shown in Fig. 7, see Table 3).

Table 2 Neuron parameters for the IF network

Axial Limb

Erest (mV) �70 �70

R (m�) (89,91) (85,86)

g 5.6 4.4

� (ms) 150 150

a1 45 25

a2 15 15

�o1 0.99 0.65

�o2 0.025 0.025

�o1 (ms) 150 400

�o2 (ms) 2000 3200

ErevAMPA (mV) 0 0

�gAMPA 0.1 0.1

�AMPA (ms) 20 20

ErevNMDA (mV) 0 0

�gNMDA 0.1 0.1

�NMDA (ms) 100 100

ErevGLYC (mV) �85 �85

�gGLYC 0.1 0.1

�GLYC (ms) 20 20

Firing threshold (mV) �38 �38

Parameters to the IF neurons used in this study. Pairs of numbers in

parentheses indicate an interval from which values are sampled

uniformly.
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Conclusion

Comparing models built at different levels of abstrac-

tion brings about many pitfalls. Yet, it is important

to establish a chain of correspondent models, from

abstract models all the way down to the lowest levels

of abstraction (e.g., conductance-based models):

linking different levels of modeling lends credibility

to claims about biological systems that are made on

the basis of abstract models.

We must be cautious, for instance, with the terms

dominantly rostral and dominantly caudal for cou-

plings, as they are defined in different ways in dif-

ferent models. In the work of Williams et al. (1990),

who found evidence for dominantly ascending cou-

plings in the lamprey CPG, coupling dominance was

defined in abstract mathematical terms rather than

relating directly to physiological properties. On the

other hand, if one focuses on physiological aspects,

several experimental and modeling studies support

the notion of dominantly descending couplings in

the lamprey spinal cord. Buchanan and co-workers

have shown that intersegmental connections of both

excitatory and inhibitory commissural interneurons

project further in the caudal direction than in the

rostral direction (Buchanan et al. 1989; Buchanan

2001). Several biologically detailed modeling studies

on the lamprey spinal cord have used this type of

coupling (Kozlov et al. 2007, 2009).

Caution is warranted when relating this anatomi-

cal interpretation of ‘‘coupling dominance’’ to the

abstract mathematical framework of coupled oscilla-

tors. This is in part due to the fact that the match

between oscillator coupling and synaptic connections

is an imperfect one. Due to the type of phase-

response curve used in the oscillator model, the

effect of a particular coupling between two oscillators

can be either to accelerate or to slow down the target

(i.e., to advance or to delay the phase), depending on

the target’s state. Although the general mechanism

of adjusting the phase lag transfers well between

the models, a more systematic comparison between

oscillator couplings and synaptic couplings among

populations of neurons should be conducted.

For the lamprey, three intersegmental coupling

schemes have been proposed that can potentially ac-

count for the intersegmental phase-lag: (i) a balanced

ascending and descending coupling (Matsushima and

Table 3 Connection densities and synaptic weights in the IF networks used in this study

Network 1 Network 2 Network 3 Network 4

EAX ! EAX ipsi þ2 0 j 0 0.05 j 6,1.5 0 j 0 0 j 0

EAX ! EAX ipsi þ1 0 j 0 0.10 j 6,1.5 0.10 j 6,1.5 0.10 j 6,1.5

EAX ! EAX ipsi 0 0.12 j 6,1.5 0.12 j 6,1.5 0.12 j 6,1.5 0.18 j 6,1.5

EAX ! EAX ipsi �1 0.10 j 6,1.5 0.10 j 6,1.5 0.10 j 6,1.5 0.10 j 6,1.5

EAX ! EAX ipsi �2 0.05 j 6,1.5 0.05 j 6,1.5 0.05 j 6,1.5 0.05 j 6,1.5

EAX ! IAX ipsi 0 0.20 j 6,1.5 0.20 j 6,1.5 0.20 j 6,1.5 0.20 j 6,1.5

IAX ! ALLAX contra þ2 0 j 0 0.10 j 10 0.05 j 10 0.05 j 10

IAX ! ALLAX contra þ1 0 j 0 0.15 j 10 0.075 j 10 0.075 j 10

IAX ! ALLAX contra 0 0.45 j 10 0.45 j 10 0.20 j 10 0.22 j 10

ILI ! ALLLI contra 0 0.22 j 10 0.22 j 10 0.20 j 10 0.24 j 10

IAX ! ALLAX contra �1 0.15 j 10 0.15 j 10 0.15 j 10 0.15 j 10

IAX ! ALLAX contra �2 0.10 j 10 0.10 j 10 0.10 j 10 0.10 j 10

ELI ! ALLAX ipsi 0 0.80 j 6,1.5 0.80 j 6,1.5 0.80 j 6,1.5 0.80 j 6,1.5

ELI ! ALLAX ipsi �1 0.50 j 6,1.5 0.50 j 6,1.5 0.50 j 6,1.5 0.50 j 6,1.5

ILI ! ALLAX contra 0 0.80 j 10 0.80 j 10 0.80 j 10 0.80 j 10

ILI ! ALLAX contra �1 0.50 j 10 0.50 j 10 0.50 j 10 0.50 j 10

ILI ! ALLAX ipsi þ1 0 j 0 0 j 0 0.80 j 10 0 j 0

Pairs/triplets of numbers indicate connection density and synaptic weights (glycinergic or AMPAþNMDA), respectively. þ indicates connections

to segments above the reference segment, � indicates connections to segments below the reference segment. E and I denote excitatory and

inhibitory neurons, respectively. ALL refers to all neurons in the ipsilateral (ipsi) or contralateral (contra) hemisegment. The subscripts AX and

LI refer to axial and limb segments, respectively. Unless explicitly given, the intrasegmental connections for limb segments are the same as for

axial segments. Network 1 (Fig. 7A): the default network as described in the text (only downward intersegmental coupling). Network 2

(Fig. 7A): the same as network 1 with added ascending intersegmental connections, symmetrical in weights, range, and connection density.

