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Abstract

In the past decade, technology developments have triggered the emergence of cheap
sensing devices that open novel perspective for large-scale data sensing and analysis in
different application domains, such environmental monitoring, healthcare or security, or
distributed control systems. Moreover, networks of such sensors can advantageously re-
place complex and expensive systems for data acquisition in large areas. For example, a
network of temperature sensors can efficiently replace expensive high resolution infrared
satellite imaging. However, a key condition for the development of sensor networks re-
sides in the design of efficient distributed solutions for data gathering and analysis. Such
solutions need to be adaptive to the network characteristics, to the data to be measured,
and to the computational load and communication cost that should ideally be shared
among the different sensors in the system. These constraints pose important challenges
in the design of effective in-network processing methods for distributed signal sensing
and analysis.

In this thesis, we focus on the design of algorithms for effective data gathering and
analysis in sensor networks. We study classical signal processing problems from the
new perspective of modern distributed signal processing challenges. In particular, we
address important issues, such as, (i) the distributed detection of defective sensors, (ii)
the distributed data gathering for effective signal reconstruction from a small number
of messages and (iii) the distributed interpolation of signals in sensor networks deployed
on smooth geometric manifolds.

We first study the problem of distributed detection of defective sensors in networks.
Erroneous data measurements collected by defective sensors can have unpredictable
consequences and possibly lead to severe impairments on analysis or estimation tasks.
The detection of erroneous data is therefore of crucial importance. We propose a novel
distributed framework for sensor failure detection and we design probabilistic tests to
detect the presence of defective sensors in a network. The test outcome messages from
different sensors are combined together and propagated in the network. Failure detection
can then be performed in any sensor in the network using a simple distance decoder. We
analyse the performance of the proposed framework in different settings, and we show
via extensive simulations that our flexible solution leads to the detection of defective
sensors with high probability in realistic settings.

Next, we investigate the problem of distributed gathering of sensor data with the ob-
jective of effective signal reconstruction with small communication costs. In particular,
we focus on the problem of data reconstruction where only a small number of collected
messages along with simple signal priors are available at the decoder. We design a new
data gathering framework, where sensors distributively transmit quantized measure-
ments towards the receiver along directed communication links. The measurements are
combined by the different sensors that participate to the adhoc communication process,
such that each coded message gathers information from multiple sensor measurements.
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More precisely, the sensors combine their measurements with messages received from
neighbour nodes using modulo operations and transmit the resulting messages towards
downstream nodes. Such network coding operations generally lead to reduced com-
munication costs in architectures with path diversity such as adhoc sensor networks.
We propose a detailed study of the performance of our novel data gathering algorithm
and we show by simulations that the receiver is able to efficiently reconstruct the data
function with a small number of coded messages, especially when proper signal priors
can be used for decoding.

Finally, we develop a novel framework for data interpolation at arbitrary locations
from sensor data that have been acquired at different positions on a smooth geometric
manifold. We propose a distributed interpolation algorithm, which relies on the kernel-
based estimation of local data functions at any sensor location. Such local functions are
estimated by solving a regression problem that considers the measurements obtained by
neighbour sensors and the geodesic distances between sensors on the manifold in order
to properly take into consideration the geometry of the data. We show that the proposed
method provides better interpolation performance compared to the classical approaches
for signals that are irregularly sampled on spherical manifolds. We further study the
data dissemination process in adhoc sensor networks and analyse the evolution of the
performance of our distributed interpolation method when messages are progressively
collected in the neighbourhood of the interpolating sensor. In the particular case of
sensors that are organised in a small world configuration, we show that our distributed
interpolation algorithm very rapidly converges to accurate signal estimation.

Overall, this thesis addresses several important issues related to the design of ef-
fective distributed data gathering and analysis methods in sensor networks. It studies
important challenges in failure detection, data interpolation and signal reconstruction
and it provides research contributions in distributed signal processing. In particular, it
leverages on group testing ideas to propose a novel distributed algorithm based on prob-
abilistic tests and messages combinations for effective failure detection in any sensor in
the network. Furthermore, the unique combination of network coding and prior-based
signal reconstruction at receiver permits to reach state-of-the-art performance in dis-
tributed data gathering applications. Finally, it introduces a distributed kernel-based
data interpolation algorithm for effective signal estimation on smooth manifold, whose
performance gracefully improves as the number of available measurements increases.
This thesis certainly offers very important insights in the design of distributed signal
processing methods that will pave the way to the large-scale deployment of cheap and
low power sensors with exciting perspectives in numerous application domains.

Keywords: Distributed algorithms, Sensor Networks, Network Coding, Recon-
struction with Signal Priors, Data Gathering, Distributed Data Interpolation on Mani-
folds, Failure Detection
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Résumé

Pendent la dernière décennie, les développements technologiques ont favorisé l’émergence
de dispositifs de mesure bon marché qui ouvrent de nouvelles perspectives pour les mesures et
l’analyse de données à grande échelle, dans différents domaines d’application comme l’obser-
vation de l’environnement, la santé et la sécurité, ou les systèmes de contrôle distribués. Des
réseaux de tels capteurs peuvent avantageusement remplacer des systèmes complexes et chers
pour l’acquisition de données dans de grands espaces. Par exemple, un réseau de capteurs de
température peut remplacer des techniques coûteuses d’imagerie satellite à haute résolution.
Toutefois, une condition primordiale pour le développement de réseaux de capteurs repose sur
la conception de solutions distribuées efficaces pour la collecte et l’analyse de données. De telles
solutions doivent être adaptées aux propriétés du réseau, aux données à mesurer et aux coûts
de calcul et de communication qui devraient idéalement être distribués entre les différents cap-
teurs du système. Ces contraintes pose des défis importants et stimulants dans la conception
de méthodes efficaces de traitement de données dans les réseaux, dans le but de mesurer et
d’analyser distribuée de signaux

Dans cette thèse, nous nous focalisons précisément sur la conception d’algorithmes efficaces
pour la collecte et l’analyse de données dans des réseaux de capteurs. Nous étudions des pro-
blèmes classiques de traitement du signal, mais sous de nouvelles perspectives liées aux défis
modernes qui existent en traitement de signal distribué. En particulier, nous étudions des pro-
blèmes importants pour le traitement de données dans des réseaux de capteurs, et notamment
(i) la détection distribuée de capteurs défectueux, (ii) la collection distribuée de données pour
la reconstruction efficace du signal complet à partir d’un petit nombre de messages et (iii)
l’interpolation distribuée de signaux dans des réseaux de capteurs positionnés sur des variétés
géométriques différentiables.

Nous étudions premièrement le problème de la détection distribuée de capteurs défectueux
dans des réseaux. Des mesures erronées collectées par des capteurs défectueux peuvent en effet
avoir des conséquences imprévisibles et parfois conduire à des erreurs considérables dans des
tâches d’analyse ou d’estimation. La détection des données erronées est donc d’une importance
cruciale. Nous proposons un nouveau cadre de travail pour la détection décentralisée de cap-
teurs défectueux et nous concevons des tests probabilistes pour détecter leur présence dans le
réseau. Les résultats de ces tests effectués par différents capteurs sont combinés et propagés
dans le réseau. La détection de capteurs défectueux peut alors se faire dans n’importe quel
senseur du réseau à l’aide d’un décodeur basé sur un simple calcul de distance. Nous analy-
sons les performances de notre méthode dans différents environnements et nous montrons par
de multiples simulations que notre solution simple et flexible conduit à la détection fiable des
capteurs défectueux dans des conditions de fonctionnement réalistes.

Ensuite, nous étudions le problème de la collecte distribuée des données des capteurs avec
l’objectif d’une reconstruction efficace du signal avec de faibles coûts de communication. En
particulier, nous nous concentrons sur le problème de la reconstruction de données lorsque un
petit nombre de messages et un modèle simple du signal sont disponibles au décodeur. Nous
concevons une nouvelle architecture de collecte de données, où les capteurs transmettent de
manière distribuée des mesures quantifiées vers le récepteur en suivant des liens de communica-
tion dirigés. Les mesures sont combinées par les différents capteurs qui participent au processus
de communication adhoc, de telle sorte que chaque message contiennent de l’information sur
plusieurs mesures de différents capteurs. Plus précisément, les capteurs combinent leurs mesures
avec des messages reçus de leurs voisins à l’aide d’opérations basées sur des modules, et trans-
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mettent le résultat vers des capteurs plus proches du récepteur. De telles opérations de codage
réseau conduisent généralement à des coûts de communication réduits dans des architectures
qui présentent une diversité dans les chemins de communication, comme les réseaux de cap-
teurs adhoc. Nous proposons une étude détaillée des performances de notre nouvel algorithme
de collection de données, et nous montrons par des simulations que le récepteur est capable de
reconstruire efficacement les données avec un petit nombre de messages codés, en particulier
lorsqu’un modèle du signal peut être utilisé par le décodeur.

Finalement, nous développons une nouvelle solution pour l’interpolation de signaux à des
endroits arbitraires, à partir de données de capteurs acquises à différentes positions sur une
variété géométrique différentiable. Nous proposons un algorithme d’interpolation distribuée,
qui repose sur une estimation à l’aide de noyaux de fonctions locales à n’importe quel senseur.
De telles fonctions locales sont estimées à l’aide d’un problème de régression qui considère les
mesures effectuées par les capteurs voisins, et les distances géodésiques entre les capteurs sur
la variété, pour prendre en compte la géométrie des données. Nous démontrons que la méthode
proposée conduit à de meilleures performances d’interpolation par rapport aux méthodes clas-
siques, pour des signaux qui sont capturés variétés à des positions distribuées irrégulièrement
sur des variétés sphériques. De plus, nous étudions le processus de distribution des données dans
des réseaux de capteurs adhoc et nous analysons l’évolution des performances de notre méthode
d’interpolation distribuée lorsque les messages des capteurs voisins sont progressivement reçus.
Dans le cas particulier où les capteurs sont organisés dans une configuration ’small world’, nous
montrons que l’algorithme d’interpolation distribuée converge rapidement vers une estimation
précise du signal.

En résumé, cette thèse aborde plusieurs problèmes importants liés à la conception de mé-
thodes efficaces pour la collection et l’analyse de données dans des réseaux de capteurs. Elle
étudie des défis importants par rapport à la détection de défectuosités, l’interpolation et la
reconstruction de données et propose de nombreuses contributions en traitement distribué du
signal. En particulier, elle étend les idées de tests de groupes pour proposer un nouvel algorithme
distribué basé sur des tests probabilistes et des combinaisons de messages pour la détection de
capteurs défectueux à n’importe quel point du réseau. Ensuite, le travail de thèse propose une
combinaison unique de codage réseau et de méthodes de reconstruction basées sur des modèles
de signaux, qui permet d’atteindre des performances qui correspondent à l’état de l’art dans
les applications de collection distribuée de données. Finalement, elle introduit un nouvel algo-
rithme distribué d’interpolation de données basée sur des noyaux pour l’estimation de signaux
sur des variétés différentiables, dont les performances augmentent rapidement avec le nombre
de mesures disponibles. Cette thèse offre certainement des enseignements importants pour la
conception de méthodes de traitement de signal distribué qui ouvrent la voie au déploiement
à grande échelle de capteurs à bas coûts, avec des perspectives interessante dans de nombreux
domaines d’applications.

Mots Clés : Algorithmes distribués, Réseaux de capteurs, Codage réseau, Reconstruction
avec modèles de signal, Collecte de données, Interpolation distribuée de données sur des variétés,
Détection de défauts.
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Chapter 1

Introduction

1.1 Distributed sensor processing in sensor networks

With the advent of new sensing technologies and architectures, we face now important novel cha-
llenges imposed by large-scale sensor networks. The decrease of costs for sensor devices with
independent battery on one side, and the availability of untethered protocols for communication
on the other side have fostered a wide deployment of sensor networks in different applications.
Nowadays, the analysis of complex processes and phenomenas can be performed using data gathe-
red by sensor networks (Fig. 1.1), for e.g., in medical, industrial or environmental monitoring, to
name a few. The development of these new applications creates a demand for efficient and accurate
data processing algorithms. This leads to important challenges due to numerous constraints in
sensor network systems: limitations of sensor power or network capacity, topology and connectivity
changes, sensor failure or sensing noise, to name a few. This has further led to intense research
efforts towards the design of effective distributed data processing methods. Novel algorithms need
to deal with problems specific to large-scale networks, such as accurate and efficient data collection
and estimation. Even if the noise effects and delays caused by data collection may be tolerable, it
is often expensive to transmit the full set of raw data to a control entity. Additionally, transmission
noise may degrade sensor measurements, or more severe, they may be lost because of the sensor
failures. This necessitates the development of robust distributed algorithms with low computa-
tional complexity in the sensors. Hence, the design of efficient and flexible methods for networks
that jointly perform the processing tasks and preserve the system resources becomes of particular
importance for modern sensor systems.

In this thesis, we investigate different signal processing problems, such as detection, reconstruc-
tion and interpolation, challenges for distributed processing in sensor network [2]. We present
novel solutions to sensor network signal estimation from incomplete, noisy or irregular data that
is gathered distributedly. To build such algorithms, we exploit the correlation of data collected by
neighbor sensors and we use, when possible, network coding mechanisms and finite field modulo
operations at sensors to represent data with a limited number of bits. In particular, we study new
distributed detection methods for defective sensor identification, which enhance network robustness
and further improve signal estimation performance. Furthermore, we propose a new distributed
data gathering algorithm with reconstruction at receiver given a limited number of quantized net-
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Figure 1.1: An ad-hoc sensor network acquires the values of the underlying physical phenomenon.

work readings along with signal statistics. Finally, we investigate the distributed data interpolation
problem performed at sensors that are positioned on a smooth manifold, when interpolation is done
at arbitrary locations.

In more details, we focus in this thesis on several instances of distributed problems for sensor
networks. In networks, noise deteriorates the data and potentially masks the outcome. Hence, a
very important research problem consists in the design of robust algorithms that can detect defective
sensors in the network and eliminate their measurements from the processing data set. Therefore,
we first consider the problem of distributed failure detection in sensor networks. Classical detection
approaches mainly depend on the network topology and often perform hierarchical decision building.
The decisions of groups of sensors are merged together into a final decision about the identification
of defective sensors in the network. These approaches are efficient in small networks with fixed
topologies; however, they become highly inefficient if the network is susceptible to topology changes.
We rather propose a robust distributed detection algorithm based on probabilistic tests, which leads
to accurate detection of failure sensors, located at any arbitrary point in the network.

Another challenging problem is the data reconstruction from incomplete set of network obser-
vations. The class of problems for signal recovery given incomplete set of data is well known as the
family of inverse problems. A common strategy to solve this type of problems consists in solving
the convex optimization problem, where additional signal information, such as smoothness priors,
is available. However, sensor devices have a limited battery power, so that messages need to be
quantized and coded, which completely changes the problem of data reconstruction. A natural way
to limit the number of bits that are used in message representation is to perform modulo operations
at sensors. Novel tendencies in sensor development boost multiple valued logic at sensors, motivated
by the pioneering works [3], [4]. In these scenarios, sensors perform modulo computations in finite
fields whose base is higher than two in order to achieve higher power efficiency. We propose here
a novel framework where sensors perform modulo operations in a field of arbitrary size. Then, the
data reconstruction problem at receiver can not be solved by solutions common to inverse problems,
because operations at sensors are non-linear. Classical distributed inverse algorithms such as [5]
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are developed for real field operators. We propose a novel data reconstruction algorithm, which
leads to effective performance by properly exploiting a small number of network coded messages
along with signal priors at decoder.

Next, the problem of in-network interpolation tries to estimate function values at positions
where none of the sensors is physically located. Sensors in networks are commonly irregularly
distributed on a geometric manifold. Because of the large network coverage, the inherent manifold
structure built by sensors can not be neglected. Commonly, the set of interpolation points is not
known before data acquisition in sensor networks. Efficient existing methods for high dimensional
and noisy data interpolation, known as graph-based variational methods [6], are however incapable
of dealing with manifold data interpolation problems in cases where interpolation points are not
known prior to the signal acquisition. Hence, we propose a new distributed interpolation algorithm
which builds local estimates of the global network function, whose accuracy improves when more
messages become available in the sensor neighborhood.

Overall, we propose in this thesis novel solutions to important instances of distributed signal
processing problems in sensor networks. We present our proposed distributed sensor failure detec-
tion method that is based on the particular probabilistic message design and binary sparse failure
signal assumption. It determines failure sensors by a simple distance decoder with high probability,
given a small number of messages. Then, our new data reconstruction solution is based on the
message passing algorithm that recovers the signal given its priors and incomplete messages, when
messages are coded by combining the quantized measurements in finite fields of arbitrary size. We
finally present a new distributed interpolation solution for arbitrary sets of points by solving a
new nonlinear kernel regression optimization problem for noisy irregular manifold data. This thesis
provides important insights in the design of large-scale sensor network architectures, with numerous
applications.

1.2 Thesis outline

The thesis is organized as follows. We first provide an overview of the existing literature on topics
studied in this thesis in Chapter 2. In particular, we discuss the related work in areas like detection,
reconstruction and interpolation.

We then address in Chapter 3 the problem of sensors’ failure detection in networks with
a small number of defective sensors, whose measurements differ significantly from the neighbor
measurements. We build on the sparse nature of the binary sensor failure signals to propose a novel
distributed detection algorithm based on gossip mechanisms and on Group Testing (GT) ideas. Our
new distributed GT algorithm estimates the set of scattered defective sensors with a low complexity
distance decoder from a small number of linearly independent binary messages exchanged by the
sensors. We first consider networks with one defective sensor and determine the minimal number
of linearly independent messages needed for its detection with high probability. We then extend
our study to the detection of multiple defective sensors by modifying appropriately the message
exchange protocol and the decoding procedure. We show that, for small and medium size networks,
the number of messages required for successful detection is actually very small. Finally, simulations
demonstrate that the proposed method outperforms methods based on random walks in terms of
both, the detection performance and the convergence rate.
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Further on, in Chapter 4 we address the problem of efficient distributed data gathering
with reconstruction from quantized and incomplete messages. We propose a distributed
gathering method that encodes messages in finite fields of arbitrary size. A network message trans-
mission starts at sensors located on borders of the network. Messages are transmitted distributedly
along a directed path towards the receiver and their values are updated at sensors during the mes-
sage transmission. At every sensor in the network, our novel algorithm forms a new message by
combining the measurement of the sensor with the messages received from its neighbors. Weighted
combinations are performed using arbitrary size finite field operations. We then study the resulting
signal reconstruction problem, given the partial data collected by the proposed gathering frame-
work. We analyze the decoding error probability for signal classes that have locally correlated
values. We further investigate the properties of probabilistic coding matrices used in the network
coding operations. Finally, we provide a constructive data reconstruction algorithm based on a
Belief Propagation method. The results of the theoretical and experimental analysis demonstrate
that the proposed scheme effectively gathers data in sensor networks and recovers them with high
probability when simple signal priors are available at the receiver.

Then we study in Chapter 5 distributed signal interpolation for irregularly positioned sen-
sors on a geometric manifold. We propose a novel interpolation algorithm that efficiently computes
interpolation values for any set of points that are not given a priori. We then estimate the param-
eters of an unknown local function from available data. Once the function parameters are known,
the interpolated values become functions of manifold distances to the sensor that performs interpo-
lation. Our novel interpolation algorithm efficiently exploits geometry information and copes with
irregular and noisy signal samples. We provide reconstruction results of the proposed manifold
interpolation algorithm for two types of spherical manifold data, namely, catadioptric image and
synthetic datasets with different sample distributions. We provide simulation results for noiseless
and noisy environment that demonstrate higher accuracy of the proposed solution. In particular,
our algorithm outperforms the Nearest Neighbor (NN) interpolation algorithm, both in terms of
classical and perceptually oriented signal fidelity measures. We further study the convergence of
our interpolation algorithm and show that the estimation performance gracefully increases with the
number of neighbors’ measurements that become available to the interpolating sensor.

Finally, concluding remarks and future perspectives are given in Chapter 6.

1.3 Summary of contributions

The main contributions of this thesis are summarized below.

• We solve the problem of distributed sensors’ failure detection in networks, where every sensor
may perform detection. This is the first fully distributed algorithm for detection of defective
sensors. Failure detection ensures the robustness of networks and enhances the signal quality.

• We propose a novel efficient distributed data gathering method for signal reconstruction from
incomplete and quantized network messages, given simple signal priors at decoder. In this
method, sensors perform nonlinear modulo operations to combine quantized network data, for
more efficient data transmission, which represents a novel form of data collection in networks.
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• We propose a new distributed interpolation method for sensors data on geometric manifolds.
Sensors locally solve a regression problem that incorporates manifold geometry, given the noisy
data from sensors that are distributed irregularly on a geometric manifold. This represents a
unique distributed interpolation algorithm for estimating data at a priori unknown locations
on a manifold.





Chapter 2

Related Work

In this chapter, we first review the methods commonly used to improve the efficiency of distributed
sensor networks, and then, we review the literature that is closely connected to general problems
addressed in this thesis. First, in Section 2.1 we overview the methods for efficient data dissemina-
tion in networks, as well as the distributed source coding methods that reduce the redundancy in
the network. Next, we overview methods which improve the network throughput. In Section 2.2,
we provide a literature review of state of the art works on general detection problems, and we briefly
provide its connections with coding theory. Next, in Section 2.3 we focus on literature that studies
data gathering methods in sensor networks. In cases when the receiver gathers a partial data set,
the decoder deals with an inverse problem. We discuss the classical and novel inverse problem
approaches and we overview the recent inverse problem works in finite field spaces. Finally, in
Section 2.4 we review the most common interpolation methods that are applicable to data acquired
by sensors distributed on a smooth manifold. We note that each of the following chapters includes
more detailed discussion of the works that are closely related to the methodologies proposed in this
thesis, where required.

2.1 Network mechanisms

We discuss a few common methods used in this thesis that increase the overall network efficiency;
in particular, we start with motivations for using distributed data gathering and processing rather
than their centralized counterparts. Then, we discuss several common methods for efficient data
dissemination that reduce the redundancy in the network and improve its throughput. Further, we
provide the overview of efficient message dissemination algorithms. Finally, we review mechanisms
which improve the network data throughput and increase the probability of forming innovative
messages in the network.