Network 3 (Fig. 7A): the same as network 2, but with lower ascending connection density and an added connection from hind-limb inhibitory

neurons to the ipsilateral hemisegment above the tail–trunk division. Network 4 (not shown in Fig. 7): the same as network 2, but with lower

ascending connection density and no intersegmental ascending connections across the tail–trunk division.
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Grillner 1992), based on observations that the spinal

cord can be entrained by a leading rostral or caudal

oscillator (‘‘trailing oscillator’’ hypothesis); (ii) so-

called dominantly descending coupling (Hagevik

and McClellan 1994). This notion is supported by

experiments in which pharmacological perturbation

of the activity in the rostral spinal cord had strong

effects on segments located caudally, whereas the op-

posite effect was weaker; (iii) so-called dominantly

ascending coupling (Williams et al. 1990; Kopell

et al. 1991; Cohen et al. 1992). This coupling

scheme has been deduced from the observations

Fig. 7 Transition from swimming to stepping in IF networks. Panel groups A and C each show (1) a raster plot of the CPG network

activity during the gait transition from swimming to stepping, (2) the frequency change from cycle to cycle during the transition, and (3)

the change in phase-lag from cycle to cycle during the transition. (A) Network 1, only descending intersegmental connections (Table 3).

(B1) Network 2, same as network 1 with the addition of balanced ascending connections (Table 3). (B2) Same as network 2 with

decreased number of ascending connections. (C) Network 3, similarly to B2, the number of ascending projections has been decreased.

In addition, inhibitory connections from the inhibitory hind-limb neurons to the ipsilateral hemisegment above the phase-jump have

been added (Table 3). In all panel groups, the neurons are driven by injected current that is continuously decreased from 8.5 to 2.6 nA

during the gait transition. Raster-plot labels indicate the scapular segment (scap) and the pelvic segment (pelv) along the spinal cord, as

well as the left and right parts of the forelimb segment and hind-limb segment (lfore, rfore, lhind, and rhind).

280 J. Knüsel et al.



that the spinal cord can be entrained to a rhythm

below the ‘‘natural frequency’’ of the cord by rhyth-

mic bending of the caudal end, but not the rostral

end (Williams et al. 1990).

In the models explored in the present work, bal-

anced ascending and descending couplings in the

axial network prohibit the simple adjustment of

intersegmental phase-lag by changing the uncoupled

frequency of the first segments. However, asymmetric

couplings allow for a mechanism similar to that of

the trailing oscillator hypothesis (Matsushima and

Grillner 1992). When not in saturation, the limb

networks assume the role of the leading oscillator,

which slows down the network and decreases the

phase-lag toward zero. This holds true at both

levels of abstraction explored here.

The present work reproduces the transition of gait

between swimming and stepping in the salamander.

In contrast to the model of Ijspeert et al. (2007), it

does so while preserving the flexibility of the axial

network, allowing, for example, the formation of

traveling waves of activity in the axis during

stepping.

Our work suggests that the same principles that

underlie the transitions between forward and back-

ward swimming in models of the lamprey CPG could

account for the transition between traveling waves of

muscle activity during swimming and standing waves

during stepping in the salamander.
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Delvolvé I, Bem T, Cabelguen JM. 1997. Epaxial and limb

muscle activity during swimming and terrestrial stepping

in the adult newt, Pleurodeles waltlii. J Neurophysiol

78:638–50.

Flexible salamander CPG models 281



Frolich L, Biewener A. 1992. Kinematic and Electromyo-

graphic Analysis of the Functional-Role of the Body Axis

During Terrestrial and Aquatic Locomotion in the

Salamander Ambystoma-Tigrinum. J Exp Biol 162:107–30.

Gao KQ, Shubin NH. 2001. Late Jurassic salamanders from

northern China. Nature 410:574–7.

Grillner S. 2006. Biological Pattern Generation: the cellular

and computational logic of networks in motion. Neuron

52:751–66.

Grillner S. 2003. The motor infrastructure: from ion channels

to neuronal networks. Nat Rev Neurosci 4:573–86.

Hagevik A, McClellan AD. 1994. Coupling of spinal locomo-

tor networks in larval lamprey revealed by receptor blockers

for inhibitory amino acids: neurophysiology and computer

modeling. J Neurophysiol 72:1810–29.

Harischandra N, Knuesel J, Kozlov A, Bicanski A,

Cabelguen JM, Ijspeert AJ, Ekeberg Ö. 2011. Sensory feed-
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