Distributed processing in sensor networks The first generation of sensor networks con-
sisted of a small number of sensors whose role is to capture and communicate data in a raw form
directly to the central node. This node, often denoted as the fusion center, is responsible of analysis
tasks of the signal, Fig. 2.1 (left). Nowadays, with the increase of the scope of sensor networks,
raw data transmission to the fusion center becomes unpractical [7]. It is more efficient to split and
share the computation load amongst sensors in the network in terms of communication and sensor
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Figure 2.1: Illustration of data transmission centralized (left) and distributed (right) sensor networks. In
centralized networks, a single node s0, denoted as a fusion centre, collects data from sensors and performs
signal analysis. Sensors in distributed systems transmit their measurements in adhoc way and very often
perform computations at sensors (so called “in-network” processing) to distribute the computational load.

battery power. Such algorithms belong to a class of so called distributed algorithms [8] and they
eliminate the need to transmit the raw data to the central node, Fig. 2.1 (right). They perform
“in-network” computation and/or adhoc data transmission. For more detail and examples of dis-
tributed optimization algorithms, such as distributed classification, robust estimation or clustering
refer to [9] and references within. However, the challenges imposed by distributed processing are
numerous [2], as shown in the rest of this thesis for the problems of detection, reconstruction and
interpolation in sensor networks.

Random dissemination algorithms To perform data transmission in the network, sensors
collaboratively follow a certain protocol. A class of protocols for data spreading in distributed
networks, which is modeled by mimicking the distribution of social network gossips [10], uses less
communication resources than a simple broadcasting method (flooding). They are often denoted
as gossip (rumor) or epidemic protocols [11], [12], [13]. These models were used for maintenance
of replicated databases [14] and they became popular in applications related with data transmis-
sion. Problems of fast and robust distributed message spreading in networks, where the total
number of messages is smaller than the number of sensors in the network is studied in [15] for a
complete graph. The principle of random combination of messages along with their transmission,
known as the network coding, is used for achieving higher robustness to packet losses. The work
in [16] provides an analysis of information dissemination via network coding for arbitrary graphs
by connecting the information dissemination with the spectral properties of the underlying graph
topology. More recently, such algorithms are used for distribution of signal processing tasks. In
particular, distributed linear parameter estimation, source localization and distributed compression
are studied in [17].

To minimize the costs in networks and achieve flexible algorithms, distributed algorithms com-
monly use noncooperative protocols for data dissemination. In this thesis as a data transmission
protocol we use the gossip transmission protocol with so-called “push” gossip scheme as a data
transmission protocol, illustrated in Fig. 2.2. For detail on advantages of the “push” scheme com-
pared to the “pull” one, refer to [11] (Sec. 2). In random regular graphs, the effect of the node
degree on rumor spreading for “push” gossip mechanisms is analyzed in [18], where the authors
provide the probabilistic analysis for message distribution to all the nodes.

Distributed Source Coding In the ideal case, message transmission is exclusively reserved
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Figure 2.2: Illustration of “push” (left) and “pull” (right) gossip transmission protocols. Left: each sensor
randomly chooses one sensor to whom it transmits the message. Right: each sensor randomly chooses the
sensor from whom it requests the message.

for the innovative or critical information. To extract such an information, sensors should have
knowledge of the local signal values, which is often not the case. A Distributed Source Coding (DSC)
[19], [20] is commonly deployed to reduce the redundancy in networks. DSC is a signal compression
method for correlated signals. Signal encoding is performed independently, while their decoding is
performed jointly. DSC shifts the computation complexity from sensors towards the decoder side,
which is important for network energy preservation in the network nodes. Unfortunately, DSC is
difficult to implement in fully distributed systems because the sensors generally do not have a priori
knowledge required for identification of data correlation.

Network Coding The Network Coding (NC) method [21], [22], [23], is a common method for
improving the network throughput. It employs linear recombination of several messages available at
network nodes and creates a novel message. The novel message is transmitted to the neighbor sensor,
which further uses it to form novel messages in the following transmission rounds. The receiver
decodes the messages only after receiving the information from all the sensors. Compared to the
networks that simply forward information towards neighboring nodes, these networks have a high
degree of robustness. Recently, DSC and NC techniques are jointly used for efficient data gathering
in [24]. Correlated source signals are quantized, mapped onto the codewords and transmitted in
the network using the NC principles. Signals are decoded jointly at the receiver using the Gaussian
elimination method.

2.2 Detection of defective sensors

In general, the goal of detection is to determine a data set with different characteristics from the
expected ones, for e.g., the outlier detection, or to identify a rare event from available data samples,
like for natural disaster detection. This problem is common for many research fields, so numerous
detection methods are proposed in the studies. One of the possible ways to classify the detection
methods is based on the employed decoder in the method. Based on this crieria, we distinguish
methods with: (i) statistical decoders [25] and (ii) detection based on Group Testing. We provide
basic information on the class of statistical decoders, and focus on the second class of methods that
is closely related to our problem. Detection algorithms generally employ statistical decoders [25]
and often assume that the signal probability distribution and the network connectivity are known.
For example, a Bayesian approach in [26] proposes to compute a detection score for a priori defined
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Figure 2.3: Illustration of the Group Testing principle: the outcomes of carefully designed tests are
sufficient to detect the defective element and the total number of tests is smaller compared to the scheme
when each of the elements is tested separately. In the example, the goal is to detect the rotten bean bag
marked with the red square by tasting three dishes. The rotten bean bag is uniquely detected given the
tasting outcomes if the combination of bags used for cooking the dishes follows a particular design.

sets of hypothesis, which depends on the received messages. The hypothesis with the highest score
drives the final decision. The binary event detection problem for hierarchically clustered networks
is proposed in [27] where the cluster decisions are fused centrally to make a final decision. Surveys
on similar methods can be found in [28, 29].

Group Testing Group Testing (GT) is a general method applicable to testing large populations
subject to the same characteristics, Fig. 2.3. It originates from the work [30] that targets detection
in medical applications. In particular, it proposes a simple idea of pooling blood samples to observe
the viral presence in a set, instead of performing tests on every single blood sample separately.
Typically, the main target is to minimize the number of tests required to identify all the infected
samples, while keeping the detection procedure as simple as possible.

GT has been studied more recently in the context of sensor networks for detection of malicious
events. Interested readers are referred to the survey [31] and references within. In summary, the
GT literature can be divided into two main algorithm types: (a) deterministic and (b) probabilistic.
Both approaches aim to minimize the number of tests for detection. The combinatorial GT [32] uses
a deterministic test design, however, purely deterministic test designs are inappropriate for dynamic
structures such as sensor networks. The probabilistic GT applies the knowledge of probability
distribution of defective elements for the purpose of detection and these methods provide flexibility
required for network applications. Based on the type of the failure, detection approaches differ in
scenarios with errors, inhibitors or of their combinations and they can be rather naive [33]. In some
works detection is performed by iterative elimination of identified non-defective items from the test
outcomes. The detection time is typically of the order O(SB), where B is the number of tests and
S is the total number of sensors.

Finally, even if the test designs are contingent to the communication limitations in sensor net-
works, not many works have considered connectivity constraints imposed by the network topology
in GT methods. The authors in [34] propose to form tests by a random walk process on well-
connected graphs. The minimal number of tests required for detection in this case depends on
the random walk mixing time. A bipartite graph structure is considered in [35] with a two-stage
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hybrid detection method. Here, a subset of defective items in the first stage is determined by pre-
designed tests, while the remaining items are tested individually in the next step. Data retrieval for
topology-adaptive GT is studied in [36] where a binary tree splitting algorithm is proposed. The
above methods however use centralized decision algorithms which are not appropriate for large-
scale sensor networks or networks with a dynamic topology because of the high communication
costs. Contrary to the above related work, the proposed method in this thesis focuses on a resource
efficient distributed failure detection algorithm, applied for robust monitoring networks.

Connections to coding theory Particular probabilistic GT test design methods in central-
ized systems improve the effective time for detection. For example, a useful test matrix property
called K-disjunctness (i.e., the Boolean sum of every K columns does not result in any other col-
umn in this matrix), speeds up the decoding process. This property is used in code designs, e.g.,
for superimposed codes [37], [38] or in detection of malicious users [39]. Finally, the work in [40]
proposes to impose structures into disjunct matrices for fast decoding. For this purpose, they use
random, independently generated codes. Non-linear inner codewords are chosen to be random bi-
nary vectors, where each entry is chosen to be one with a probability inversely proportional to the
upper bound of the expected defectives. Authors use the random efficient construction of disjunct
matrices. The decoding time of disjunct matrices is proportional to O(π(B) · B log2 B + O(B2)),
where B = O(K2 log S) is the number of tests, S is the number of sensors and π(·) denotes a poly-
nomial. In our knowledge, this represents the state-of-the-art decoding performance for centralized
detection of an arbitrary sparse signal.

The previous literature on detection can be mostly classified into fully centralized and semi-
distributed methods. In the latter, nodes are grouped in static clusters that independently perform
failure detection. Moreover, we should emphasize that the term “distributed” in earlier detection
works generally refers to the information transmission process between neighboring nodes towards
the fusion center that performs detection.

In this thesis, we however consider the problem of distributed detection, where each sensor in
the network is able to perform a detection task. In other words, motivated by works that address
distributed signal processing tasks, we target a framework where nodes both transmit and process
data in a distributed manner. We target the problem of distributed detection, where each of
the sensors in the network is able to perform detection tasks. To the best of our knowledge, no
former analysis has been proposed for distributed detection methods of sparse binary test signals
as proposed in this thesis in Chapter 3.

2.3 Inverse problems for signal recovery

In this section, we review classical gathering methods in networks, as well as methods for data
recovery from incomplete set of data.

Data gathering methods The extensive overview of state of the art gathering methods is
given in the survey [41] and references within. These methods target the exact signal recovery. Data
collection algorithms are generally driven by factors such as the sensors’ power and the network
topology, for example. In the literature, efficient distributed data gathering methods for spatially
correlated signal reconstruction perform data decorrelation along the collection path to decrease the
number of bits transmitted in the network. The transmission and computation power consumed
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for data gathering of correlated and piecewise smooth signals is minimized in [42]. Network is
segmented into several groups of sensors. Sensors that belong to the same group perform data
decorrelation. One sensor per group collects a resulting decorrelated group data and transmits it
in ad-hoc way towards the receiver. Another ad-hoc gathering approach that uses wavelet lifting
transforms on a network graph [43] minimizes a transmission of raw data in the network. It divides
sensors into two groups, where the first sensor group performs a raw data transmission and the rest
of the nodes transmit decorrelated signal. The predicted value is computed based on the values
of its direct neighbors and decorrelated data is a result of a subtraction of the sensor value and
its prediction. Different to our work, the receiver in the above methods reconstruct signals upon
receiving a full rank of linearly independent messages.

In general, the classical gathering problem is posed as the constrained optimization problem,
where the set of constraints are network dependent. For instance, rate allocation algorithms for
data collection are proposed in [44], while Distributed Source Coding (DSC) algorithms [19], [20]
are used in order to reduce data redundancy in the network. The reconstruction is successful when
all sensor messages are available at the receiver. Different to these works, we study cases where
partial network information gathered by the proposed method is sufficient for data reconstruction
with high probability.

Classical inverse problems We provide details on the class of problems that aim to recover
signals given partial observed data. In the literature, they are often denoted as the variational
methods. Typically, these problems are ill-posed. To solve a problem, additional assumptions,
such as smoothness or sparsity of the solution, are required. We briefly review the most common
optimization problems, namely, Tikhonov regularization and Total Variation (TV).

(a) Tikhonov regularization We assume that the observed data y is not complete, so the problem
y = Φf̃ is ill-posed. In such scenarios, a classical Least Square approach that minimizes ‖Φf̃−y‖2,
where ‖ · ‖ is the Euclidean norm, does not provide the unique solution. Instead, the regularization
term that gives preference to a particular solution with desirable properties is included and the
optimization problem becomes

f̃ = arg min
f
||Φf − y||2 + ||Γf ||2, (2.1)

where Γ is a suitably chosen Tikhonov matrix [45], [46]. For e.g., a Tikhonov matrix is commonly
chosen as the identity or difference operator, which respectively provides the small norm or smooth
solutions. Such problems are solved by classical convex optimization tools, such as the gradient
descent, for example.

The pioneering work [47] used in signal restoration is designed to remove noise from images
while preserving their high frequency components (in image signals, this corresponds to edges). It
solves the following optimization problem

f̃ = min
f

∫

Ω
|▽f |du, s.t. ||f − f̂ ||22 ≤ σ2, (2.2)

where f̂ represents a noisy image in domain Ω, f̃ denotes a resulting denoised image, | · | stands
for the Euclidean distance operator and σ2 is a noise variance estimate. Other works [48], [49], [50]
that followed established different problem-driven regularization methods.
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The development of discrete differential operators [51] initiated usage of regularization methods
in discrete domains, like for instance in semi-supervised learning [52]. The discrete form of the
above regularization problems is of special interest, because it admits the usage of fast and efficient
discretized algorithms. In the literature, there is a number of solutions to discretized version of the
TV regularization problem in Eq. (2.2), defined by f̃ = arg minf{||▽f || + 1/2λ||f − f̂ ||2}, where
λ is a tradeoff between the regularization and the data term. It is very common to solve its dual
representation due to simplified computation, for example, by the iterative recursive algorithms in
[53]. This problem can also be solved by proximal iterations, given in [54]. Study [55] proposes
several solutions that are competitive with a Chambolle’s method, that are based on the gradient
projection algorithms. Their algorithms offer several adaptive solutions to the tradeoff between the
accuracy and the desired convergence time.

Compressive Sensing in real and finite fields We briefly review the classical compressive
sensing, provide literature with applications to sensor networks and cite recent works in finite fields
that are conceptually very closely related with the Compressive Sensing framework.
A novel recovery method for sparse or compressible signals known as the Compressive Sensing (CS)
[56], [57], [58] guarantees signal recovery with high probability given a small number of measure-
ments, obtained by projection with a matrix Φ of certain property. A sufficient condition that the
matrix of measurements Φ has to fulfill for this purpose is to preserve the metric. This condition
is called the Restricted Isometry Property (RIP) and it is expressed as:

(1 − δ)||f̃ ||22 ≤ ||Φf̃ ||22 ≤ (1 + δ)||f̃ ||22, (2.3)

where the coefficient δ ∈ [0, 1], vector f̃ ∈ R
p and p is given for all index sets i ⊂ {1, . . . , S}.

Let the unknown signal f̃ of dimension S be k-sparse or compressible. In other words, if a
denotes a set of k coefficients and Ψ denotes a basis function set, the signal that has a representation
f̃ = aΨ can be represented with k ≪ S significant coefficients. The signal is then encoded by the
known matrix Φ ∈ R

m×S by y = Φf̃ , where the obtained measurement vector y is of dimension
m, m≪ S. This compressed signal version is transmitted to the decoder. Since the signal prior is
given, the decoder solves the optimization problem

f̃ = arg min
f
‖f‖p1 , subject to y = Φf. (2.4)

The solution to this problem is known to be NP hard for p1 = 0 so the relaxed version of the
optimization problem is solved by p1 = 1. The algorithmic solutions to the optimization problems
are well studied and solved by linear programming.

CS algorithms for sensor networks [59] and [60] locally compute random measurements at sen-
sors, transmit them to neighbors and aggregate them at the receiver, which performs the recon-
struction. If some signals are jointly sparse, like for instance signals that differ in a few components,
distributed CS algorithms which exploit both intra- and inter-signal correlation structures [61] have
a superior performance to the non-distributed ones.

In these works, signals take values from a real field and sensors perform linear data combinations
in a real field as well. In practice, sensor measurements are often quantized and operations at sensors
are optimized to preserve a sensor battery. For this reason, different to the previous works, data
manipulation in the proposed method in this thesis is performed in a finite ring of arbitrary size,



14 Chapter 2. Related Work

which restricts us from straightforward deployment of classical or CS algorithms.

A few recent works have analyzed finite field CS methods from the perspective of information
theory. For example, the work [62] studies the error exponent value for sparse signal recovery
given the partial signal observations, where signal values are elements of the finite field. These
observations are the results of data combinations performed in a Galois fields (GF). The error
exponent expression is developed under the assumption that the sampling matrix elements are
i.i.d. and uniformly sampled from the Galois field. The problem of a low rank matrix recovery from
its measurements given the matrix elements that take values from a Galois field is studied in [63],
where the authors provide fundamental limits on sampling requirements and show that the decoding
error bound is small for arbitrary matrices of a given rank. The binary GF inverse problems are
the simplest finite field signal recovery problems. Group Testing (GT) [30] is a detection problem
(see the previous section) in the Galois field GF (2), where a pool of signal samples is jointly
tested to minimize the number of performed tests. Decentralized GT approaches for sparse binary
signals are studied in [34] and [64]. In these studies, message designs are motivated by the linear
error correcting code designs [65], [66], [67]. In general, CS algorithms in finite fields are designed
exclusively for Galois fields. To the best of our knowledge, no prior works analyze CS algorithms
in a finite ring of arbitrary size.

Coding matrix designs When sensors take values from a limited and known set of input sig-
nals, the efficient gathering problem is dual to the coding matrix design problem. The construction
of coding matrices for data gathering has similarities with the construction of probabilistic parity-
check matrices for Low Density Parity Check (LDPC) codes. In general, parity check matrix values
have binary values. Decoders that use higher order GF for LDPC code building however outperform
their binary equivalents for binary Gaussian channels [67]. Also, the decoding complexity for finite
alphabet elements is polynomial, as shown in [68]. In practice, Random Linear Codes (RLC) [69]
are used in combination with NC to disseminate the innovative messages. Here, messages available
at some sensor are linearly combined into a new message that is further transmitted in the network.
Another class of matrices, called sparse coding matrices, has interesting properties from a decoder
complexity point of view. A good overview of works on sparse coding matrices is given in [70] and
references within, while more details on properties of sparse matrices in finite fields are provided
in [71]. In the above works, decoding is performed when all the sensor measurements are observed
by the decoder, which is not convenient for sensor network setups similar to ours.

Not many works address the gathering problem in finite fields. We emphasize that the existing
works focus on gathering in Galois fields. We however consider the problem of gathering in a finite
field of an arbitrary size and recovery from such data, where the size of the field may be adapted to
the sensors’ power. In other words, motivated by works of compressive sensing in Galois fields and
techniques for distributed and random data decorrelation, we target a framework where sensors
distributedly transmit and process data in arbitrary size finite fields. Our work specifically focuses
on a resource-effective distributed gathering algorithm for signals with known priors, which can be
deployed in robust monitoring networks.
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Figure 2.4: Illustration of sensor network distributed irregularly on a geometric manifold M.

2.4 Interpolation on geometric manifolds

The goal of interpolation is to estimate a set of functionvalues at desired positions, given the
noisy and irregular data. In classical signal processing, interpolation module is commonly deployed
between the data acquisition step and the compression or analysis blocks. General interpolation
problem has been studied over half of the century and numerous methods are proposed in the
literature. However, the recent development of new application-driven sensing devices that capture
signals on geometric manifolds imposed novel challenges in interpolation community. Interpolation
of geometric manifold signal has to deal with its specific geometry and still to remain simple and
efficient.

We distinguish the following two families for multivariate interpolation given a noisy scattered
data on non-Euclidean manifolds. The first categorization is based on the regularity of the sampled
data. We distinguish recovery given (a) regularly and (b) irregularly sampled data. The first
case represents a classical case, studied for many decades. Classical Shannon’s sampling theory
provides effective solutions for signal reconstruction in shift-invariant spaces, where signals may
be band limited. We provide details on recovery methods given irregularly sampled data. The
second categorization is based on the model assumptions and we distinguish the works which use
(a) meshing strategies [72] (e.g., Laplace, Poisson or thin-plate) and (b) mesh-free methods [73]
(e.g., Shepard, MLS, NN, RBF) for signal recovery. The second family is closer to the method
proposed in this thesis. We provide details on recovery given non-uniform or mesh-free interpolation
methods and we connect the latter with methods in statistical learning, for learning the function
from observed data.

Non-uniform sampling The challenging problem in sampling represents the reconstruction in
shift-invariant spaces given non-uniform samples. The studies [74], [75] and [76] provide theoretical
and practical solutions. The solutions are based on solving different types of variational problems to
signal reconstruction, such as least squares or solutions that minimize a data fidelity term subject
to a Tikhonov-like l2-regularization to obtain the continuous space solutions. Numerically efficient
methods for sampling and reconstruction of band-limited irregularly sampled data are based on
iterative solutions for the original problem rewritten as the Toepliz system with adaptive weights
[77] or block-based solutions to variational methods approximated by B-splines [78].

Mesh-free interpolation methods Broadly utilized mesh-free strategies are mainly spline
approximation techniques [79], [80], polynomial approximations [81], least-squares approximation
techniques [82], [83], or approximations by shifts or radial basis functions [84], [85]. Mesh-free inter-
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polation methods can be: (a) parametric and (b) non-parametric interpolation methods, depending
if signals are modeled using the implicit interpolation function or if such function is approximated
from data. Parametric methods use reconstruction filters to estimate interpolation values from the
given local data set, determined by the filter size. Though this methods are very fast in regular
grid setup, their performance is highly dependent on the filter parameters. In this work we use a
nonparametric method for interpolation [86], where the values are estimated directly from a given
data and we describe it below in more detail.

Several recent works deal with manifold data processing. For example, the nonparametric
reconstruction method [87] assumes that an elastic membrane is attached to a set of unorganized
set of data points. This approach is motivated with its dual in domain of electrostatics, where the
membrane is enclosing a set of electric charges and it gets attracted or repelled by these charges
in minimizing the electrostatic potential and the elastic energy. In [88] authors solve a variational
problem on an implicit surface, represented as the zero level set of a higher dimensional embedding
function. They show that the reconstruction accuracy is enhanced, although the dimensionality of
the problem is increased. Recent work on local interpolation-related processing [89] gives models
for different signal manifold patches and proposes a manifold regularization approach to solve an
inverse problem. When a patch is a sparse structure, manifold-pursuit regularization method is
solved by the iterative threshold methods with a sparsity prior.

Regression, and in particular linear regression modeling, is one of the most studied and widely
used statistical tools. Initially, it is used for learning a manifold that represents the observed data
in a compact form. In general, these algorithms first estimate the manifold parameters [90] and
next, they perform regression. In [91], the estimate of the embedded tangent plane is computed
by local principal component analysis. Then, it performs a local linear regression on the tangent
plane. A nonparametric regression between two Riemannian manifolds is studied in [92] and similar
kernel-based method is used to build a classifier on a Riemannian manifold in [93].

Distributed regression is proposed as the method suitable for modeling sensor network data in
[94]. Since then, several methods, mainly based on linear regression, have been proposed in this
context. A non-negative linear distributed regression for data inference in wireless sensor networks
is proposed in [95]. Similar techniques are used for distributed function and time delay estimation
in [96], [97], while the effects of quantization for nonparametric regression are studied in [98]. In
the following, we provide more details on kernels in nonlinear regression.

We motivate the concept of data-adaptive weight functions in optimization problems by drawing
the parallel between the characteristics of these weight functions in nonparametric regression meth-
ods [99] and Kernel functions defined in the field of statistical learning theory. Weight functions
used in regression methods for signal estimation are non-negative and normalized. Such function
characteristics in fact correspond to a probability distribution, which is used in the statistical learn-
ing theory for estimation of function values from its samples. If we draw in total q values uniformly
and i.i.d. from the unknown distribution function p(m, y), where m is the input vector and by
y the output value, the goal is to find such a function f̃(mj) for which holds f̃(mj) = yj for all
j ∈ {1, . . . , q}. A usual approach to find such f̃ is to minimize of the risk functional R(f̃)

R(f̃) =

∫

L(y, f̃(m))p(m, y)dmdy, (2.5)
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where the value L(·, ·) represents the prediction estimation error of the value f̃(m) instead of y [100].
A direct solution to solve the previous equation is to directly estimate the density p(m, y), which in
most of the cases is not a feasible approach. Instead of solving the above risk function, the common
practice is to estimate the empirical risk function from the data Re(f̃) = 1

q

∑q
j=1 L(yj, f̃(mj)), for

which it can be shown that if q → ∞, the minimum of the function Re(f̃) tends to the minimum
of R(f̃).

The Kernel methods are primarily used for parameter learning purposes and they replace the
function f̃(m) by a weighted nonlinear transformation wjφ(mj). Kernel methods are used to solve
the previous equation by a general linear regressor method [101]. To avoid data overfitting, the
Tikhonov regularizer is commonly added in a minimization problem to direct a tradeoff between the
smoothness and the risk function minimization. If the function L(·, ·) is convex (the Representer
theorem holds), the optimal solution w∗ of Tikhonov regularizer is a linear combination of the
observed measurements: w∗ =

∑q
j=1 αjφ(mj). The main advantage of using the Kernel function

instead of the nonlinear transformation function φ(m) is that the explicit function model of the
nonlinear transformation function φ(m) is not required.

Classical interpolation methods assume that the set of interpolation point positions is available
prior to signal acquisition. Such assumption is not valid for interpolation performed by sensor
network nodes and more flexible solutions are necessary. Interpolation problems have similarities
with variational and statistical methods that estimate function values from available data. Discrete
variational methods on graphs have very fast solutions, but they can not be applied to sensor
network interpolation, since they require interpolation set position knowledge for graph building.
To the best of our knowledge, other methods for estimation of the function values from data do
not consider interpolation applications nor study the setups where sensors are distributed over
a geometric manifolds. We rather provide interpolation method for networks that are flexible
(arbitrary interpolation points), distributed (every sensor can perform interpolation of a value at
its neighborhood) and that incorporate the geometry of the manifold data model.





Chapter 3

Distributed sensor failure detection in

Sensor Networks

3.1 Introduction

Sensor networks are nowadays often built by inexpensive sensors. The unreliable data generated by
sensors that are defective has unpredictable consequences on data interpretation tasks. To guarantee
the stability and robustness of networks with dynamic architectures and loose coordination, it is very
important to identify and eliminate the unreliable data generated by defective sensors. However,
most of the previous detection methods are analyzed in centralized or semi-distributed settings,
where one or more nodes have an additional functionality for handling failure detection. Contributed
solutions however are not optimal in terms of robustness, nor coordination and communication costs.
Hence, there is a clear need for novel distributed failure detection algorithms that are effective under
network topology and communication constraints.

In this chapter, we address the problem of distributed sensors’ failure detection in networks with
a small number of defective sensors, whose measurements differ significantly from the neighbor
measurements. We propose a novel distributed sensors’ failure detection method that employs
a simple distance decoder for sparse and binary signals. We consider that a sensor network is
represented by a connected graph G = (V, E), where the vertices V = {si}Si=1 stand for the S
sensors in the network and the edges E determine sensors’ connectivity. For instance, if two sensors
si and sj lie within each other’s communication range, the edge ei,j ∈ E has a non-zero value. We
assume that the function measured by sensors is smooth, so that neighbor sensors typically have
similar measurements as long as sensors work correctly. We consider that at most K out of S
sensors are defective, where K ≪ S and that the defective sensors are scattered over the network.
Therefore, the defective sensor identification problem boils down to a sparse binary signal recovery,
where non-zero signal values correspond to defective sensors.

Our novel distributed detection approach builds on ideas used in Group Testing (GT) methods
[30] that are commonly applied for centralized systems. The core idea is to perform low-cost exper-
iments in the network, called tests, in order to detect the defective sensors. The tests (detection)
are performed on pools of sensors by a set of sensors called master sensors. Each master sensor
compares the sensor measurements based on a similarity measure (e.g., threshold-based similarity
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measure) to detect the presence of defective sensors in its vicinity. The result of this test takes a
binary value, which might be possibly altered by noise. The probabilistically designed tests and
their outcomes together build messages at master nodes. They are communicated between the
master nodes and their direct neighbors. Next, the messages are disseminated in the network with
a gossip algorithm (rumor mongering) [17] that follows a pull protocol [14], where every sensor
randomly picks a sender amongst its direct neighbors. Each time a new message reaches a sensor,
its value is linearly combined with the current message at this sensor. This increases the diversity
of information in the network, which is important for an accurate decoding. The message design
and dissemination phases are repeated for several rounds. The specific probabilistic test design de-
scribed later in this chapter ensures that the detection is successful with high probability, as long as
the number of messages exceeds a given threshold (see Section 3.3.2). The decoder performs failure
detection using a simple distance decoder method (e.g., Hamming decoder). Due to the distributed
nature of our algorithm, the detection can be performed in any sensor and not only at a master
node. We analyze the detection failure bounds and derive the conditions for successful failure de-
tection in the case of a single defective sensor. Then, we provide the error bounds for detection
of multiple defective sensors in the network. We show that the number of linearly independent
messages required for detection is smaller in practice than the one given by the theoretical bounds
obtained in our worst case analysis. We finally provide simulation results for regular and irregular
networks. The experiments outline the advantages of the proposed detection method compared
to other binary signal detection algorithms based on the random walk measurements gathering.
Our algorithm outperforms random walk detection methods both in terms of detection accuracy
and convergence rate, because it creates innovative messages with the higher rate and disseminates
them faster.

The main contributions brought in this chapter can be briefly summarized as follows:

• We build on the sparse nature of the binary sensor failure signals to propose a novel distributed
detection algorithm based on gossip mechanisms and on Group Testing (GT), where the latter
has been used so far in centralized detection problems.

• The new distributed GT algorithm estimates the set of scattered defective sensors with a low
complexity distance decoder from a small number of linearly independent binary messages
exchanged by the sensors.

• We first consider networks with one defective sensor and determine the minimal number of
linearly independent messages needed for its detection with high probability. We then extend
our study to the multiple defective sensors detection by modifying appropriately the message
exchange protocol and the decoding procedure. We show that, for small and medium sized
networks, the number of messages required for successful detection is actually smaller than
the theoretical value computed in a worst case analysis.

• Finally, simulations demonstrate that the proposed method outperforms methods based on
random walks in terms of both detection performance and convergence rate.

The rest of this Chapter is organized as follows. Section 3.2 reviews the centralized Group
Testing framework. Section 3.3 describes our novel distributed detection method. It presents
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the message formation and dissemination processes in sensor networks and discusses the detection
problem for single and multiple defective sensors. Section 3.4 presents the simulation results.

3.2 Centralized detection with probabilistic Group Testing

We first review the centralized detection of sensor failures with methods based on GT and then
describe our novel distributed detection method. We adopt the following notation. Calligraphic
letters denote sets, | · | represents the number of elements in a set and the i-th column and row of
the matrix W are represented with W:,i and Wi,:, respectively.

GT generally aims at detecting defective items in a set based on the outcome of binary tests.
Non-zero entries of a S-dimensional binary vector f ∈ F

S
2 indicate the defective sensors which is

actually the unknown of our problem. F2 is a finite field of size two and f is a K-sparse signal, where
K ≪ S. The tests performed on sensor measurements are represented with a B × S dimensional
matrix W, where B stands for the number of tests. The non-zero entries of Wi,: ∈ F

S
2 refer to

sensors that participate in the i-th test. The boolean matrix multiplication operator is denoted
with ⊗. Then, the results of binary tests are denoted with the test outcome vector g = W ⊗ f ,
where g ∈ F

B
2 .

The design of the matrix W is crucial for reducing the number of required tests for the detection
of defective sensors. This design resembles the design of generator matrices of LDPC codes [65].
Motivated by this similarity, our test matrix W is constructed as [102]:

Wi,j =

{
1, with probability q,
0, otherwise.

(3.1)

Hence, a sensor participates in a test with a probability q. Such a test matrix design assures that
the matrix is disjunct with high probability ([102], Sec. IV, Def. 1). In other words, a matrix W

is called K-disjunct if no column W:,i of W lies in the sub-space formed by any set of K columns
W:,j with j 6= i. This property enables detection ([102], Sec. IV, Proposition 2) with a distance
decoder (i.e., Hamming distance). The disjunct matrix parameter ǫ represents the distance decoder
threshold for detection. We define the support of the vector with the operator supp(·). For any
column W:,i of the test matrix W that is (K, ǫ)-disjunct (Appendix A.4, Def. 1), the decoder
verifies that

| supp(W:,i)\supp(g) |≤ ǫ, (3.2)

where the operator \ is the set difference operator. In other words, the decoder counts the number
of positions in the column W:,i that are different from the outcome vector g. Then, the elements of
f are inferred as non-zero (marked as defective) iff the inequality (3.2) holds. In [102] (Theorem 4),
the required number of measurements for successful decoding is equal to B = O(K log(S)/p3) for
centralized detection for any single set of defective sensors. In general, the noise model alters the
non-zero entries in the test matrix W with probability 1− p, as represented in Fig. 3.1. This noise
model considers only this particular case. In the next section, we focus on distributed detection
algorithms to provide robust solutions that have small costs.
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Figure 3.1: Noise effect on binary symbols in the test message: this model assumes that only the non-zero
values in the test matrix are flipped with probability (1− p) to the value zero.

3.3 Proposed Distributed Detection

In this section, we propose a novel distributed failure detection algorithm and analyze its perfor-
mance. In our framework, we assume that the signal under observation is smooth and that the
measurements of locally distributed sensors are not significantly different when the sensors are not
defective.

3.3.1 Sensor network message design and dissemination

The algorithm is based on a novel test design and message dissemination strategy in a distributed
GT framework. The sensors iteratively create and disseminate messages in two phases, denoted by
tI and tII . One round of our iterative distributed detection algorithm consists of these two phases.
During the first phase tI , the sensors obtain messages that estimate the presence of defective sensors
in their neighborhood. In the second phase tII , the sensors linearly combine messages and exchange
them employing a gossip mechanism. They are illustrated in Fig. 3.2 and described below in more
detail.

Message construction phase

The first phase tI in round t represents the message construction process illustrated in Fig. 3.2 (a).
It proceeds as follows:

• Clustering of the sensors and measurement gathering
In the first stage, L master sensors are chosen either randomly or deterministically. The
master sensors broadcast the message transmission request to all their neighbors. Sensors
may receive multiple request messages from several master nodes, however, they can respond
only to one request. The sensors forward their measurements to the master sensor. After this
stage, the sensors form L disjoint subsets Vl ⊂ V, l = 1, . . . , L and the master sensor collects
the sensor measurements from the corresponding cluster.

• Test message design
In this stage, the master sensor designs the test message. Each sensor in the cluster randomly
participates in the test with probability q, as given in Eq. (3.1). The master sensor compares
the measurements of the sensors. It estimates the presence of the defective sensors (e.g., by
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(a) Phase tI : Message design. (b) Phase tII : Message dissemination. (c) Communication phases.

Figure 3.2: Illustration of the message design and dissemination through the sensor network. (a) Message
formation based on local sensor measurements: Full and dashed arrows correspond to the steps of the
message design, respectively. In the first step, the master sensor collects the sensor measurements from its
neighbor sensors {s1, . . . , s4} and forms the message (gl(t

−),Wl,:(t
−)). In the second step, the message is

propagated from the master sensor to its neighbor sensors. (b) Message dissemination based on a gossip
algorithm with pull protocol, where the sensors request the messages from their neighbors chosen uniformly
at random. (c) Rounds of communication in our iterative detection algorithm consist of the message design
(tI) and the message dissemination (tII) phases.

thresholding) and attributes a binary value f(sk) ∈ f to each sensor in the neighborhood that
participated in the test. The value f(sk) = 1 denotes that the sensor sk is defective and K
marks the set of defective sensors. The influence of noise in the test is given as in Fig. 3.1
following a model used in centralized GT algorithm [102]. The test outcome at master node
l is finally computed as:

gl = Wl,: ⊗ f =

{
1, sk ∈ K ,
0, otherwise,

(3.3)

where the binary matrix operator ⊗ is composed by the bitwise OR ⊙ and the bitwise addition
⊕ operators. The matrix W = [W1,:(t); . . . ;WB,:(t)] (Matab notation) that marks sensors
participating in tests is of size B × S. The message formed by a master sensor l during the
phase tI consists of the outcome gl and the test participation identifier Wl,:.

• Broadcast of the designed test messages by the master sensors
The master nodes sends the message (gl(t

−),Wl,:(t
−)) at time t− ∈ [t−1, t] to all the neighbor

sensors, which concludes the phase tI .

Message dissemination phase

During the phase tII the messages are disseminated within the network as illustrated in Fig. 3.2(b).
This phase proceeds as follows:

• Message transmission request
Every sensor si ∈ {1, . . . , S} requests the message obtained in the previous round from one of
its neighbors chosen uniformly at random, following a gossip mechanism with pull protocol.
We denote the chosen sensor is sj.
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Figure 3.3: The message formation at sensor s2 in round t. We assume that s2 pulls the sensor s1 to
send its message, created in the previous round (round (t− 1)). We assume that the sensor s3 is defective
f = [0010 . . . ]. The outcome value and the test identifier vector are formed by bitwise OR operator.

• Sensor response
The sensor sj responds to the request by sending a message created in the previous round.
This process is performed only once per round.

• Message computations
The sensor si further combines these messages as:

gi(t)← gi(t
−)⊕ gj(t− 1),

Wi,:(t)←Wi,:(t
−)⊕Wj,:(t− 1), (3.4)

where gj(t− 1) denotes the sensor outcome value of the neighbor sj at the previous round
(t−1). The vector Wi,:(t) represents the test indicator vector at the sensor si in round t. Since
the messages are created probabilistically, the message combination in the different rounds
assures that an innovative message reaches sensors at every round with high probability. A
toy example of the dissemination phases is illustrated in Fig. 3.3. In this example the sensor
s2 at round t pulls the message from the sensor s1 and constructs a new message according
to Eq. (3.4).

In a matrix form, the process of message formation and transmission in B rounds at any sensor
in the network is represented as:

g = W ⊗ f . (3.5)

This equation resembles to the outcome of computations in the centralized GT case. However, in
distributed GT, the tests represent linear combinations of test vectors that build disjunct matrix
with high probability, as given in Eq. (3.1).

We provide here an example to make a clear distinction between test matrices in distributed and
centralized setups. We assume that an oracle has a direct access to the readings of the master nodes.
A vector representation of tests performed at master nodes observed by an oracle at the round t = i
is denoted by Ci,:. Then, the matrix C = [C1,:;C2,:; . . .CB,:] (Matlab notation) represents the test
matrix over B collection rounds. Observe that the matrix C is by construction disjunct (Appendix
A.4, Definition 1), while W is built on the boolean addition of rows of C as in Eq. (3.4). The
values in W thus depend on the random message propagation path, which is obviously not the
case in the centralized GT algorithm. Note that, for an arbitrary network, the number of network
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rounds required for collecting a particular number of linearly independent tests varies and depends
on the network topology, the number of master nodes L and the test participation probability q.
Once every sensor has gathered test messages, it independently computes the binary vector f that
satisfies the tests in Eq. (3.5). This process is analyzed in more detail below.

3.3.2 Detection of one defective sensor in the network

We first analyze the case of a single defective sensor (case K = 1) in the network and study
the detection probability of our distributed algorithm. To recall, the distance decoder used for
detection computes the Hamming distance between vectors. The element-wise distance is equal to
one if element values differ, and to zero otherwise. To avoid false alarms, the decoder threshold
ǫ is set to a value higher than the expected number of noise-induced bit flips per columns in the
disjunct matrix C [102]:

ǫ = (1 + δ)(1 − p)qB. (3.6)

where δ > 0 is a small constant and B is the number of rows in C. The columns of C have in
average qB non-zero elements and non-zero elements are flipped with probability (1 − p), so the
expected number of flips per column is:

µ = (1 − p)qB. (3.7)

Recall that the matrix C is by construction a disjunct matrix. The detection problem is resolved
for tests that form a disjunct test matrix ([102], Proposition 2). However, the messages available at
sensors in the network form a test matrix that is obtained by linear combinations of disjunct matrix
rows, and not directly by disjunct matrix rows. Nevertheless, we show below that the distance
decoder detects a defective sensor with high probability in this case under certain conditions.

The formal propositions for detection with high probability are given below. The Proposition
1 and the first part of Proposition 2 that refer to designing a (K, ǫ)-disjunct matrix with high
probability are similar to the Proposition 2 in [102], which is however derived for centralized detec-
tion. They represent the starting point of the analysis of our distributed algorithm. First we show
that, for networks with a single master node the proposed distributed detection algorithm designs
a (K, ǫ)-disjunct matrix C during the phase tI . Next we show that linear combinations of rows of
C preserve distances between the test outcome and the column of the defective sensor in the test
matrix. We then build on the first two propositions to analyze the number of messages needed for
the distributed detection of a single defective sensor, which is given in Proposition 5.

Below we show that networks with a single master node (L = 1) and probabilistic message
design in tI build a (K, ǫ)-disjunct matrix C with high probability. This case boils down to the
centralized collection of data given in Proposition 2 in [102].

Proposition 1. For a single-cluster network, the message design over the phase tI of our proposed
method builds a (K, ǫ)-disjunct matrix C with high probability for an arbitrary K and for ǫ defined
as ǫ = (1 + δ)(1 − p)qB, where δ > 0 is a small constant, B is the number of rows in C, q is a
probability to have a nonzero entry in C, where non-zero elements are flipped with probability
(1− p).

Proof: We denote by G the number of rows with a good disjunctness property. We show that
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the probability that rows in C have disjunctness property is smaller than ǫ and we follow the
development proposed in [102]. A row of the matrix C given by Ci,: is considered to have a good
disjunctness property if a single symbol “1” occurs, while the rest K−1 values are equal to zero. The
probability of such an event is equal to µ1 = q(1− q)K−1, where q is the probability to participate
in a test (see Eq. (3.1)). Then the random variable that marks the total number of rows with such
a property is denoted with G. The distribution of G is binomial with a mean value µ2 = µ1B.
We show that the probability of having less than ǫ rows with a good disjunctness property is small
under the assumption that ǫ < µ2. We limit this probability by a Chernoff bound:

P (G < ǫ) ≤ e
− 1

2
(µ2−ǫ)2

µ2 = e
−qB

[(1−q)K−1−(1−p)(1+δ)]2

2(1−q)K−1 . (3.8)

We mark the exponential term as γ = [(1−q)K−1−(1−p)(1+δ)]2

2(1−q)K−1 . Since 2 < e < 3, 2−m ≥ e−m ≥ 3−m

and constant m ≥ 0, it follows that γ is bounded. For the parameter choice in [102] (δ,m) = (p
2 , p

8),
its value becomes γ = O(p3). Therefore this probability can be designed to be arbitrary small:
P (G < ǫ) ≤ e−Bγ/K = e−O(Bp3/K). �

Then we show that linear combinations of rows of C for networks with one master node preserve
the Hamming distance only between the column of matrix W:,k that corresponds to the defective
sensor sk and the outcome vector g.

Proposition 2. Let C be the (K, ǫ)-disjunct matrix created over B consecutive rounds in a single-
cluster network during the phase tI . Linear combinations of messages generated during the phase
tII , performed as in Eq. (3.4), preserve the Hamming distance between the column of the resulting
matrix W:,k that corresponds to the defective sensor sk and the outcome vector g.

Proof: We first analyze the number of value flips that lead to a decoding failure for (K, ǫ)-disjunct
matrices, following a development similar to [102]. Next, we prove that linear combinations of rows
in such matrices preserve vector distances between the outcome vector and the column of W that
corresponds to the defective sensor.

A decoding failure with a distance decoder occurs in a (K, ǫ)-disjunct matrix when the number
of flips of column elements of C is higher than ǫ. The probability of an occurrence of a single flip
is equal to µ3 = q(1− p). Let F denotes the number of flips in the columns of the matrix. Hence,
the expected number of flips per column is given in Eq. (3.7). We want to compute the lower
bounds for the event that more than (1 + δ)µ flips occurred in the column of the matrix, for δ > 0.

Applying the Markov inequality P (F ≥ (1 + δ)µ) ≤ infd>0

QS
i=1 E[edFi ]

ed(1+δ)µ for a constant d > 0 and
plugging the probability of the single flip event

P (Fi) =

{
1, with probability (1− p)q,
0, with probability 1− (1− p)q,

(3.9)

into the term E[edF )i], we write the Markov inequality as

P (F ≥ (1 + δ)µ) ≤ inf
d>0

S∏

i=1

[(1− p)q(ed − 1) + 1]

ed(1+δ)µ
. (3.10)
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Using simple computations and setting x = (1− p)q(ed − 1) and 1 + x < ex we obtain:

P (F ≥ (1 + δ)µ) ≤ inf
d>0

∏mi

i=1 e(1−p)q(ed−1)

ed(1+δ)µ

= inf
t>0

e(1−p)qmi(ed−1)

ed(1+δ)µ
= inf

t>0

eµ(ed−1)

ed(1+δ)µ
. (3.11)

We plug the constant d = log(1 + δ) to have

P (F ≥ (1 + δ)µ) ≤ (
e

δ

(1 + δ)(1+δ)
)µ = eµδ−µ(1+δ) log(1+δ). (3.12)

Observing that log(1 + δ) > 2δ
2+δ , we finally obtain:

P (F ≥ (1 + δ)µ) ≤ e
−µδ2

2+δ . (3.13)

The outcome value g depends on the presence of a defective sensor sk in the test. We prove
next that the distance between g and the k-th column W:,k does not increase more than ǫ during
tII , while this is not true for the rest of the columns. When the sensor sj sends its message to the
sensor si during the round t, we have:

dist
(

gi(t), Wi,k(t)
)

= dist
(

gi(t
−)⊕ gj(t− 1), Wi,k(t−)⊕Wj,k(t− 1)

)

= dist
(

gi(t
−), Wi,k(t−)

)

⊕ dist
(

gj(t− 1), Wj,k(t− 1)
)

, (3.14)

where the first equality results from Eq. (3.4). The second equality follows directly from the
fact that the values of g(t−) and the columns W:,k(t

−) are identical for the defective sensor due
to Eq. (3.5). Since these two columns initially may differ at ǫ positions due to noise flips, the
overall distance between the vectors g(t−) and W:,k(t

−) is at maximum ǫ, which is defined by Eq.
(3.6). �

We now consider networks with L master sensors and an hypothetical centralized data collection.
We assume that L master nodes cluster the sensor network in disjoint subsets, where every sensor
belongs to exactly one cluster. The master nodes perform message design over the rounds tI as
proposed by our algorithm. We show that the tests gathered from the L different clusters build a
disjunct matrix, where each cluster relates to a (K, ǫ)-disjunct matrix.

Proposition 3. The diagonal matrix C = diag(C1, . . . ,CL) obtained from (K, ǫ)-disjunct matri-
ces C = {Ci}Li=1 is at least (K, ǫ)-disjunct.

Proof: The proof follows directly from the disjunctness property of matrices in C (Propositions 1
and 2). �

We analyze now the influence of the message gathering process over successive rounds of our
detection algorithm. Uniform gathering of linearly combined messages at L clusters by a hypothet-
ical centralized decoder enables the detection of the defective sensor with high probability when
the number of received messages is sufficient.
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Proposition 4. When the (K, ǫi)-disjunct matrices C = {Ci}Li=1 are linearly combined as in Eq.
(3.4), where ǫ =

∑L
i=1 ǫi and q =

∑L
i=1 qi, the resulting test matrix permits the detection by a

distance decoder with high probability as long as B ≥ O(K log(S)/p3) messages are collected from
randomly chosen clusters to build this matrix.

Proof: We first show that a diagonal matrix constructed from (K, ǫi)-disjunct matrices of the set C
is (K, ǫ)-disjunct. Let the number of rows for all matrices be B = O(K log(S)/p3). The parameters
ǫ and ǫi are defined in Eq. (3.6) and ǫ =

∑L
i=1 ǫi = (1 + δ)(1 − p)Bq, so the diagonal matrix built

out of (K, ǫi) matrices is (K, ǫ) disjunct. The next part of the proof follows from Proposition 2,
which states that a matrix whose rows are formed by linear combinations of rows of (K, ǫ)-disjunct
matrices, guarantees a high probability detection with a distance decoder. Finally, we prove that
for a given matrix C the disjunct property holds if at least B messages are available. For this
purpose, we follow a development similar to [102] and consider that the number of sensors in the
clusters is equal to the total number of sensors n = S. The probability bound given in Proposition
1 should hold for all possible choices of a fixed set of T out of S columns: ∪T P (G ≤ ǫ) ≤ Se−Bqγ .
This probability can be arbitrary small, e.g., in case B ≥ K log S

mγ = O(K log S/p3). Further on, the
condition in Eq. (3.13), which gives the probability bound that the number of flips in any K out
of T columns exceeds a threshold value ǫ is also bounded. It reads:

∪KP (F ≥ (1 + δ)µ) ≤ Ke
−δ2

2+δ
µ = Ke

−δ2

(2+δ)p3 (1−p)qKlog(S)
,

where the last equality is obtained from Eq. (3.7). This probability is small for a sufficiently large
value of B = O(Klog(S)/p3). �

We now analyze the proposed distributed algorithm and consider the detection requirements for
every sensor in the network. We show that the test messages collected by the sensors during the
transmission rounds enable failure detection by the distance decoder with high probability if the
number of messages is sufficient, where the decoder operations are performed locally at sensors.

Proposition 5. We assume that L master sensors partition the sensor network in disjunct parts.
Test realizations within a cluster form test vectors. Over the rounds, these vectors create (K, ǫ)-
disjunct matrices C = {Ci}Li=1 whose elements:

ci,j =

{
1, with probability qi = αi,
0, otherwise,

(3.15)

where q =
∑L

i=1 qi. The messages (gi,Wi,:) arrive at all the sensors in the network in our proposed
algorithm, as described in the previous section. If the above assumptions hold and if the number of
linearly independent messages received from each cluster at every sensor in the network is at least
B/L, where B≥O(K log(S)/p3), the probability that sensors fail to detect the defective sensor by
the distance decoder tends to zero as S →∞.

Proof: The message collection method does not influence the decoder performance, since the
number of per-cluster measurements is sufficient for decoding with high probability. Therefore,
the proof follows from the proof of Proposition 4. �
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3.3.3 Detection of multiple defective sensors in the network

We analyze now the distributed detection of multiple defective sensors where K ≪ S holds. We
propose here to slightly modify our distributed algorithm and to limit the decoder search space to
be able to apply the Hamming distance decoder. The protocol modification and the adaptation of
the distance decoder are described below. We assume that sensors have a knowledge about sensors
belonging to each cluster and that at most one defective sensor is located in a given cluster. This
knowledge limits the size of the decoder search space.

The proposed protocol is first modified to deal with multiple defective sensors. A decoder error
occurs when two or more messages with positive test outcomes are combined together during the
phase tII , since the distance preserving property defined in Eq. (3.14) is not guaranteed in this
case. Since the number of defective sensors is very small compared to the total number of sensors,
this event however occurs rarely. We explain the protocol modification by a simple example. Let
the sensor si pull a message from the sensor sj, where both sensor test outcomes have non-zero
values. Instead of combining the messages as in Eq. (3.4), we simply buffer the new message of si

and consider the message from sj at previous round as the final outcome of the phase t:

gi(t) = gj(t− 1),

Wi,:(t) = Wj,:(t− 1). (3.16)

At the first subsequent round τ ≥ t + 1 of our distributed algorithm where both messages gi(τ)
and gj(τ − 1) have non-zero values as test outcomes, gi(τ) is replaced by the message buffered in
the node si. The rest of the protocol remains unchanged.

The decoding proceeds in two main steps. First, the appropriate unions of test matrix columns
are created to form the search set space and second, the Hamming distance between the test
outcome vector and the vectors of the search set are computed. The minimum Hamming distance
indicates the solution of the detection problem. The outcomes g = [gT

0 gT
1 ] collected at some sensor

are divided into two sets, i.e., the negative and positive outcome vectors g0 and g1, respectively.
Subsequently, the rows of the test matrix W form two sub-matrices W0 and W1 so we rewrite Eq.
(3.5) by

[
g0

g1

]

=

[
W0 0
0 W1

] [
f0
f1

]

. (3.17)

We eliminate non-defective sensors from W1 using the knowledge from W0 and obtain W
′

1. Recall
that master nodes partition sensors into clusters. The columns of interest are those columns of
W

′

1, which contain at least one non-zero value, since they mark the participation of the potential
defective sensors in tests. We build the total search space U by taking into account the total or
partial knowledge of sensor cluster partition. When the full cluster partition is known, the columns
of the sensors that belong to the same cluster l are grouped together in a set Hl, l = {1, . . . L},
where L is the total number of clusters (master nodes). Given a knowledge about the sensor
cluster partition for a subset of sensors, the cardinality of the set |H| = |{Hl}L

∗

l=1| is L∗ > L.
The search space U consists of vectors that are obtained by element-wise OR addition of up to K
vectors that are chosen from different sets Hl, because of the assumption that at most one defective
sensor exists in each cluster. For instance, let the number of defective sensors and clusters be
(K,L) = (2, 2). Let H1 contain h1 and let H2 contain h2 columns. Then the search space size
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has in total |U| = h1h2 + h1 + h2 elements, where h1h2 =
(h1

1

)
·
(h2

1

)
denotes the number of unions

of K = 2 columns and single column subsets are chosen in h1 + h2 ways. Distance decoding is
performed between g1 and elements of the set U , starting from the vectors that are created as
unions of K columns towards the smaller number of column unions. If no solution exists for a
particular value of K, we perform the decoding for vectors built from K − 1 column unions of Hl.
If no unique solution is found, we encounter a decoding failure.

We now analyze the number of messages that are required for the detection of multiple defective
sensors with high probability.

Proposition 6. Under the assumption that at most one defective sensor occurs in each cluster,
that the number of available linearly independent messages at all sensors is at least B/L per cluster
with B≥O(K log(S)/p3) and that sensors know what sensors belong to each of the clusters in the
network, the distance decoder detects defective sensors at all sensors in the network with high
probability.

Proof: To recall, the transmission protocol ensures that the assumptions imposed by Proposition
5 hold for one defective sensor. Then, due to the assumption that at most one defective sensor is
present in one cluster and that there is at most one defective sensor active in the test, we form the
set of solutions for the multiple defective case, which has a unique solution. The distance decoder
between the outcome vector and a limited set of vectors that form a full search space can therefore
find the appropriate solution. In other words, this procedure is identical to the case of per-cluster
decoding, where each cluster has at most one defective element, so the Proposition 5 can be applied
here. �

Proposition 7. Under the assumption that at most one defective sensor is present in each cluster,
that the number of available linearly independent messages at all sensors in the network is at least
B/L per cluster, where B≥O(K log(S)/p3) and that sensors know the partial set of identifiers
of the clusters in the network, the distance decoder detects defective sensors at all sensors in the
network with high probability.

Proof: The search space U created in this case is larger, but it contains the solution. Here the
proof is identical to that in the previous proposition. �

The assumption that at most one defective sensor occurrence per cluster is reasonable when K ≪ S.
It is possible to bound the probability that at least two defective sensors occur within any cluster
with the particular combination of (S,L,K) parameters. We provide this analysis in the following
for the sake of completeness.

3.3.4 Probability of at least two defective sensors in a cluster

We show now that our assumption that at most one defective sensor occurrs per cluster is reasonable.
We here bound the probability that at least two defective sensors occur within any cluster. An
erroneous message is generated in a cluster that contains more than one defective sensor when only
a fraction of defective sensors participate in the test actively and we denote the probability of such
an event E with P (E). If defective sensors participate in the test, the distance within the column
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that relates to these vectors and the outcome result does not change. The same occurs if none
of the defective sensors participate in a test. Due to the protocol modification described above,
only one cluster may generate the erroneous message per round. In total we assume that there
are m ∈ {2, . . . ,K}, m ≤ n defective sensors and that clusters contain n = S

L sensors. Then, the
probability of a decoding error in one cluster, Pcl(E), is equal to:

Pcl(E) =

K∑

m=2

P (n, q|m)P (m) =

K∑

m=2

P (n|m)P (q|m)P (m), (3.18)

due to independence of parameters n and q. P (m) represents the probability that some cluster
contains m defective sensors, P (n|m) =

(n
m

)
is a probability of choosing m defective sensors within

a cluster with n sensors and P (q|m) denotes the conditional probability of the error occurrence in
a cluster with m defective sensors and a test participation probability q. We assume1 that m takes
a value from the set {2, . . . ,K} with uniform distribution, so P (m) = 1

K−1 (in total, K − 1 value).
Next, P (q|m) = 1− qm − (1 − q)m (see Appendix A.1). The total error probability for L clusters
is bounded by P (E) ≤ L · Pcl(E), so:

P (E) ≤ L
1

K − 1

K∑

m=2

1− qm − (1− q)m
(n
m

) . (3.19)

We use the well known binomial coefficient inequality
(n
m

)
≥ ( n

m)m that holds for n,m > 0 where
m < n and 1− qm − (1− q)m ≤ 1, q ∈ {0, 1} to bound the value:

1− qm − (1− q)m
(n
m

) ≤ 1− qm − (1− q)m

( n
m)m

<
1

( n
m)m

, (3.20)

We rewrite ( n
m)m by using a well known inequality as ( n

m)m = (1+ n−m
m )m ≤ en−m. Plugging these

expressions into the previous expression and performing simple calculations we finally obtain:

P (E) <
L

K − 1
e2−n eK−1 − 1

e− 1
. (3.21)

For example, for the network values (S,L,K) = (70, 5, 3) this probability is bounded with P (E) <
1.1 · 10−4.

The distance decoder error probability due to our assumption that only one defective sensor is
present in the network is thus very small. In addition, the decoder threshold value can be updated
to increase the robustness. We finally increase the value of threshold parameter as ǫ

′
= ǫ + δǫ,

where δǫ = P (E)E(g1) and E(g1) is the expected number of non-zero test outcomes. It is set to
the total number of observed positive test outcomes.

1There is more than one defective element, so the minimum value of m is two.
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3.4 Experimental results and discussion

3.4.1 Simulation setup

In this section, we investigate the performance of our distributed detection method denoted as GP
in various scenarii. We first examine the influence of different network parameters on the rate of
message dissemination. Next, we examine the decoding probability for defective sensor(s) detection.
The number of system rounds required to collect the necessary number of messages for accurate
decoding varies with the network topology. The simulations are performed for fully connected,
k-connected and irregular graphs. Finally, we discuss the number of required linearly independent
measurements for successful detection and compare it with the theoretical value.

We also analyze the performance of several alternative schemes, namely a Random Walk method
that employs a Gossip mechanism with pull protocol (RWGP) and a classical Random Walk (RW)
detection. A random walk determines the path of successive random dissemination message ex-
changes between neighbor sensors. In the RWGP method, the random walk is initiated at L sensors
(equivalent to the master sensors in the GP method) and terminates after a pre-determined number
of rounds. The sensors create messages from the sensor measurements collected along the random
walk path. These messages are transmitted with the gossip algorithm that uses a pull protocol.
Note that, for identical choice of the sensors over rounds, RWGP and GP are identical. The RW
method initiates the raw (uncompressed) measurements collection at L random sensors and com-
pletes it in a given number of rounds. Every sensor that lies along the random walk path stores
the values of all sensors whose measurements are collected along the transmission path. When all
the sensors receive all data, the process terminates.

The proposed GP algorithm is also compared with a Store-and-Forward (SF) and a Greedy
Store-and-Forward (GSF) methods that employ a pull protocol. Both algorithms disseminate raw
sensor measurements. For the SF method, upon receiving a message request, a node responds by
forwarding randomly chosen messages from the available set of messages. In GSF, each sensor
randomly requests the innovative measurements in a greedy manner from its randomly chosen
neighbor sensors. This procedure involves an additional message exchange among sensors in every
round.

We analyze the performance of these algorithms in fully connected, k-regular and irregular
networks, respectively. To obtain irregular topologies, we randomly position sensors in a unit
square area. Sensors that lie within a certain radius may exchange messages directly. In each case,
we build ten different network realizations and for each such realization we perform 100 independent
simulations. The results are averaged over all the simulations.

3.4.2 Detection performance

We first consider the case of a single defective sensor (K = 1). The detection probability and
the average rank evolution over rounds are examined for a fully connected (FG) and k-connected
regular networks (RG) with sensors degree k ∈ {6, 16}. Here, the network consists of S = 20
sensors. Fig. 3.4 shows that networks with higher number of connections faster disseminate the
innovative messages. We also note that high connectivity value k is beneficial, but itself it cannot
drive the performance of our detection scheme. It should be combined with the appropriate choice
of network parameters, as discussed in more detail in Section 3.4.3. For example, random master
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Figure 3.4: Simulation results for fully connected (FG), k = 16-regular connected (RG, k = 16) and
k = 6-connected graphs (RG, k = 6) and sensor participation constant α = qK with S = 20 sensors, K = 1
and a random selection (RM) of L = 5 master sensors: (a) Probability of defective sensor detection; (b)
Average rank of messages received per sensor.

(RM) sensor selection for k-connected networks (k = 16) achieves better detection performance,
compared to that of fully connected graphs.

In Fig. 3.5, we illustrate the detection probability for random graphs with parameters (S,K) =
(20, 1) in the top row and (S,K) = (70, 1) in the bottom row. The minimum sensors’ degree is
k ≥ 3. We observe that random networks require more rounds in average for successful detection,
as expected. Also, we observe that the detection performance decreases because of the limited
message diversity (smaller probability of receiving innovative messages) and the lower connectivity.

We then consider the case of multiple defective sensors. In Fig. 3.6, we present results for the
cases with K = 2 defective sensors in networks with 70 sensors. The results are given in terms of the
average detection probability over dissemination rounds, for both fully and irregularly connected
graphs. The master sensors are selected deterministically (DM) due to the decoder design for
multiple defective sensors identification. We focus on the evolution of the decoding probability
and the average number of messages collected over rounds. From the evaluation it is clear that
the detection performance is reasonable when the selected parameters values (L,α) favor diverse
message generation.

In [102], a centralized system has been proposed, which can be considered similar to fully
connected networks with centralized tests (single master sensor that covers all the network). For
comparison reasons, we compute the required number of measurements for networks with the
following settings: (S = 20,K ∈ {1, 2}, p ∈ (0.9 − 1), q ∈ (0.15 − 0.3), pf1 = 0.01, pf2 = 0.01) and
(S = 70,K ∈ {1, 2}, p ∈ (0.9 − 1), q ∈ (0.15 − 0.3), pf1 = 0.01, pf2 = 0.01). Here, pf1 and pf2

defined in [102] denote the probability that the bit flips (the non-zero message weight elemets are
flipped to value zero) occur in the test matrix and the probability that the matrix C is not disjunct
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Figure 3.5: Probability of defective sensor detection; Simulation results for irregular graphs (k > 3) and
random selection (RM) of (Top S = 20) and (Bottom S = 70) sensors, K = 1. (a) L = 5 master sensors;
(b) sensor participation constant α = qK = 0.7.
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Figure 3.6: Probability of defective sensor detection for fully connected (FG) and irregular graphs (IG),
d > 3 with S = 70 sensors, K = 2 and deterministic selection (DM) of master sensors. (a) fixed number of
clusters L = 10; (b) fixed sensor participation constant α = qK = 0.3.

Table 3.1: Theoretical measurement rounds requirements for networks with S sensors.

S=20 S=70
K = 1 K = 2 K = 1 K = 2

p ∈ (0.9 − 1) 130 (115-244) (174-217) (125-284)

by construction (see Proposition 1). The results are reported in Table 3.1. We observe that the
worst case analysis leads to a higher number of dissemination rounds than the real ones. However,
these values decrease relatively to the growth of number of sensors in the network. Simulations
show that in practice the number of required measurements is significantly smaller.

The detection probability of the proposed method and of several random walk detection methods
is illustrated in Fig. 3.7 for S = 20 sensors in the top row and S = 70 sensors in the bottom row.
The proposed scheme outperforms all other methods under comparison. Note that the number
of required rounds in RWGP scheme for a high probability detection is large compared to the
other schemes, while RW requires higher communication overhead for dissemination due to the
transmission of raw (non-compressed) sensor measurements. Average rank values over the network
rounds are illustrated in Fig. 3.8. We observe that for the fixed detection probability p = 0.9 for
the network with S = 70 sensors the average number of system rounds required for the proposed
method lies in [17, 20]. The number of system rounds required by the other algorithms to reach the
same probability of performance is higher.

We note here that the class of defective sensor signals, which can be successfully detected is
smaller in GP than in the centralized GT method because of the additional assumption that the
defective sensors are scattered in the network. The proposed approach may be partially recover
those sparse signals whose non-zero values are localized, due to the cluster prtitioning. However,
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Figure 3.7: Detection performance for networks with (top S = 20) and (bottom S = 70) sensors and
L = 5 master sensors. Abbrevations: GP: Proposed method, RWGP: Random Walk gossip dissemination
algorithm with pull protocol, RW: Random Walk in the network initiated at L sensors. (a) fully connected
sensor network; (b) irregular sensor network.
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Figure 3.8: Average rank value for irregular sensor networks with L = 5 master sensors: (a) S = 20 sensors
(b) S = 70 sensors. Abbrevations: GP: Proposed method, RWGP: Random Walk gossip dissemination
algorithm with pull protocol, RW: Random Walk in the network initiated at L sensors, SF: pull store-
and-forward algorithm with a random message transmission, GSF: pull store-and-forward algorithm with a
greedy message transmission.

the cardinality of the class of locally distributed sparse signals is much smaller than the number of
realizations of scattered sparse signals that this algorithm detects. Also, we highlight that the main
advantages of the proposed distributed algorithm compared to the centralized one are reflected in
lower communication costs and higher robustness to network topology changes. We finally note
that any sensor can act as a decoder, which is useful in scenarios with one or more mobile decoders.

While we do not attempt to optimize the parameter values in this work, we briefly discuss the
influence of the parameters below.

3.4.3 Influence of the master node selection process

We study the influence of networks’ capability to generate innovative messages on the decoder
performance. We consider two different methods for selecting master sensors: random master sensor
selection (RM) and deterministic master sensor (DM) selection. Fig. 3.9 illustrates the detection
probability and the achieved average rank with respect to the number of message dissemination
rounds, for fully connected graphs with S = 20 sensors and one (K = 1) defective sensor. We
observe that the performance depends on L and α = qK for both RM and DM. These values should
be selected properly in order to maximize the information diversity in the network. Specifically, we
observe that RM achieves the maximum message diversity for α = 1 (maximum value) since the
diversity of messages in this case is maximized by construction (see Fig. 3.9).

We can also note that the number of clusters does not affect significantly the detection perfor-
mance of RM. On the contrary, for DM both parameters L and α are important. Small values of α
guarantee high message diversity. This is due to the fact that DM requires more rounds to receive
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Figure 3.9: Simulation results for fully connected graphs with S = 20 sensors, K = 1, where RM and DM
denote the random and deterministic selection mode of master sensors, respectively. Top row: Probability
of defective sensor detection. Bottom row: Average rank of messages received per sensor. Column (a):
fixed values of the master sensors (L = 5). Column (b): fixed values of the sensor participation constant
(α = qK = 0.7).

enough messages for detection. In the following, we focus on RM selection where possible (that is,
for K = 1), as it provides higher probability of creating innovative messages.

In Figs. 3.10 and 3.11 we present results for K = 2 defective sensors and small networks with 20
sensors. The results are given in terms of the average detection probability over the dissemination
rounds, for both fully and irregularly connected graphs. Master nodes are selected deterministically
(DM) due to decoder condition for multiple defective sensors identification. Note that this example
violates the condition K ≪ S and the performance drops.
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Figure 3.10: Simulation results for fully connected (FG) and irregular graphs (IG), d > 3 with S = 20
sensors, K = 2 and deterministic selection (DM) of L = 5 master nodes: (a) Probability of defective item
detection; (b) Average rank value.
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Figure 3.11: Simulation results for fully connected (FG) and irregular graphs (IG), d > 3 with S = 20
sensors, K = 2 and deterministic selection (DM) of master nodes, α = 0.3: (a) Probability of defective item
detection; (b) Average rank value.

3.4.4 Communication overhead

For the sake of completeness, we analyze the communication costs of the proposed gossiping protocol
and compare them with all other schemes under comparison. Let Rd and Id denote the number
of bits needed for raw measurements transmission and sensor identifier, respectively. Recall that
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the tuple (S,L,Ln, n, τ) stands for the number of sensors in the network, the number of master
sensors (clusters), the number of master sensor neighbors, the average number of sensors per cluster
(n = S/L) and the total number of transmission rounds, respectively.

During the first phase of GP, the master sensors receive raw measurements from their neighbors.
Thus, Ln·Rd bits are used for communicating these values. Further, the master sensors create binary
messages and send them to their neighbors. Every neighbor requires the knowledge of the test sensor
identifiers, thus the cost is Id · ⌈q(L + Ln)⌉ bits, plus an additional bit in each message for sending
the binary outcome result. Hence, the overall bit consumption is LnRd + Ln(Id⌈q(L + Ln)⌉) + 1).
Then, (S + 1) bits out of S(S + 1) bits in the message exchange phase are reserved for the test
outcome and the test matrix row W. Note that this analysis includes the full vector size and it
can be further compressed. The overall number of transmitted bits over τ rounds is:

nb
GP = τ [Ln{Rd + Id⌈q(L + Ln)⌉+ 1}+ S(1 + S)] . (3.22)

We compare the communication costs of GP with the ones of RWGP that also has two phases. The
first phase represents the random walk message collection, while the second is equivalent to the GP
algorithm. Note that in the special case when RWGP and GP collect exactly the same data, they
have identical decoding performance. However, if RWGP visits some sensors several times (this is
more probable in irregular networks with a smaller connectivity degree), it performs worse than
GP. In typical simulations, a random walk of RWGP terminates after n-th transmission round,
where n is the number of elements per cluster in GP. RWGP transmits raw measurements, which
results in (1+n)Rd

2 bits. Therefore, the communication costs for RWGP is given by:

nb
RWGP = τ

[
(n + 1)Rd

2
L + S(1 + S)

]

. (3.23)

The bit transmission requirements for the RW algorithm is equivalent to that of the first step
of RWGP, since it also transmits raw data. The detection is performed at nodes by comparison of
known sensor values at that moment, excluding the message design step. The number of transmitted
bits is equal to: nb

RW = τ (n+1)Rd

2 L. Recall that one requires log S transmissions for a message
dissemination to all the nodes in a fully connected graph. Therefore, the SF algorithm requires in
total nb

SF = τRd log S bits.

The comparison between the proposed method and all other schemes regarding the bits spent
in communication is illustrated in Fig. 3.12 for a fully connected graph. Note that the proposed
algorithm in this setup requires only t = 15 rounds for detection, but it consumes approximately
three times more communication overhead compared to that of RWGP algorithm. However, due
to the specific collection approach (hops), the duration of one transmission round of RWGP lasts
ten times longer than that of the proposed algorithm. From the figure we can observe that the RW
algorithm has very small communication overhead. However, it requires significantly higher number
of rounds (S log S ≈ 130 rounds) compared to the detection time of the proposed GP algorithm.
Overall, the proposed GP scheme is able to compete with the other schemes in terms of used bits
until detection.
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Figure 3.12: (a) Comparison of the communication overhead for several algorithms, for the following
parameter values: (S, L, Ln, α, Rd, Id, τ) = (70, 5, 50, 0.7, 7, 7, 80). Graph is fully connected. Abbreviations:
GP: Proposed method, RWGP: Random Walk rounds with gossip algorithm and pull protocol dissemination,
RW: Random Walk in the network initiated at L sensors. (b) Comparison of detection vs. number of rounds
of the distributed detection scheme.

3.5 Conclusions

In this chapter, we have addressed the problem of distributed failure detection in sensor networks.
We have proposed a novel distributed algorithm that is able to detect a small number of defective
sensors in networks. We have designed a probabilistic message propagation algorithm that allows
the use of a simple and efficient distance decoder at sensors. The transmitted messages are formed
from local sensor observations and they are communicated using a gossip algorithm. For the worst
case scenario we have derived the lower bound on the required number of linearly independent
messages per cluster that sensors need to collect to ensure detection of one defective sensor with high
probability. We have shown experimentally that this number is quite smaller in practice, even for the
small size networks, which confirms the validity of the theoretical bound. The experimental results
have shown that the proposed method outperforms other detection schemes in terms of successful
detection probability. Finally, the convergence rate is very fast, which largely compensates for the
higher communication overhead.





Chapter 4

Distributed data gathering and

reconstruction

4.1 Introduction

Distributed sensor networks are often built by sets of low cost sensors. In general, the main task of
such networks is to gather, recover and analyze sensor signals. Inexpensive sensors have a limited
computational and transmission power. Therefore, the number of bits used for network message
representation should be limited and the number of messages transmitted in the network should
be limited. However, most of the common gathering and recovery algorithms collect a full set of
messages from all the sensors and the number of bits per message in most algorithms is not carefully
considered. For example, robust systems that perform random linear combinations of messages at
sensors collect full sets of messages at the decoder and the decoder tupically recovers the signal
using the Euclidean elimination algorithm. This method is called Network Coding (NC) [22], [103],
[104] and it is commonly used since it increases the message throughput in the network. Other
algorithms perform signal decorrelation at sensors to increase the transmission efficiency, so only
the innovative messages that are useful for decoding are transmitted towards the receiver. In such
a setup, the decoder recovers the signal given the decorrelation design once that the full set of
messages from all the sensors are available [42], [43].

In this chapter, we propose a novel and efficient distributed data gathering and reconstruction
method for ad-hoc sensor networks that specifically takes into account system limitations in terms
of number of messages and number of bits per message. In our framework the sensors use simple
modular arithmetic to build network observations, which are represented with a limited number of
bits. The proposed reconstruction algorithm then uses signal priors for recovery.

A sensor network is represented by a directed graph G = (V, E), as shown in Fig. 4.1. The
set of vertices V represents S sensors {si}, 1 ≤ i ≤ S and the edge set E defines the sensor
connectivity. We assume that the considered network is connected. The set of directed edges E
is defined by an asymmetric adjacency matrix, where the element ei,j has a nonzero value if the
sensor si communicates data towards sj. The directed edges form data collection trees and a central
receiver r collects the data. The parents Psi

of the node si are the neighbors of si with a larger
hop distance to the receiver r. The sensors measure values of a scalar function f(si) that lives on
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si

sj

r

Psi

Figure 4.1: Directed sensor network. Parents Psi
of sensor si are sensors positioned farther than si from

the receiver r.

the sensor network graph. These measurements can represent a physical phenomenon (pressure,
temperature) or control data, for example. The central receiver r collects the set of measurements
and reconstructs the function f .

In general, sensor measurements may be correlated. In order to minimize the communication
costs, the sensors should ideally transmit only data that are innovative with respect to the infor-
mation from other sensors. This is however hard to achieve in realistic settings since sensors have
limited computational power and only a local view of the network. We therefore design a novel
gathering and reconstruction framework. We exploit NC mechanism, which in a general scenario
builds novel network messages by computing random linear combinations of the observed messages
at sensors, which increases the robustness of the network. This motivated us to propose a sys-
tem where the sensors randomly combine their measurement with the messages received by their
parents, where the combinations performed at sensors use modular arithmetic. Messages are trans-
mitted between the sensors along the directed path towards the receiver. Such gathering method
uses a limited number of bits for message representation which reduces the communication costs
and it ensures that the innovative information is conveyed to the receiver with high probability.

In the literature, message encoding is commonly performed in a ring Fq of size q, where a
value q is equal to the power of a prime number (an existence of a unique multiplication element
simplifies computations in this case). We remark that in this work the value of the modulo divisor
q can be chosen arbitrarily, which increases the flexibility of the system. Though the optimization
of the value q is out of the scope of our work, we use several examples to explain the reasoning
behind building systems with an arbitrary q value. Modular operations ensure that the result takes
values from the known interval of values, so the representation of sensor network messages requires
a limited number of bits. The value of q may be chosen as the value that optimizes the trade-off
between the consumed network energy and the reconstruction quality. Another way to choose q is
related with the research efforts to design more efficient multi-level memory cells for information
storage. Such memory cells have more than two states per bit. Development of reliable sensors
that use these novel technologies could cause the replacement of the currently used 2-logic system
by a multiple valued logic [4]. For sensors with multi-level memory cells, a logical choice of q is the
power of the number of memory level states, where data processing operations at sensors perform
the corresponding q-valued (or power of q) logic.
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We assume in this work that the sensor measurements xi, 1 ≤ i ≤ S, are uniformly quantized
and mapped by injection to the interval of integer values [0, q − 1]. Then, the data collection is
performed as follows. We assign a coding coefficient (weight) wi ∈ {0, . . . , q− 1} to every sensor si.
Sensors at the border of the network (i.e., sensors that do not have any incoming link) initiate the
data gathering. Messages are collected synchronously along the data collection paths. Each sensor
performs weighted combinations of measurements using modular arithmetic. In particular, sensors
perform modulo-q addition and multiplication of the elements in the finite set {0, 1, . . . , q − 1} of
size q, which builds a ring algebraic structure Fq (see def. of a ring algebraic structure in Appendix
A.2). For instance, the message yi ∈ Fq created at the sensor si is the encoding result of its current
measurement and the messages yj received from its parents Psi

. It reads

yi = (wi ⊙ xi)⊕
∑

j∈Psi

yj. (4.1)

Similarly, the message yj has been constructed as the weighted combination of the measurement
of the sensor sj and data received from its parents Psj

. Note that the operators ⊙ and ⊕ respec-
tively represent the element-wise modulo-q multiplication and addition. We remark that modular
arithmetic builds messages whose bit representation is limited by construction. The data gathering
terminates when M messages have reached the receiver. Finally, the messages at the receiver can
be represented in a matrix form as

Y = W⊗X, (4.2)

where X ∈ FS×1
q represents a vector of sensor measurement values xi, 1 ≤ i ≤ S and the vector

Y ∈ FM×1
q contains the received messages. The matrix W ∈ FM×S

q describes the coding operations,
while the operator ⊗ denotes the operator that represents the combination of the operators ⊕ and
⊙. Remark that the i-th row of the coding matrix Wi,: represents the coding vector used for
building the i-th message yi.

In general, the receiver collects partial network data, M < S. The reconstruction problem at
the receiver thus consists in reconstructing the sensor data from a small number of messages with
help of priors about the signal under observation. In other words, the decoder has to determine
the vector X that both satisfies the constraints from Eq. (4.2) and fits the data model. In the
following sections, we study the decoding error for the proposed data gathering system. We analyze
the properties of the random coding matrix and implement a practical message-passing algorithm
for signal reconstruction.

In summary, the contributions of this chapter are the following:

• We propose a novel framework for effective gathering of the sensor data with network coding,
which ensures signal recovery with high probability. Sensors form messages by combining
their measurements with messages received from neighbor nodes using modulo operations
and transmit them along directed communication paths. The receiver reconstructs the data
from an underdetermined system of coded messages with help of sensor data priors.

• We develop an analytic decoding error expression as a function of the number of collected
messages and the partition function values.

• We compute the system performance when sensor data is sparse and locally correlated. We
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show that the decoding error stays small even if a small number of messages are collected by
the receiver.

• We next discuss the coding strategies that increase the decoder accuracy and relate them to
the decoding error expression.

• We propose a novel signal recovery algorithm based on the Belief Propagation (BP) [105]
decoder. To estimate sensor measurements, the decoder uses the data collected by the receiver,
the sensor priors and the signal correlation model dependent on the network topology.

• Simulation results that are provided for several types of network topologies and signals demon-
strate that the proposed algorithm outperforms or competes with non-encoded and wavelet
lifting [43] gathering algorithms in terms of the reconstruction quality or bit consumption.

The rest of this paper is organized as follows. The analytic decoder error bound is developed in
Section 4.2. In Section 4.3, we analyze and discuss the design of the coding strategy that decreases
the decoding error. In Section 4.4 we provide a practical reconstruction algorithm based on a Belief
Propagation algorithm. Finally, in Section 4.5 we provide the simulation results and discussions.

4.2 General decoder performance bounds

In this section we analyze the probability of the decoding error given the messages collected by
the proposed gathering framework. We assume that the sensor signal X ∈ FS×1

q and the decoded
signal X̂ ∈ FS×1

q belong to a class of signals denoted by F . This class represents the full set of
signals that match the data model.

We assume that sensors have correlated measurements with their spatially close neighbors.
Then, for a given topology correlation model based on the sensor distances, we define F as the set
of all the signal function vectors with locally correlated values. For example, one class of signals
that fit our model is the set of all the signals with K nonzero elements, where these nonzero values
are measured by a spatially close neighbors.

A reconstruction error occurs when exists such a signal X̂ in F that matches the coding condi-
tions, i.e., Y = W ⊗X = W ⊗ X̂, where X̂ is different from X. This analysis corresponds to the
worst case approach and the decoding error probability reads

p(X̂|X) = p

(

X̂ ∈ F , s.t. Y = W ⊗ X̂ and X̂ 6= X

)

≤
∑

X̂ ∈ F
p

(

X̂ s.t. Y = W⊗ X̂

)

. (4.3)

The work in [62] uses a similar setup for expressing the general decoding error probability when
the coding is performed in a Galois field, where the K-sparse signal and coding coefficients have
i.i.d. uniform probability mass function (pmf). We study here the decoding performance for a more
generic framework for rings of arbitrary size and with an arbitrary coding matrix distribution. The
computation of the performance bounds is quite different in such a generic setup.
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We assume that messages in the network are encoded independently. Then, the decoder error
probability defined by Eq. (4.3) reads

p(Y = W⊗ X̂) =

M∏

i=1

p

(

yi = Wi,: ⊗ X̂

)

, (4.4)

where Wi,: represents the i-th row of the coding matrix W. We now analyze the error message
encoding event, that occurs if Wi,: ⊗ X̂ = yi = Wi,: ⊗ X. By subtracting the most left and the
most right part of the last expression, the error event becomes Wi,:⊗ (X̂⊖X) = 0. Thus, the error
event probability reads

p

(

yi = Wi,: ⊗ X̂

)

= p

( S∑

s=1

Wi,s ⊙ (x̂s ⊖ xs) = 0

)

. (4.5)

Therefore, for messages collected by the receiver, the decoder error occurs if

S∑

s=1

Wi,s ⊙ (x̂s ⊖ xs) = 0 (4.6)

holds. Computing the decoder error probability boils down to building systematically the total
error event. Once the full set of error events is known, the decoder error probability is computed
as the sum of the probabilities of events in this set that generate a decoding error.

To simplify the analysis of the error event in Eq. (4.6), we consider that the coding matrix
belongs to the general family of random matrices whose elements take values

cW =

{
α, with probability pw,
0, with probability 1− pw,

(4.7)

where α ∈ {Fq \0} is any nonzero element of the ring and pw ∈]0, 1[.We denote the encoding matrix
element Wi,j by cW to simplify the notation. We distinguish two instances that build the error
event, illustrated in Fig. 4.2. The first instance occurs when the nonzero coding elements multiply
nonzero values of the difference vector (full line ellipsoids in Fig. 4.2) and the number of such
coding elements that form the i-th message is A. The second error event instance occurs when the
zero coefficients multiply the nonzero elements of the difference vector of X and X̂ . The number of
such coding matrix events is B and they are illustrated by dashed ellipsoids in Fig. 4.2. Then, the
error event is built by A nonzero and B zero summands in Fq whose total sum is equal to zero in
modular arithmetic. Since in our model there are in total up to k ∈ {1, . . . ,K} differences between
the statistically known model and the signal in F , two vectors in the class of signals F differ in up
to 2k positions and the values of A and B are given by A ∈ {1, . . . , 2K}, B ∈ {0, . . . , 2K}.

We further denote by eA and eB the events corresponding to the cases where A non-zero
summands and B zero summands build the error event. The size of these events is denoted by
|S(eA)| and |S(eB)|, respectively. Then, we compute the probability that an error event ei occurs
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Figure 4.2: To simplify the error event probability calculation, we split the analysis into the cases depending
on the values of the encoding matrix elements that multiply the signal elements at the positions where the
vectors X and X̂ differ. Here, A is the number of nonzero coding matrix coefficients that multiply the
elements of vectors X and X̂ in positions where they differ. The value B is the number of zero encoding
coefficients that multiplies the nonzero elements of the vector obtained by subtracting the vectors X and
X̂.

as the sum of all the combinations of the events eA and eB as

p(ei) =
K∑

k=1

2k∑

A=1

{(

p(cW 6= 0)

)A

|S(eA)|
(

p(cW = 0)

)2k−A

|S(eB)|
}

, (4.8)

where the coding matrix coefficients are defined by Eq. (4.7). We now compute the expected size
of the sets |S(eA)| and |S(eB)|. Once they are computed, the decoding error p(X̂|X) ≤ (p(ei))

M is
known.

The size of the set S(eB) is simply given as

|S(eB)| = |X̂B |, (4.9)

which is the cardinality of the set of possible vectors in F with B arbitrary values at positions mul-
tiplied by zero coefficients in the coding vector. Note that the actual signal values at corresponding
positions of the event eB are arbitrary, since their values are multiplied by zero coefficients cW .

We compute the expected size of the set S(eA) as

|S(eA)| ≤ |X̂A|
A∑

m=1

A∑

l=1

q−1
∑

n=1

p

(

C(P ((m− 1)q, n, l))

)

p

(

C(P ((m− 1)q, n))

) , (4.10)
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Figure 4.3: The partition function values P (a, b) for the pairs of values a and b, where a, b ∈ {1, . . . , 20}
define the number of representations of the number a with b summands. Equivalently, they define the
number of representations of the number a with an arbitrary number of summands, where the maximum
summand is equal to b. These values form the lower triangular matrix.

where |X̂A| counts the total number of vectors in F with A nonzero values at positions where
X and X̂ differ. It multiplies the expected number of error event realizations for each particular
X̂A ⊂ F to give a bound on the size of eA. The error events depend on the partition function
values. The value of the partition function P (a, b) gives the number of possible representations of
the integer a with b integer summands. Equivalently, it defines the number of representations of
a with arbitrary summands where the biggest summand is equal to b. This function is nonlinear
and its values P (a, b) for a ∈ {1, . . . , 20} and b ∈ {1, . . . , 20} are illustrated in Fig. 4.2. Next, the
function P (a, b, c) represents the restricted partition of the representations of the number a with c
summands, where the biggest element in the sum is b.

We illustrate the values of the partition function and the restricted partition function in a few
examples. Number four can be represented by a following list of summands

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1,

so the partition function value of the number 4 with 2 being the biggest summand is P (4, 2) = 2,
which corresponds to the cases 4 = 2 + 2 and 4 = 2 + 1 + 1. This value also gives the number
of representations of the number 4 with two summands, which corresponds to the cases 4 = 3 + 1
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and 4 = 2 + 2. Also, the value of the restricted partition value P (4, 3, 2) = 1 gives the partitions
number for the number four with two summands, where the biggest summand value is three. This
case corresponds to the case 4 = 3 + 1. Similarly, P (4, 3, 3) = 0.

In Eq. (4.10), the function C(P ) defines the number of all the possible combinations of sum-
mands, for a given number of realizations of a partition function and a given number of summands
of each representation. For example, C(P (3, 3, 2)) = 2 indicates that exist two ways to order the
summands for representing the value four with two summands, where the biggest summand is equal
to three. These representations are given by 4 = 3 + 1 and 4 = 1 + 3.

As a consequence of the circularity of the modulo product in a ring of arbitrary size, certain
values occur with higher probability. In the previous equation, p denotes the probability mass
function (pmf) of the product of two random variables V = W X, which are determined by the
distributions of the coding vector and signal vector values. To compute the pmf of the random
variable V , we perform real field operations, which are then mapped to the values of the ring.
Therefore, the pmf of V is in computed in two steps. In the first step, the pmf of V is computed by
transform techniques (details available in Appendix A.3), as if it would represent the product of
two random variables in the real field. Then, the values of the resulting real field random variable
V are mapped to the set of values {0, . . . , q − 1} using the modular arithmetic. The probabilities
of the random variable realizations that have the same congruent modulo q (same reminders) are
summed up together. Remark that the influence of the data model F is not explicitly visible in the
error term. It however drives the number of partitions and it constraints the values in X̂A.

By combining Eqs. (4.8 - 4.10), we obtain the probability p(ei) of the error event ei. Finally,
by inserting this result into Eq. (4.3) we can compute the error probability bound by

p(X̂|X) ≤ p(ei)
M . (4.11)

Recall that, even if the influence of the data model is not explicit in this last relation, the form of
the data in the set F drives the probability p(ei) as given in Eqs. (4.9) and (4.10).

If two vectors from the class of signals F differ in exactly 2K positions (instead of up to 2K, as
considered so far), the interval of values used in computing the decoder error changes and it reads

p(ei) =

K∑

A/2=1

{(

p(cW 6= 0)

)A

S(eA)

(

p(cW = 0)

)2k−A

S(eB)

}

. (4.12)

This error is generally smaller than the decoding error for signals that have up to 2K differences,
as expected.

4.3 Coding matrix analysis

The coding strategy in our data gathering framework influences the decoding error, as shown by the
decoding error expression in the previous section. We here investigate the important characteristics
of the coding matrix W that decrease the value of the decoding error and we discuss some practical
aspects in its design. Coding matrix design has been studied extensively for half of the century in
the coding, sampling and information theory communities [106] generally under the communication
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constraints (e.g., maximum rate or capacity). Here, we rather consider the encoder design from a
sampling theory perspective.

In classical sampling theory, the stability is the main property of a good sampling (coding)
operator W. This property itself implies invertibility. However, the stability condition does not
hold for matrices W that perform modulo-q operations in Fq, as in our gathering framework,
because the modulo encoding operations are nonlinear. In general, we study the problem of sensor
signal recovery in the network with S sensors given M < S messages collected by the receiver,
where the signal priors are given. Therefore, the encoding matrix is underdetermined. Instead of
the invertibility property, we study the rank and the separability property of the encoding matrices
whose elements are in Fq. We show that a good encoding matrix has a high rank value and that the
separability property improves the decoding. These properties bring constraints on building the
matrix rows (high rank property) and columns (separability property). Intuitively, the encoding
matrices with a high rank are favorable since they ensure that every message collected by the
receiver is innovative. However, since W is underdetermined, the encoding pattern of sensors in
the messages needs to differ. This is achieved by forming separable encoding matrices. Additionally,
if the sensor and signal priors are available, the encoding matrix can be optimized to maximize the
decoding performances. In this section we therefore study the rank and separability property of
matrices that perform encoding in a ring algebraic structure Fq. We show that, if the coding matrix
has a high rank and it is separable with high probability, the decoder error probability p(X̂ |X)
decreases.

4.3.1 Matrix rank

We study the dependence between the rank of the coding matrix W and the decoding error. We
recall that matrix rows encode network messages, so independent rows of the encoding matrix
guarantee building of innovative messages. We first recall the classical matrix rank definition that
holds for matrices in the real field and we provide a definition that holds for matrices in Fq. We
then show that the matrix rank value depends on the partition function values, which also drives
the decoding error expression.

In a real field, the matrix rank is equal to the number of linearly independent rows (or columns)
of the matrix. In the ring Fq with modulo addition and multiplication, the matrix rank is equal to
the maximal number of rows whose weighted sum is different than zero in modulo-q arithmetic. We
now study the rank value of a j × S matrix W, where j ∈ {1, . . . ,M}, M < S, where the matrix
elements are chosen as in Eq. (4.7). For this purpose, we compute the probability that amongst j
rows some of the rows are dependent

p(rank(W) < j) = p
(∑

j

dj ⊙Wj,: = 0
)

, (4.13)

where d = [d1 . . . dj] ∈ F j×1
q is a random vector that has at least one non-zero value, while the

operations are modulo-q multiplication and addition. Let kL be the expected value of the number
of dependent rows (or columns) in the M×S matrix W. Let kr and kc denote the expected number
of dependent rows and columns in a ring Fq, respectively. Then, the value kL ∈ {kr, kc} and the
expected matrix rank is equal to rank(W) = min(M − kr, S − kc).
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A zero value in modulo q space may correspond to a real value in {0, q, . . . , ⌈MSpw⌉q}, where
⌈MSpw⌉ is the expected number of nonzero elements in the M × S matrix W. Recall that pw

denotes the probability that a coding matrix element chosen as in Eq. (4.7) takes a nonzero value.
The expected number of nonzero elements in a matrix row and a matrix column are ⌈Spw⌉ and
⌈Mpw⌉, respectively. Then, the probability that, amongst j ≤M rows, some of them are dependent
is equal to

p(rank(W) < j) =

⌈j·Spw⌉
∑

A=1

A∑

m=1

q−1
∑

n=1

p
(
C(P (q(m− 1), n,A))

)
, (4.14)

and the expected value of the number of dependent rows in the matrix is then given by

kr =

M∑

j=1

⌈j·Spw⌉
∑

A=1

A∑

m=1

q−1
∑

n=1

p
(
P (q(m− 1), n,A)

)
· C(P (q(m− 1), n,A)), (4.15)

where C(·) lists all the combinations of the partition function values that can occur. We similarly
compute the expected number of linearly dependent columns, where the probability of the number
of dependent columns is

p(
∑

j

dj ⊙W:,j = 0) =

S∑

j=1

⌈j·Mpw⌉
∑

A=1

A∑

m=1

q−1
∑

n=1

p
(
C(P (q(m − 1), n,A))

)
.

Now, the rank maximization problem is equivalent to the minimization of kr (or kc if S−kc < M −
kr). The expected number of dependent rows in Eq. (4.15) is proportional to the partition function.
Since we showed in Section 4.2 that the decoder error probability is dependent on the partition
function values, maximization of the matrix rank decreases the decoder error rank. Therefore, to
maximize the rank of the matrix whose elements take values from the set {0, . . . , q − 1} decreases
the decoding error since it imposes an innovative design of messages collected by the receiver.

The partition function builds the expression for the computation of the number of dependent
rows and columns. We now illustrate its values for a fixed set of parameters to understand its
nonlinear behavior. We assume that the random variable V = WX is given and that the pmf of the
partition function is uniform. The random variables W and X are determined by the distributions
of the coding vector and signal vector values. We compute the partition function values and its
ratios for multiple pairs of parameters (K, q), where K is the number of nonzero elements and q is
the size of the ring Fq. We observe that the resulting partition function value has a similar behavior
for different parameter pair values. We illustrate the values of the partition function ratios in Fig.
4.4 for (K, q) = (5, 8), where we see that the partition function is maximal when the message values
match the interval values (q, 2q − 1). We want to avoid the resulting message value to lie in this
interval since this case maximizes the decoding error probability. Similarly, Fig. 4.5 shows that
the ratio P (a, b, c)/P (a, b) has the maximum value if the biggest ring element of the ring element
(q − 1) takes part in the partition of the number (m − 1)q. We conclude from these figures that
the coding matrix should not encode multiple correlated sensor readings within a single message,
since this event most probably causes an error. The second observation is that the error is highest
when the message value maps to the biggest ring value (q− 1); this can be exploited for the design
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Figure 4.4: Dependence of the partition functions and their ratio P ((m−1)q,A,n)
P ((m−1)q,A) from the set of parameters

(A, m), plotted for the set of parameters (K, q) = (5, 8). Note that A defines the number of nonzero
summands in the partition function and m defines the value of number to be partitioned (equal to (m−1)q).
The value m = 3 (m− 1 = 2) defines the real field interval with the highest values of the partition function
in (a) and the ratio in (c).

of the coding matrix when the signal properties are known a priori, as shown in Sec. 4.3.3.

4.3.2 Disjunct and separable matrices

We have shown previously that the matrix rank influences the value of the decoding error. The
high rank guarantees that all the messages collected by the decoder are novel. We now study
the matrix properties which ensure different sensor encoding patterns in messages as well as their
relation with the decoding error probability expression. We show that the disjunct and separable
matrices represent good candidates for coding matrix designs whose elements take values from the
ring Fq.

In coding theory, binary coding matrices that lead to high probability decoding have often
disjunct or separability properties [107], [108]. In short, a binary matrix is K-disjunct if the Boolean
sum of every K columns does not contain any other column in the matrix, while the K-separable
property is fulfilled if the Boolean sum of every K columns is unique. Note that K-disjunct matrices
are also K-separable, while the reverse does not hold. For the sake of completeness, we provide
formal definition of such properties for binary matrices and operators in the Appendix A.4. Note
that binary matrices with q = 2 designed by Eq. (4.7) are disjunct with high probability.

For matrices whose elements take values from the ring Fq where q > 2, disjunct definition does
not hold. We thus define now the separability property for matrices in arbitrary size of the ring Fq

and analyze its influence on decoding performance.

Definition 1. Separable matrix in the ring Fq of arbitrary size: A M×S matrix W, whose elements
take values from the ring of arbitrary size q, is K-separable if and only if ∀S1,S2 ⊂ V = {s1, . . . , sS}
and |S1| = I, |S2| = J , I + J ≤ K, it holds that

∑

i∈S1

di ⊙W:,i 6=
J∑

j∈S2

dj ⊙W:,j,
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(A, n), plotted for the set of parameters (K, q) = (5, 8). The parameter A defines the number of nonzero
summands in the partition function and n determines the maximum summand value used for partitioning
the number (m− 1)q. The error occurs most probably for n = q − 1, which is the highest value that n can
take in a ring Fq of size q.

where i ∈ S1 and j ∈ S2, vectors dI = [d1 . . . dI ] and dJ = [d1 . . . dJ ] are non-zero vectors whose
elements take values from the interval {0, . . . , q − 1}.

In other words, for a matrix to be K-separable, any weighted sum of up to K columns in modulo-q
arithmetic should differ from any other column so so that the following holds

I+J∑

k=1

dk ⊙W:,k 6= 0. (4.16)

Matrices with this property encode novel messages with high probability, so intuitively, the de-
coder error decreases. Therefore, the matrix is separable with high probability if the probability
p(
∑I+J

k=1 dk ⊙W:,k = 0) is small. This expression provides constraints on the columns of the en-
coding matrix, while the condition in Eq. (4.13) sets constraints on the matrix rows. We conclude
that matrices with high rank or matrices that are separable in rings of arbitrary size minimize the
decoding error with high probability.

4.3.3 Coding matrix design with a given signal pmf

We now discuss the problem of the design of the coding matrices which keeps the general decoder
error probability low, where the sensor measurement priors {psi

}Si=1, the set X ∈ F , the size
of the ring q and the network topology are given. We first provide details about computations
of the pmf pV(V) of the random variable V = XW, where the random variable X corresponds
to the random variable that models the sensor values and W the coding matrix value. Remark
that the realizations of the random variable V take values from the interval (0, q − 1) and not in
(0, (q− 1)2), since the message encoding is performed using a modulo-q arithmetic. To simplify the
computations of pV(V) we compute the realizations of the random variable V and its probability as
for a real random variable and then we map the realizations and the corresponding probabilities
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to the interval (0, q − 1) using the modular arithmetic. We now provide details of the described
method. This can be used to compute the values of the coding matrix given the signal priors, which
minimizes the decoder error probability.

We first compute the distribution of a random variable V = XW. The formal distribution of a
product of two random variables, as given in Appendix A.3, requires that those variables are defined
on positive values. Therefore, we shift the variable values interval from {0, . . . , q − 1} to {1, . . . , q}
without loss of generality. We perform all the operations considering these shifted values and in
the final step we map the results back to their appropriate values. With this mapping, our novel
random variable takes values in the range (1, q2) instead of (0, q2 − 1). Its values are computed as
follows:

pV(v = 1) =

q
∑

x=1

pX(x)pW(
1

x
) = pX(1)pW(1),

. . .

pV(v = q2) =

q
∑

x=1

pX(x)pW(
q2

x
) = pX(1)pW(q2) + · · ·+ pX(q)pW(q), (4.17)

Since the distributions are discrete, the non-zero values of pW ( v
x) are those that fulfill v

x ∈ Z. Next,
we perform modulo q summations of the values of pV, because the values of our new random variable
are from the range (0, q − 1). We obtain the novel distribution value Q(pV) and we use its pmf
in computations. To build a coding matrix pmf that can minimize the decoding error probability
p(X̂ |X), we minimize the probability of the occurrence of an error event e. We define e as a the
event that the sum of k ∈ {1, . . . , 2K} weighted differences of two vectors in F is equal to zero
in modulo q arithmetic, see Fig. (4.2). The goal is to minimize the probability of the decoding
error. We first provide the example how to compute the probability of the error event when k = 2,
p(e)k=2. Let v1 and v2 be the realizations of the random variable V. We have

p(e)k=2 = 2(p(v1 = 1, v2 = q − 1) + · · ·+ p(v1 =
q

2
, v2 =

q

2
))

which sums the probabilities of all the the decoding error events (here k = 2, so all the pairs
of elements whose modulo-q sum equals zero causes the decoding error). We rewrite the joint
probabilities as pV(v1, v2) = pV(v1)pV(v2) because they are independent. Each of the probabilities
pV(v = i) can be rewritten as the probabilities of pairs of (x,w), where i = xw, so that

p(e)k=2 = 2(

q
∑

x=1

pX(x)pW(
1

x
)

q
∑

x=1

pX(x)pW(
q − 1

x
) + · · ·+

q
∑

x=1

pX(x)pW(
⌊ q

2⌋
x

)

q
∑

x=1

pX(x)pW(
⌊ q

2⌋
x

)).

(4.18)
Similarly, we compute the probabilities for e, k > 2. The optimization of the coding matrix consists
in choosing the coefficient that minimize the probability of an event e and reads

arg min
W

p(e)∀k.

We find the optimal values for weight matrix by computing the discrete derivatives of p(e)∀k over
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all the coefficients

∆p(e)∀k

∆pW(w0 = 0)
= 0,

. . .
∆p(e)∀k

∆pW(wq = q − 1)
= 0, (4.19)

where ∆ is a discrete derivative operator. These equations provide a determined system of linear
equations that can be solved for every particular network. This computations help to analyze good
matrix properties for different signal classes.

4.3.4 Probabilistic encoding matrix design

In this section we build the encoding matrix that we use in simulations. We want to build the
matrix that is separable with high probability and has a high rank.

A probabilistic encoding matrix design propagates the probabilistic message encoding at sensors.
It allows a lot of flexibility in the selection of its coefficients (it can be performed directly by
the sensors). The number of linearly dependent rows and columns in matrices should still be
minimized (maximal rank). We have seen previously that the decoding error is smaller if a limited
number of measurements from locally distributed sensors are combined together, see Fig. 4.4
(separability property). Therefore, we want to build a matrix with a high rank that encodes the
sensor measurement from different correlation sets, which are imposed by the topology correlation
model. In our work, we assume that the signal follows the topology correlation model. For example,
it can be represented by all up to K locally positioned sensors. Once the correlation model is defined,
we can build the set of possible correlated values. Ideally, sensors whose measurements take part
in message encoding should belong to different correlation sets. This problem may be observed
as an covering problem. The covering problem consists in defining M different ways to cover the
area using different patterns. Here, the value M is the number of encoded messages collected by
the receiver. The covering area corresponds to the signal space in the encoding problem. Every
covering attempt corresponds to a single message encoding. A single covering patch corresponds to
one clique set (a patch is used for covering a particular area). Since a single sensor can belong to
several signal correlation realizations, several patches are designed to cover the same area (patches
may overlap). The message encoding problem becomes the problem of covering the area by different
sets of randomly chosen patches, where no patches can overlap. Once the space is covered, the
patches are removed and the next covering attempt takes place. In the next covering attempt we
can not choose the elements that have been used already.

By design, the covering problem is a binary problem. For binary matrices, one of the convenient
ways to build the M ×S matrices, where M < S whose rank is close to M with high probability is
a disjunct matrix design. In our case, the nonzero values of the binary matrix are replaced by the
nonzero elements of a ring Fq. Then, matrix elements are chosen probabilistically by:

cW =

{
α, with probability pw

q−1 andα ∈ {1, . . . , q − 1}
0, with probability 1− pw,

(4.20)
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where α ∈ {Fq \ 0} leads to the finite field disjunct matrix construction.

Algorithm 1 PD Algorithm: probabilistic coding matrix design
Input (K, pw,M)
Initialize CL
while i < M+1 do

Choose the subset Cl from CL that covers the signal space using the criteria C
Assign a weight value cW to each sensor according to the Eq. (4.20)
CL ← Cl (remove the subset Cl from CL)
i← i + 1

end while
Return coding matrix W

The algorithm is described in Algorithm 1. The input values of the algorithm are the sparsity
value K, the probability to choose a nonzero field element pw, the topology correlation model
(the union of all possible correlated sets builds the set CL), the number of messages M that are
collected by the receiver and the covering problem criteria C (minimal number of elements, maximal
number of elements, etc. can be designed for different networks). Based on this criteria, we choose
the subset of patches Cl used for the message encoding. Then, any sensor in the patch is chosen
randomly and the value of the coding matrix is drawn randomly accordingly to Eq. (4.20). The
subset of patches Cl is removed from CL and the process is repeated M times. Such design of the
encoding matrix decreases the decoding error, since it avoids the error events that are illustrated
by high values of the functions in Figs. 4.4 and 4.5.

We now discuss the coding matrix properties in more details. Intuitively, sparse and probabilistic
coding matrices have interesting properties for efficient data gathering, especially it the signal is
sparse itself. However, the sparsity condition alone does not assure recovery of the signal from a
small number of messages. The encoding matrix should have a good covering property. On the
other side, good covering properties assure that the signal space is spanned, but does not provide
sparsity sampling matrix guarantees. Overall, the probabilistic design is particularly useful for
distributed sensor networks and it designs matrices with sufficiently high ranks.

4.4 Modified Belief Propagation reconstruction algorithm

In the previous sections, we have developed the decoding error expression based on the worst case
analysis and discussed the encoding matrix properties that minimize the decoding error. Since the
decoder search space depends on the given set of vectors F , it it may be very large. To recall, the
decoder forms the search space that consists of all the pairs of vectors in F that differ in up to K
positions and it performs the exhaustive search. Since the search space grows quadratically with
the number of elements in the set F , the decoding is computationally expensive. Therefore, in this
section we propose a constructive decoding algorithm for signal reconstruction.

We propose a novel algorithm for signal reconstruction based on a Belief Propagation (BP)
decoder. The layer BP algorithm denoted by BPL reconstructs a sensor signal, given the sensor
priors, the topology model and the network coded messages that are gathered by the receiver node.
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Figure 4.6: The structure of Belief Propagation algorithm denoted used for signal reconstruction.

Comparing with the classical BP, the novel part of the BPL algorithm represents the layer of nodes
that introduces constraints on the topology correlation model and we describe it below in more
details.

The layer BP algorithm architecture consists of variable nodes, two types of factor nodes and
the edges between them, as shown in Fig. 4.6. The variable nodes V = {ni}Si=1 represent the
sensors themselves. The total set of the factor nodes U consists of the measurement check nodes Y
and the structure check node set Z, so U =

⋃(Y,Z
)
. The measurement check nodes Y = {yb}Mb=1

examine if the decoded values satisfy data constraints given by Eq. (4.2) and the structure check
nodes Z = {zc}Cc=1 verify the solution feasibility based on the topology correlation model. The
connections between V and Y are defined by the nonzero elements of the coding matrix W, while
the connections between V and Z are determined by a topology correlation set. The messages
transmitted over the graph edges represent beliefs that a particular sensor takes a certain value.
We first provide details about the topology correlation model used for constructing the nodes Z
and their connections with V. We then provide definitions of messages formed at the nodes V, Y
and Z and finally, we describe the algorithm. We note that the messages computed at nodes V are
used for decoding the signal.

We briefly describe the topology correlation model that is used to define the connectivity be-
tween the structure check nodes Z and variable check nodes V. We assume that locally dis-
tributed sensors may have correlated measurements. We use this model to define a total set of
potentially correlated neighbor sensor sets, called cliques. A graph clique C [109], [110] repre-
sents the subset of neighboring vertices C ⊂ V and provides a consistent and convenient modeling
of dependent entities, e.g., sensor measurements. In the sensor network, the set of neighbors
Nsj

= {si ∈ N|dist(si, sj) ≤ ρ, sj 6= si} of the sensor si represents sensors located at a maximal
distance ρ ∈ R

+ from sj. The total set of graph cliques GC = (V∗, ǫ∗) is given by a union of cliques
C of different degrees, as illustrated in Fig. 4.7. Using the concept of cliques, we group together
locally distributed sensors that could have correlated values. We denote this set by F . Extraction
of this set is network dependent and therefore expensive.

We describe below the layer BP algorithm illustrated in Fig. 4.6. Message exchanges between
nodes are performed iteratively. We represent symbolically the message exchanges between the
nodes in a single iteration of the BP algorithm by the sequence V → Y → V → Z → V. The
iteration starts at variable nodes that send messages towards the measurement check nodes, which
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Figure 4.7: The topology correlation model is based on the assumption that the sensors which are locally
positioned may have correlated values. The neighborhood set Nsj

= {si, sk, r} of the sensor sj build sensors
positioned within a radius ρ from the sensor sj . In this illustration dist(si, sk) < ρ and dist(si, r) > ρ.
Thus the collection of clique sets in this neighborhood corresponds to a union of the set of single elements
C1 = {si, sj, sk, r}, pairs C2 = {(si, sj), (sj , sk), (sj , r)} and triplets C3 = {(si, sj, sk), (sk, sj , r)}. The pair
(sk, r) is not correlated in the considered neighborhood, since it does not contain the sensor sj .

compute new beliefs and send them back to the variable nodes. The variable nodes update their
values and forward messages towards the structure check nodes. They attempt to decode the signal
using the topology-based correlation model and send their values back to the variable nodes. This
concludes one iteration of the decoding algorithm. The full algorithm is listed in Algorithm 2 and
we describe it in further detail below.

The BPL algorithm starts by the initialization of the variable node messages with sensor priors
µsi→yj

← p(si), while the check node and the structure check node messages are set to zeros
µy→si

← 0 and ones µz→si
← 1, i ∈ {1, . . . , S}, respectively. The messages are sent from the

variable nodes V towards the check nodes Y. In the first iteration, the messages sent to the check
nodes are equal to the prior sensor values. In other iterations, the message transmitted from
the variable node si towards the check node yj depends on the subset of neighboring check node
messages, different to the current destination node. It reads

µsi→yj
= γsi

∏

yk∈{N (si)\yj}

µyk→si

∏

zt∈{N (si)\zr}

µzt→si
, (4.21)

where γsi
normalizes the outgoing messages at sensor si. We denote by N (yj)\si the neighbors of

the check node yj that belong to the set of variable nodes different than si. The belief messages at
measurement check nodes are calculated by

µyj→si
=
∑

∼si

f(Nyj
)

∏

sl∈{N (yj)\si}

µsl→yj
, (4.22)

where the binary function f(Ny) is set to one only if the measurement check node conditions are
satisfied. The symbol below the summation, ∼ si, denotes that the summation is performed over
all the sensors different than si. The novel variable node messages depend on the messages from
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Algorithm 2 Layer Belief Propagation algorithm
Initialize variable and check node messages µsi→uj

(si)←p(si), µuj→si
← 0

Initialize constants (flag← 0, iter← 0,maxit), structure set F and sets L,H ← ∅
while iter < maxit or flag = 0 do

Update messages at measurement check nodes Y, Eq. (4.22);
Update messages at variable nodes V, Eq. (4.23);
Find uniquely decoded sensor values at variable nodes from the set L ← Unique max(µsi→zj

(si))
if |L| = S and L 6= ∅ then

X̂(si) = max(µsi→zj
(si)); flag ← 1; break

else if 0 < |L| < S then

Compute H = {F|valid structure subset L}
for h ∈ {1, . . . , |H|} do

Find the sensor values for the missing set of sensors Lh by matching the structure priors that
take into account the existing set of decoded sensor values
if |L ∪ Lh| = S then

Update structure messages µzt→si
as in Eq. (4.24) and variable messages µsi→yj

defined
by Eq. (4.21); flag← 1

end if

end for

X̂(si) = max(µsi→uj
(si); break

end if

iterate→ iterate + 1

end while
return X̂

the measurement messages

µsi→zr = γsi→zr

∏

yk∈{N (si)\yj}

µyk→si
, (4.23)

The structure check nodes receive messages from the variable nodes and use the correlation model
and the subset of formerly decoded values to compute

µzk→si
=
∑

∼si

f(Nzj
)

∏

sl∈{N (zk)\si}

µsl→zk
, (4.24)

which is then sent to the variable nodes. The novel variable node messages are computed as in Eq.
(4.21) and the decoded value is finally

X̂(si) = arg max
si

µsi→yj
(si). (4.25)

The algorithm terminates if the signal is decoded. If this is not the case, the iterative process
defined by Eqs. (4.21)-(4.25) carries on until one of two termination conditions are fulfilled: the
unique signal is determined or the maximum iteration step is reached.
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For the signals collected by the proposed gathering method, the convergence of classical BP
algorithms is not guaranteed. The algorithm diverges in certain cases because the collected messages
form an underdetermined system of equations at decoder. Hence, our modified reconstruction
algorithm uses information about topology and signal, where the latter is typically a smoothness
or sparsity prior. With this modification, the performance of the decoder is improved, even if the
number of collected messages stays low. We note that BPL decoder has the limitation imposed by
the encoding error. The number of computations grow exponentially with the number of non-zero
values in rows of the coding matrix. We limit this value in practice.

4.5 Simulation results

In this section we compute the bounds for the analytic decoder error and discuss them. Next,
we analyze the performance of our layer BP decoder and compare it with several state-of-the art
gathering methods.

4.5.1 Simulation setup

We first describe the experimental setup used in our simulations. We consider networks with a
line array (LA) or an irregular topology. In the latter case, the sensors are randomly distributed
geographically and the data gathering paths represent the shortest path criteria between the sensors
and the receiver in terms of hop distance. We append the coding vector to every sensor in the
networks as in Eq. (4.20) in order to keep track of the coding operations.

For all the networks, several classes of signal priors are used in the experiments. We denote
by Uq the uniform discrete probability mass function (pmf) defined on the interval (0, q − 1) that
represents the distribution of values of each sensor. Alternatively, the sparsity pmf Sq(pw) generates
non-zero values with a small probability pw and those non-zero values are distributed uniformly in
the interval of nonzero ring Fq values (1, q − 1). Signals in sensor networks used for environmental
monitoring very often have a small number of non-zero values that are locally positioned, while
the rest of the values are zeros. Therefore, we adopt this data model in our simulations and we
assume that the class of signals of interest F is formed by signals with up to K non-zero values
that are grouped locally on the graph. We then consider a Gaussian model (DG) where the set
of measurements take values in the finite set of elements, with a Discrete Gaussian probability
mass function (pmf) defined on the interval (0, q − 1) according to a shifted and re-normalized
discretized Gaussian distribution. Finally, we consider a Discrete Laplace (DL) pmf for the signal
values, which preserves the useful properties of the Laplace distribution [111] such as simple closed
form and stability. This distribution is widely used for modeling events in environmental sciences,
signal processing (speech and image) and medicine, to name a few.

4.5.2 General decoder performance bounds

We first study the decoder error bound and analyse the performance of the proposed framework in
different settings. We assume that the values of the coding matrix are chosen uniformly at random,
similarly to the coding matrix design used in [62] and we consider that the signal has at most K
non-zero values that form local clusters in the network.
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Figure 4.8: Error decoding probability (log scale) for line array sensor network with parameters
(S, K, q, sparse signal distribution). PM: proposed method bound; DR: Draper et al. bound (a) PM and
DR are calculated using parameter values (20, [2, 3, 5], 7, Uniform). (b) PM and DR are calculated using
parameter values (20, 2, [7, 17], Uniform).

First, we study the evolution of the performance bound as a function of the number of messages,
for different sparsity levels (i.e., different values of K). In order to help the evaluation, we also
show the bound given in [62]

p(X̂ |X) ≤ K2SHB(K/S)(q − 1)Kq−M , (4.26)

where HB(K/S) is the binary entropy function. This decoding error has been developed for a
framework where linear combinations are performed in GF (q) for prime values of the field size q,
where the elements of the matrix W are chosen uniformly at random in a Galois field GF (q) and
the signals are chosen uniformly from the set of sparse signals. Note that our bound in Eq. (4.11)
can be seen as a generalization of the bound in Eq. (4.26), since we allow network combinations to
be performed in a ring of arbitrary size q using modulo q operations. Remark that, for the same set
of the assumptions (parameters, linear combinations in Galois field and data model) both bounds
actually match.

Figure 4.8(a) illustrates the error decoder performance of the method in [62] denoted by DR and
for our setup (PM), for different instances of the parameter set (S,K, q, signal model). The lower
error values for PM is a consequence of set cardinality: the cardinality of the set F is smaller when
data is locally correlated than in the case where the set of K-sparse signals have non-zero values
that are arbitrarily distributed. We compare these two bounds for different sizes of the ring. We
clearly see that the decoding error decreases for larger values q of the field size. Note that we chose
prime values for the field size q for the sake of comparison with the framework in [62]; however, our
framework could use any value for q and the results actually follow the same tendency as the one
shown in Figure 4.8(b).
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Figure 4.9: Error decoding probability (log scale) for line array and tree-based sensor network with
parameters: (S, K, q, sparse signal model) = (20, 5, 8, DiscreteLaplacian). The error is calculated for sparsity
of K and up to K.

Finally, we want to study the influence of the data model on the performance bounds. We
consider a second class of signals, where the number of non-zero values is exactly K. These non-
zeros values are again grouped locally on the graph. The computations of our performance bounds
in Section 4.5.2 is adapted in this case by putting k = K exactly, and by choosing A even in
{2, . . . , 2K} (i.e., two different vectors with fixed K may differ only in an even number of positions).
Fig. 4.9 illustrates the decoding error probability for both signal models and for line array (LA)
and tree (TR) network. The tree network has roughly 30% more connections between sensors than
the line array network. As expected, we see that the error is smaller for signals whose sparsity is
fixed, as the set of possible signals is smaller in this case, hence the decoding error is reduced. For
the same reasons, smaller values of sparsity (i.e., K) leads to smaller decoding error probabilities.
Finally, we observe that, in all cases, the error bounds decrease exponentially with the number of
messages, which is very important for building effective data gathering solutions.

4.5.3 Layer BP performance

We now provide simulation results to illustrate the performance of our novel BP decoder, which is
able to consider topology and signal priors to improve the signal results. We study the recovery as
a function of the number of bits transmitted in the network. We first consider a sensor network
with S = 20 sensors, where K = 2 non-zero values are locally distributed. The simulation results
represent the mean value of N = 10 random network realizations. The probability that the coding
vector elements take values different to zero is heuristically fixed to pW = 0.2. The connections
between the variable nodes and the measurement check nodes in the BP decoder correspond to the
non-zero ring elements of the coding matrix W. The modulo operations are performed in the ring
Fq, where q ∈ {8, 16}. The proposed layered BP reconstruction algorithm is denoted by BPL, while
the classical BP based reconstruction for signals of fixed sparsity is denoted by BP. We compare
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Figure 4.10: Performance analysis for LA networks with parameters (S, K, N, q, pw) = (20, 2, 10, 8, 0.2).
(a) Average recovery probability; (b) Average Mean Square Error; (c) Bit consumption; (d) Average energy
consumption.

the proposed method with the RAW and GW algorithms. In the RAW algorithm, the transmitted
messages represent non-compressed quantized sensor measurements that are simply forwarded by
the nodes towards the receiver. GW1 represents gathering method based on wavelets, proposed in
[43]. In general, we give the simulation results for a small number of sensors in the network, since
the complexity of the BPL algorithm grows exponentially with the number of non-zero values in
rows of the coding matrix, which is a general property of the classical BP algorithms. However, the
benefits of using the proposed layer BP show for such networks in terms of the bit consumptions.
Current ongoing analysis for medium networks is promising.

1Thanks to S. Narang, G. Chen and A. Ortega for the code. Provided GW results in our work are obtained by
adaptation of the original code to our network conditions.
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Figure 4.11: Performance analysis for TR networks with parameters (S, K, N, q, pw) = (20, 2, 10, 8, 0.2).
(a) Average recovery probability; (b) Average Mean Square Error;

In Fig. 4.10 we illustrate the decoding performance for line array networks. The values given
on the x-axis represent the number of messages (bits) that are transmitted in the network and used
in reconstruction by the proposed BPL method. In particular, the number of messages from the
set {8, . . . , 15} correspond to the number of bits in {203, . . . , 310} used for decoding. Fig. 4.10(a)
shows the reconstruction probability. Recovery probability of RAW and GW methods is small since
they require a fixed number of messages for signal recovery whose bit representation is larger than
the number of messages (bits) gathered by layered and classical BP based algorithms. The average
Mean Square Error (MSE) value for the BPL method is smaller than for the BP, as illustrated in
Fig. 4.10(b). Fig. 4.10(c) then shows required number of bits for recovery with high probability vs.
the number of bits consumed by the proposed BPL method. The methods RAW and GW are able
to recover the signal only upon receiving all the messages, therefore, they require a fixed number of
bits for recovery. These methods require larger number of bits than the proposed BPL algorithm.
Finally, we analyze the total energy requirements that are modeled as in [112]. It considers that
energy is spent on the channel message transmission as well as at the sensors for receiving and
transmission of messages. The total energy consumption for the proposed method is lower than for
the other systems, as shown in Fig. 4.10(d).

In Figs. 4.11 and 4.12 we illustrate the results for networks with tree topologies. The proposed
BPL method recovers the signal with high probability, where the number of transmitted bits is
quite smaller than for GW, BP and RAW message gathering algorithms. The average recovery
probability for of the RAW and GW methods are zero, because they require a full set of messages
for recovery. This value is larger than the number of bits for recovery by BPL algorithms. For
tree networks, the number of message transmission hops needed for reaching the receiver drops
compared to the values in line arrays with the same number of sensors. Therefore, the number of
bits per message transmission decreases.

In Fig. 4.13 we illustrate the recovery probability values for theoretical bounds and the exper-
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Figure 4.12: Bit consumption for TR network with parameters (S, K, N, q, pw) = (20, 2, 10, 8, 0.2).
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Figure 4.13: Theoretical and experimental values of recovery probability. The considered setup is defined
by the set of parameters (S, K, N, q, pw, signal prior) = (20, 2, 10, 8, 0.2, Discrete Laplacian).

imental BPL method. The BPL algorithm however does not have convergence guarantees. The
relatively high error value for small number of messages is caused by the practical limitations of the
BPL algorithm, since the number of iterations of the algorithm are limited. Also, the complexity
of BP-related algorithms grows exponentially with the number of non-zero values in the rows of
the coding matrix, so the coding values vectors are chosen carefully.

Overall, the set of experiments performed for small sensor networks illustrates that the proposed
BPL algorithm provides accurate reconstruction given a small number of sparsely encoded messages
in the networks. Classical algorithms for the same networks require more bits for recovery, since
they may recover signals only upon receiving all the sensor messages.
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4.6 Conclusions

We have addressed in this chapter the problem of efficient data collection for sensor networks.
We have designed the gathering method that codes messages at sensors during the data gathering
phase. The message collection initiates at sensors on the network borders and the proposed network
encoding scheme leads to innovative message collection with high probability. We have developed
an analytic expression for the decoding error and analyzed its dependence on network parameters.
Increasing the size of the ring Fq and narrowing the potential solution set by more precise signal
priors decreases the decoding error. Next, we have investigated the coding matrix properties that
decrease the analytic decoder error and proposed its practical probabilistic design. Finally, we have
proposed a practical Belief Propagation decoder algorithm for signal reconstruction that exploits
sensor priors and the topology knowledge. We have shown experimentally that, for signals with
locally correlated values, the proposed algorithm outperforms or is competitive with state-of-the-art
gathering methods in terms of the number of bits transmitted in the network that are necessary
for high probability signal recovery.





Chapter 5

Distributed interpolation of sensor

network signals on manifolds

5.1 Introduction

Sensor networks are very often used to monitor some physical phenomena (e.g., a temperature)
and interpolation methods are commonly deployed to estimate the signal values at positions where
no sensors are located. Commonly, the sensors are distributed in a large geographical area and
accurate processing algorithms should take into account the geometry of the manifold where the
sensors live. However, in scenarios where the interpolation point set is arbitrary, the manifold
geometry is often neglected or approximated by a plane.

In this chapter, we study the problem of distributed data interpolation in sensor networks
that takes into account a manifold geometry, where interpolation is performed at an arbitrary set
of locations. We consider that irregularly distributed sensors positioned on a smooth geometric
manifold capture a signal that lives on this manifold. We assume that the sensor measurements
are affected by an additive noise. Our objective is to interpolate the signal at a set of points that
are not known prior to signal acquisition. Our proposed method locally estimates the parameters
of the unknown function on the manifold from the available set of sensor measurements. Once
the parameters of the function are computed, the interpolation boils down to computing geodesic
distances between the interpolation points and the sensors that perform interpolation.

Distributed processing algorithms in sensor networks should provide efficient and flexible solu-
tions. Numerous distributed algorithms are recently proposed, such as distributed regression [94],
[113] or distribution of the operator computations on graphs [6], to name a few. However, studies
of distributed interpolation in sensor networks mainly focus on the signals acquired by dynamic
sensors [114]. Recent distributed works that study interpolation problems for high dimensional
signals are closely related to discrete regularization methods. The family of regularization algo-
rithms introduced by [47] removes the noise and preserves the intrinsic signal features. To solve
discrete regularization problems, the set of differential operators commonly deployed in regulariza-
tion approaches are redefined to hold in a discrete domain in [115], [116]. Graph signal models
simplify the high dimensional signal representation and they are commonly used to design fast
graph-based regularization algorithms [117], [118]. However, fast and distributed graph-based ap-
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ρ

Figure 5.1: The graph representation of the irregular sensor network on a geometric manifoldM is defined
by a tuple G = (V , E , w), where sensors si, 1 ≤ i ≤ S build the set of vertices, their connections ei,j = (si, sj),

define the edges E whose weights are w(si, sj). The set N (g)
si defines a set of sensors that are connected

to si (w(si, sj) ≤ ρ), while the local sensor neighborhood Nsi
determines the set of nodes whose geodesic

distance to si is smaller than σ.

proaches require the knowledge of the interpolation point set in order to build the graph structure
and perform interpolation and we consider that the interpolation set is not available prior to data
acquisition. Therefore, we propose to estimate the values of a local function around each sensor,
so that interpolation can be performed easily at any point on the manifold.

We propose in this chapter a novel distributed interpolation algorithm for sensor networks
positioned on geometric manifolds. We assume that the network consists of S sensors that are
irregularly distributed on a known and smooth d-dimensional geometric manifoldM. We represent
the sensor network by a weighted undirected graph G = (V, E , w), where the set of vertices V is a
set of sensors si, i ∈ {1, . . . , S} and the set of edges E ⊆ V × V defines the connections between
sensors. We assume that the graph G is connected. Then, the edge weights w : E → IR+ are defined
by geodesic distances, where w(si, sj) ≥ 0 and w(si, sj) = w(sj , si), ∀ei,j = (si, sj) ∈ E .

The graph representation of the sensor network on a geometric manifold is illustrated in Fig.
5.1. The vector mi = (m1(i), · · · ,md(i)) for i ∈ {1, . . . S} defines the coordinates of the sensor si

on a smooth d-dimensional geometric manifold. A set of sensors in the graph that are connected
to the sensor si build its graph neighborhood N (g)

si , where ∀sj ∈ N (g)
si holds that w(si, sj) ≤ ρ for

a distance value ρ. Every sensor can communicate its measurement to its graph neighborhood set.
In addition, we define a local neighborhood Nsi

of the sensor si as the set of sensors {sj} whose
geodesic distance to si is dist(si, sj) ≤ σ, where dist(·) defines the geodesic distance function.

The sensors measure a physical phenomenon (e.g., temperature, pressure, etc.) and their mea-
surements are corrupted by an additive noise. The function defined on the vertex (sensor) set of
the graph is denoted by f̃ ∈ H(V), where f̃ : V → R

+ assigns a real number to every sensor. The
noisy sensor measurements yi, i ∈ {1, . . . , S}, are the samples of the signal f̃ at sensor locations
mi = (m1(i), . . . ,md(i)), which reads

yi = f̃(mi) + ǫi, (5.1)

where ǫi represents the additive noise. The sensors exchange measurements with neighboring sensors
in adhoc way.
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The objective is to locally estimate the unknown signal function at every sensor, in order to be
able to interpolate values anywhere on the manifold. Formally, we want to compute the values of
an arbitrarily chosen set of interpolation points using the algorithm that minimizes the estimation
error and incorporates the inherent manifold characteristics. We pose the interpolation problem
as the convex optimization problem that exploits the geometry of the manifold and we solve it
analytically. The computations of the analytic solution are performed at sensors using a set of
available, locally gathered neighborhood measurements. Now, each sensor si can compute the
unknown function parameters given the measurements and locations of neighbor set of sensors Nsi

.
We perform the experiments on spherical signals and show that the proposed interpolation method
outperforms the baseline Nearest Neighbor method in terms of the signal quality. Then, we analyze
the performance of the iterative interpolation algorithm. In particular, we provide the analysis of
data transmission phases in the network. Finally, we analyze the evolution of the bit consumption
and the interpolation signal quality over transmission rounds of the iterative interpolation algorithm
and show that it converges fast for the small world network connectivity model.

We summarize below the main contributions of this chapter:

• We propose a novel interpolation algorithm that locally computes interpolated values of a
function living on a manifold with a kernel regression method, given noisy measurements
captured by a set of irregularly distributed sensors on the manifold.

• We propose an iterative algorithm for the interpolation problem, where sensors transmit
measurements in an adhoc way to their neighbors with a gossip based protocol and each
sensor estimates a local version of the unknown function.

• We apply our framework to spherical manifolds and perform experiments for spherical images,
due to difficulties in obtaining the real data. We here assume that each pixel of the spherical
image represents a sensor measurement. Our method is shown to outperform the baseline
Nearest Neighbor interpolation method in terms of reconstruction quality.

• We provide a probabilistic model for the data dissemination process and show that the distri-
buted interpolation algorithm uses a smaller number of bits to transmit data compared to a
broadcasting scenario, where the sensors transmit measurements to all their neighbors.

The rest of this chapter is organized as follows. In Section 5.2, we propose a generic kernel based
regression method for sensor networks. We then propose a distributed version of the kernel-based
interpolation algorithm in Section 5.4. In addition, we provide a probabilistic model for data
dissemination phases. Finally, we present an application to spherical signals in Section 5.3.

5.2 Nonparametric weighted kernel regression on geometric mani-

folds

We propose an interpolation algorithm that incorporates the inherent manifold geometry into the
signal interpolation problems for arbitrary points on the manifold. We assume that the unknown
manifold signal is smooth and n times differentiable. Such signals can be locally represented by
a Taylor expansion. The interpolation problem becomes the estimation of the Taylor expansion
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coefficients at the sensor locations. The parameter estimation of the function from data samples is
a problem similar to nonparametric kernel regression methods [86], which however do not directly
incorporate the inherent geometry of high-dimensional manifolds.

We first introduce the differential operators for non-Euclidean manifolds. Then, we use them
to define the Taylor expansion of a function at the points of the geometric manifold. We then pose
the nonparametric kernel regression problem that incorporates the manifold geometry in order to
obtain the Taylor expansion coefficients from noisy sensor measurements. This convex optimization
problem minimizes the estimation error between the Taylor expansion estimate and the sensor
measurements in the sensor neighborhood. Finally, we solve the problem analytically.

First, the differential operators are defined for a smooth manifold M by a Riemannian metric
g. The vectors in the tangent plane ofM at a point mi represent the directions of computation for
derivatives. For the point mi onM, the components of the gradient in its neighborhood are given
by ~∇(·) = g( ∂(·)

∂mi
). Similarly, the Laplacian is a scalar operator defined as ∇2(·) = ~∇ · (~∇(·)).

Without loss of generality, we focus now on the second-order Taylor expansion of f̃ on a manifold.
This function at point m0 can be represented by its Taylor series expansion around the point mi

by

f̃(m0) = f̃(mi) +∇f̃(mi)
T (m0 −mi) +

1

2!
(m0 −mi)

T (∇2f̃(mi))(m0 −mi) + Rf̃ (5.2)

where ∇f̃(mi) is the gradient of the function f̃ evaluated at mi, ∇2f̃(mi) is the Hessian matrix
evaluated at mi and Rf̃ is the residue. In the interpolation context, the point m0 represents the
interpolation location and mi is the position of a sensor close to m0. We assume that the second
order Taylor expansion of the function well approximates the function value in the point, so we
consider that it holds f̃ ≈ f̃ − Rf̃ . We denote by β(2) the derivatives of up to the second order

(n = 2) of the function evaluated at mi, so β(2) = {β0, β1, β2} = {f̃(mi),∇f̃(mi),∇2f̃(mi)}. More
detail on derivation of differential operations and Taylor expansion in a Riemannian tensor metric
are available in [119]. Throughout this chapter we denote the optimal set of derivatives of the
function given by β(2) at m0 by β∗ for the notation compactness.

Our objective is to compute the best estimate of the Taylor expansion at position m0 that well
approximates the function in all neighbor sensors. The simplest approach for estimating the values
β∗ that provide the best fit to the input data represents a Mean Square Error (MSE) minimization
problem

β∗ = arg min
{β(2)}

q
∑

i=1

‖yi − f̃‖2, (5.3)

where q is the number of neighboring sensor measurements, yi are the noisy sensor measurements
defined by Eq. (5.1). The main drawback of such an approach is that it treats all the samples in
the same way, without considering a relative position of the interpolation point and measurements.

To overcome the problem of equal impact of sensor measurements, the authors in [99] have
proposed to weight signal samples according to their “importance” (e.g., distance to the inter-
polation point) by a data-driven weight function. The work in [120] has extended this frame-
work to solving interpolation and denoising problems in image processing. Both works intro-
duce a consistent way to weight the relative importance of the sensor measurements by using a
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Kernel function. Kernel functions build the class of real valued continuous functions that ful-
fill conditions of Mercer’s theorem ([121], Sec. 4.3). In other words, for all the functions f
that are square-integrable (

∫
|f(m)|2dm) < ∞), candidate Kernel functions K(·, ·) should sat-

isfy
∫ ∫

K(m1,m2)f(m1)f(m2)dm1dm2 ≥ 0. Such properties of the weight function in the opti-
mization problem assure that the it preserves the core properties (a convex optimization problem
remains convex). This type of functions are studied extensively in problems related to statistical
machine learning [122].

We propose to use a kernel-based approach to solve our local interpolation problem for sensor
manifold data. In particular, each sensor in the network computes the set of parameters that well
describes the function in its neighborhood. These parameters are the solutions of the Kernel-based
nonparametric regression problem on the geometric manifold.

Without a loss of generality, we assume that coordinates m0 of the manifold point where the
Taylor expansion is computed is represented by two dimensional manifold coordinates (θ0, φ0). We
choose this example for a notation simplicity. The computations given below are easily extended
for signals of an arbitrary dimension, as we show later in this section.

We formulate the weighted MSE cost function as J(β) =
∑q

i=1 ‖yi−f̃(θ0, φ0)‖2K(θi−θ0, φi−φ0)
where q is the number of neighboring sensor measurements of interest and K(·, ·) is the kernel
function that depends on the geodesic distances between the sensors si and its neighbor sensors
Nsi

. The first multiplicative term of J(β) enforces data fidelity, while the kernel function weights
the sample points according to their geodesic distance to the interpolation point. For compactness,
we denote the kernel function by K(θi, φi). We assume that the second order Taylor expansion
(n = 2) provides generally a good approximation of the function and we neglect the residue Rf̃ in

our computations, i.e., we use f̃(θ0, φ0)−Rf̃ = f̃(θ0, φ0). We then solve the optimization problem

β∗ = arg min
{βn}

J(β) (5.4)

to determine the parameters of the Taylor expansion. Remark that the cost function is a linear
function of the unknown values. Then, the second order Taylor expansion of f̃ at point (θ0, φ0)
reads

f̃(θ0, φ0) = β0 + g1(θi)(θ0 − θi)β11 + g2(φi)(φ0 − φi)β12 (5.5)

+
1

2
[g3(θ

2
i )(θ0 − θi)

2β21 + 2g4(θi, φi)(θ0 − θi)(φ0 − φi)β22 + g5(φ
2
i )(φ0 − φi)

2β23]

Here, the set of unknowns β∗ = (β0, β11, β12, β21, β22, β23) represents the values from the set

β∗ =
(
f̃(θi, φi),

∂f̃(θi, φi)

∂θ0
,
∂f̃(θi, φi)

∂φ0
,
∂2f̃(θi, φi)

∂θ2
0

,
∂2f̃(θi, φi)

∂θ0∂φ0
,
∂2f̃(θi, φi)

∂φ2
0

)
, (5.6)

while the set of values {1, g1(θi), g2(φi), g3(θ
2
i ), g4(θiφi), g5(φ

2
i )} that multiply the elements of the

set β∗ in Eq. (5.5) is the consequence of coordinate system transformation from the Cartesian to
the manifold coordinate system.

We compute the minimum of Eq. (5.4) by analytic approach. The interpolation value at the
point (θ0, φ0) computed as in Eq. (5.5) is a linear function of the set of unknowns β∗. Therefore the
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first order derivatives with respect to the elements in β∗ represent the extremum of the function.
We obtain the following set of equations

∂J(β)

∂β0
= −2(

∑

i

(yi − f̃(θ0, φ0)) · 1 ·K(θi, φi) = 0,

∂J(β)

∂β11
= −2(

∑

i

(yi − f̃(θ0, φ0)) · g1(θi)(θ0 − θi) ·K(θi, φi) = 0,

∂J(β)

∂β12
= −2(

∑

i

(yi − f̃(θ0, φ0)) · g2(φi)(φ0 − φi) ·K(θi, φi) = 0,

∂J(β)

∂β21
= −2(

∑

i

(yi − f̃(θ0, φ0)) ·
1

2
g3(θ

2
i )(θ0 − θi)

2 ·K(θi, φi) = 0,

∂J(β)

∂β22
= −2(

∑

i

(yi − f̃(θ0, φ0))) · g4(θi, φi)(θ0 − θi)(φ0 − φi) ·K(θi, φi) = 0

∂J(β)

∂β23
= −2(

∑

i

(yi − f̃(θ0, φ0))) ·
1

2
g5(φ

2
i )(φ0 − φi)

2 ·K(θi, φi) = 0. (5.7)

We rewrite these expressions in the compact matrix form, where the unknowns β∗ form the vec-
tor b̂. We use the notation ki = K(θi, φi) and {c0, c1, c2, c3, c4, c5} = {1, g1(θi)(θ0− θi), g2(φi)(φ0−
φi), g3(θ

2
i )(θ0 − θi)

2, g4(θi, φi)(θ0 − θi)(φ0 − φi), g5(φ
2
i )(φ0 − φi)

2} to obtain
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(5.8)
The previous equation rewritten in a matrix form reads

z = P · b̂, (5.9)

where the elements of the vector z and the matrix P are the functions of sensor measurements and
weights, respectively. Finally, the sensor computes the elements of the vector b̂ by

b̂ = P−1z, (5.10)

where P−1 is the pseudoinverse of the matrix P. In general, P is a full rank matrix. We however
note that in the certain cases the elements of the matrix P are small and they are approximated
with zero values in numerical computations.

It is easy to show that b̂ is the global minimum of the optimization problem given by Eq.
(5.4). The complete interpolation algorithm is described in Algorithm 3. The geometric manifold
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Algorithm 3 Local signal interpolation algorithm
Input:

The coordinates of the set of neighboring sensors mi and their measurements yj.
Parameters of the kernel function (standard deviation, function choice).
Position of the interpolation point m0.

Preprocessing:
Representation of the coordinates of position mi in terms of coordinates on the geometric

manifold.
Computation of first and second order derivatives of the objective function in Eq. (5.4) with

respect to the covariant basis vectors.
Compute:

Computation of weights for the set of sensors that are neighbors of the interpolation sensor.
The weights represent the kernel function values at positions that correspond to geodesic distances
between the interpolation sensor and its neighbor sensors.

Computation of the matrix P and the vector z whose elements, defined in Eq. (5.8), are
obtained by optimizing Eq. (5.4).

Computation of vector b̂ as in Eq. (5.10).
Output:

The interpolated value f̃(m0) at point m0, defined in Eq. (5.5).

is known a priori. In a preprocessing step, we express the coordinates of each sensor in terms of
the geometric manifold coordinates and compute the derivatives with respect to its covariant basis
vectors. The elements of the matrix P and the vector z are built as defined by Eq. (5.8). They are
dependent on the kernel function values and the sensor measurement values, respectively. Then,
the unknown set of parameters β∗ that define the Taylor expansion at location m0 are computed
by matrix inversion, as shown in Eq. (5.10). Each sensor that solves the matrix inversion problem
can finally compute the interpolated value of the unknown function at point m0, according to Eq.
(5.5).

Finally, we briefly discuss the extension of our problem to higher dimensions. The positions
of sensors (graph vertices) can be defined in many problems by three-dimensional vectors. Also,
geometric manifold models are usually parametrized by two or more parameters. Interestingly, the
above proposed interpolation algorithm holds for data of arbitrary dimension. The dependency
between the elements in the set of parameters β∗ and the interpolated values indeed remains linear,
independently of the signal dimension. By definition, the Taylor expansion in a two-dimensional
case is a linear equation of values β∗ (see Eq. (5.5)) and the proposition holds. The functions of d
parameters can be represented by a Taylor (multivariate) expansion (def. in Appendix A.5). Such
an expansion is however again a linear combination of the derivatives of the function with respect
to covariant basis vector of the geometric manifold evaluated at different positions, irrespective of
its dimension. Therefore, the optimization problem for high dimensional functions has a solution
of the same form as the one given by Eq. (5.10), where the length of the vector b̂ corresponds to
the number of unknown parameters in the estimation.

Finally, we note that the proposed algorithm is naturally distributed, since each sensor can
perform interpolation based on local estimation.
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Figure 5.2: Geometry of a 2-d sphere: spherical polar coordinates (θ, φ).

5.3 Application to spherical signals

5.3.1 Interpolation on the sphere

In this section, we consider a particular case of data that correspond signals that live on the sphere.
The sphere is a pretty common manifold structure in many problems in signal processing and
imaging. We assume that the 2-d spherical images correspond to the measurements of the sensor
network distributed on the spherical manifold, where each sensor measurement corresponds to the
pixel value in the image. We first develop the analytical framework specifically for 2-d spherical
signals. Then, we analyze the accuracy of the proposed interpolation algorithm in terms of Mean
Squared Error or Peak-Signal-to-Noise (PSNR) for natural images1, as well as for different classes
of synthetic data. In addition, we provide performance results in terms of Structural SImilarity
Measure (SSIM) [123] that evaluates the similarity of patches of the signal, rather than point-wise
similarity as in PSNR.

Then, under the assumption that sensors in a local neighborhood form a small world network,
we analyze the evolution of the data dissemination process as well as its influence on the signal
quality. We assume that the positions of neighbor sensors are known and that the number of hops
between two neighboring sensors in the graph is at most h hops. Finally, we provide an analysis of
the number of bits transmitted until the convergence of the interpolation algorithm.

We first formulate the particular expressions used for distributed interpolation on spherical
manifolds, that we use later to perform the experiments on natural and synthetic spherical images.
A general 2-d sphere represents a unit radius ball. The Cartesian coordinates (x, y, z) relate to the
spherical coordinates by

x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ,

where φ ∈ [0, 2π) is the azimuth angle, θ ∈ [0, π] represents the zenith angle and r > 0 is the radius.
The 2-d sphere is a smooth manifold with well defined differential operators. The del operator

on the sphere reads ~∇ = r̂ ∂
∂r + θ̂

r
∂
∂θ + φ̂

r sin θ
∂
∂φ . The Laplacian operator is a scalar operator defined

by ∇2(·) = ~∇ · (~∇(·)). We perform simple calculations and rewrite the Laplacian operator in the

1Thanks to Ivana Tošić for providing the image.
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Figure 5.3: The inverse stereographic projection [1]: a point with the Cartesian coordinates (x, y) in the
plane tangent to the North pole is mapped onto the sphere and its coordinates become (θ, φ).

spherical case as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin2 θ

∂2

∂φ2
+

cos θ

r2 sin θ

∂

∂θ
+

1

r2

∂2

∂θ2
. (5.11)

For the unit sphere (r = 1), the Laplacian operator reads

∇2 =
1

sin2 θ

∂2

∂φ2
+

cos θ

sin θ

∂

∂θ
+

∂2

∂θ2
. (5.12)

Then, as the Kernel function we use the symmetric 2-d Gaussian function, since it is a smooth
function that has properties of a good Kernel function. The Gaussian function is defined in the
Cartesian coordinate system by

K(x, y) = exp

(

−
(

(x− xo)
2

2σ2
x

+
(y − yo)

2

2σ2
y

))

,

where (xo, yo) are the mean values and (σx, σy) represent the standard deviation values. For spher-
ical manifolds, the kernel function is constructed by projecting this 2-d kernel function to the unit
sphere. We use the inverse stereographic projection [1] to map points in the plane that is tangential
to the North pole onto a 2-d sphere. Each point (x, y) in the plane is uniquely mapped to the point
(θ, ϕ) on the sphere where (x, y) = (2 tan θ

2 cos φ, 2 tan θ
2 sin φ), as shown in Fig. 5.3. Positioning

the Kernel at a particular point on the sphere is easily performed with a single rotation in the
SO(3) group [124]. Finally, the set of neighboring points is selected as the points whose geodesic
distance to the interpolation point is smaller than the standard deviation values of the kernel. In
particular, the geodesic distance between the interpolating sensor s0 at coordinates (θ0, φ0) and the
sensor si at (θi, φi) reads

σg = atan
(
√

[cos(π/2− θi) sin(−φi)]2 + [cos(π/2− θi) cos(−φi)]2

sin(π/2 − θi)

)

(5.13)

We note that the above expression holds for angles θ ∈ {0, π} and φ ∈ {−π, π}, which is different
from the standard notation for geodesic distances.

Equipped with the above elements, we now compute the Taylor expansion of signals on the
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sphere. We plug the appropriate expressions of the first and second order derivatives of a spherical
signal f̃ in vicinity of (θ0, φ0), where r = 1 into Eq. (5.5) and obtain

f̃(θ0, φ0) = f̃(θi, φi) +
∂f̃(θi, φi)

∂θ0
(θ0 − θi) +

1

sin θi

∂f̃(θi, φi)

∂φ0
(φ0 − φi)

+
1

2
[

1

sin2 θi

∂2f̃(θi, φi)

∂φ2
0

(φ0 − φi)
2 +

cos θi

sin θi

∂f̃(θi, φi)

∂θ0
(θ0 − θi) +

∂2f̃(θi, φi)

∂θ2
0

(θ0 − θi)
2].

By observing the previous equation and Eq. (5.5) given for the general Taylor expansion, we
identify the elements of sets β∗ and {g1(·), . . . , g5(·)} , that are specific for the spherical signals.
These sets are given by

(β0, β11, β12, β21, β22, β23) = (f̃(θi, φi),
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0

), (5.14)
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1

sin2 θi
). (5.15)

Once these sets are identified the computation of the Taylor expansion coefficients reads
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Here, ki stands for the kernel function value at the position that corresponds to the sensor si and
the set of coefficients {c1, . . . , c5} read

c1 = (θ0 − θi)[1 +
1

2
atanθi], c2 =

φ0 − φi

sin θi
, c3 =

1

2
(
φ0 − φi

sin θi
)2, c4 = 0, c5 =

1

2
(θ0 − θi)

2. (5.17)

We note that β22 = 0 because ∂2/∂θ∂φ component is not present in the spherical Laplacian operator
defined in Eq. (5.12).

5.3.2 Experimental interpolation results

We provide interpolation results for several spherical image data sets and discuss them. To recall, we
consider that each pixel value represents a scalar sensor measurement, where sensors are distributed
on a 2-d sphere. We first show results for an omnidirectional image obtained by a catadioptric
camera in noisy and noiseless cases and then present results for other spherical signals with different
data density. The two parameters that play important role in the proposed algorithm are the
selection of neighboring sensors and the choice of the kernel function. In particular, the standard
deviation parameter σ of the Gaussian function represents the geodesic distance on the sphere in
Eq. (5.13) and determines the neighborhood of the interpolation point.

We first examine the performance of the kernel regression method for zero, first and second
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Figure 5.4: Omnidirectional test image.

order Taylor expansions for omnidirectional images. The pixel positions (that correspond to sensor
locations) form the equiangular grid. The resolution of the omnidirectional image is 1024 × 1024,
out of which 1024 × 326 pixels have non-zero values (recall that the omnidirectional image has
blocks of zero values close to the poles). The unfolded non-zero test image is illustrated in Fig.
5.4. We randomly choose a set of interpolation points from the total set of image pixels. We
interpolate the values of the spherical function at the positions of the chosen pixel set using the
proposed algorithm. The input data represents the remaining image pixels and the ground truth
are the image pixels (sensor readings) at the interpolation positions. We consider the following two
datasets with 16 · 103 (5% of the image pixels) and 33 · 103 (10% of the image pixels) interpolation
points. We average the interpolation results over ten randomly chosen interpolation sets per one
dataset.

We compare the performance of the proposed method with a nearest neighbor interpolation
method which computes an average of the neighbor sensor values. In the discussions below, we
denote the proposed interpolation method by IM and a Nearest Neighbor method by NN.

(a) Noiseless case We first consider a noiseless scenario, where the signal values are not
corrupted by additive noise. To achieve the best possible performance with NN method, we heuris-
tically optimize the number of neighbor values used in computations. This value is empirically
set to value five in our simulations. We provide results for the proposed IM algorithm for zero
(IM, n = 0) and second order (IM, n = 2) Taylor expansion. Note that IM in the case of zero
order Taylor expansion corresponds to the manifold-adapted Nearest Neighbor method, where the
number of neighbors is determined by the geodesic distance on the manifold.

We study the performance of the interpolation methods in terms of the mean squared error
(MSE) values between the ground truth and the interpolated values. The results given in Table 5.1
show that the proposed interpolation method IM achieves better performance than the NN method
when the kernel parameter is optimized (σ ≤ 0.7 · 10−2). In the proposed IM method, the selection
of the standard deviation of the kernel function is important since it controls the number of the
neighboring samples that are considered in the interpolation. Note that the function represented
by the zero order Taylor expansion corresponds to the manifold-adapted Nearest Neighbor method.
Without optimizing the parameters, it performs similarly to the NN method for a certain range of
standard deviation values of the kernel (σ ≤ 0.8 · 10−2).

(b) Noisy case We then perform interpolation in the presence of additive Gaussian noise and
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MSE (·10−4)
Standard deviation value σ of the kernel for IM

method 0.02 0.01 0.009 0.008 0.007 0.0069
IM, n=2 12 3.584 3.228 2.515 2.362 2.358
IM, n=0 13 3.859 3.491 2.662 2.516 2.516

NN 2.435 2.435 2.435 2.435 2.435 2.435

Table 5.1: MSE for different values of the standard deviation parameter in the noiseless case. The number
of interpolation points is 16k. The parameters of the NN method are optimized to provide minimal MSE
(five neighbors).

MSE (·10−4)
SNR(dB)

method 100 90 80 70 60 50
IM, n = 2 2.358 2.358 2.358 2.358 2.360 2.372
IM, n = 0 2.516 2.516 2.515 2.516 2.517 2.530

NN 2.435 2.435 2.435 2.435 2.437 2.457

Table 5.2: MSE in the noisy cases with different SNRs. The number of sample points is 16 · 103 and the
standard deviation is fixed to σ = 0.0069. The parameters of the classical NN method are optimized to
provide minimal MSE (five neighbors).

observe the influence of noise on the MSE values for high Signal-to-Noise Ratio (SNR). Interpolation
points represent locations of a randomly chosen set of 16k image pixels and the results are shown
in Table 5.2. We observe that the proposed methods are pretty robust against noise when their
parameters are optimized. Also, the IM method with a second order Taylor expansion achieves a
lower MSE then the NN method and IM with a zero order Taylor expansion.

In addition, Fig. 5.5 shows the PSNR values of the reconstructed signals versus the SNR values
of the noisy input measurements. We repeat all the experiments ten times and report the average
performance results. As we can see, the proposed IM method performs the interpolation task more
accurately than the NN method for all the values of SNR for input data. The advantage of IM
algorithms is particularly visible in cases where the input signal has low SNR values, where the
geometry knowledge compensates for the noisy input data. The IM case with n = 0 corresponds
to the manifold-adapted NN method, which can provide an improvement of approximately 2 dB in
PSNR in noisy scenarios compared to the NN method.

We now perform additional interpolation of noisy spherical signals. Sensors lie on an irregular
grid (Chess smooth data2) or grids that follow a certain structure. Based on the resolution of the
original image compared to the set of points in the interpolation set, we distinguish two types of
input data: (i) interpolation points that are selected randomly from the equiangular grid (Earth3

dataset) and (ii) irregular interpolation points that are obtained from the grid of a large resolution

2Thanks to Luigi Bagnato for providing the original image.
3Available from the National Geophysical Data Center, NOAA US Department of Commerce under data an-

nouncement 88-MGG-02.
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Figure 5.5: PSNR results for sets of 16 · 103 and 33 · 103 interpolation points in presence of additive
Gaussian noise, σ = 0.07.
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Figure 5.6: Original spherical images (unwrapped) are down-sampled to dimension 256 × 256 and their
intensity values are rescaled to the range [0,1].

image. Pixel locations in the high resolution signal do not match the positions of the interpolation
point set (two sets Room regular and Room irregular4). For the Earth dataset, the value of standard
deviation parameter has to be big enough to ensure that all interpolation points have at least one
neighbor.

The last set (Room irregular) contains interpolation points whose distribution guarantees good
spatial coverage of the 2-d sphere. In more details, an equal number of interpolation points within
two spherical patches of the same geodesic radius around poles and the equator ensures that the
signal densities are close to equal for the two patches. This is achieved by sampling randomly the
number of points proportional to the latitude angle θ (see Fig. 5.2). The ground truth spherical
images are illustrated in Fig. 5.6.

4Thanks to Zafer Arican for providing the original image.
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Table 5.3: The structural similarity measure (SSIM) values for interpolation of noisy spherical signals.
Kernel and NN parameters are optimized for each of the datasets.

SSIM (×10−2)
SNR (dB) 10 15 20 25 10 15 20 25

Earth dataset Chess smooth dataset

IM 99.88 99.96 99.99 100 99.57 99.97 99.97 99.98
NN 99.79 99.93 99.97 99.99 95.67 95.68 95.67 95.68

Room regular dataset Room irregular dataset

IM 99.98 99.99 99.99 99.99 99.97 99.99 99.99 99.99
NN 99.93 99.97 99.98 99.99 99.50 99.75 99.91 99.96

(a)PSNR=16.77 dB (b)PSNR=18.65 dB (c)PSNR=20.34 dB (d)PSNR=21.05 dB

(a)PSNR=20.79 dB (b)PSNR=23.91 dB (c)PSNR=25.62 dB (d)PSNR=26.34 dB

Figure 5.7: Results for the Chessboard smooth image data. Top row: The proposed IM method, parameter
σ = 0.03. Bottom row: The Nearest Neighbor method: the parameter used in simulation is in the range
{1, 2, 3}, optimized for each interpolation point. (a) SNR=10 dB, (b) SNR=15 dB, (c) SNR=20 dB, (d)
SNR=25 dB.

We perform simulations and measure the interpolation performance in terms of Peak-Signal-To-
Noise Ratio (PSNR). However, it is a well known fact that in certain cases higher PSNR values do
not guarantee higher reconstruction qualities of the corresponding signals [123]. Therefore, we also
consider in this work a quality measure that examines the similarity of two signals based on the
signal patches (groups of sample pixels) rather than examining pixel-wise similarities, as in PSNR.
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(a)PSNR=10.11 dB (b)PSNR=15.02 dB (c)PSNR=19.94 dB (d)PSNR=24.51 dB

(a)PSNR=9.99 dB (b)PSNR=14.71 dB (c)PSNR=19.07 dB (d)PSNR=22.37 dB

Figure 5.8: Results for the Earth Topo image data with 5% of missing data. Top row: Proposed method
(IM, n = 2). The value σ used in (a) and (b) is σ = 0.03 and for (c) and (d) σ = 0.02. Bottom row: The
Nearest Neighbor method uses 10 neighbor values for interpolation. (a) SNR=10 dB, (b) SNR=15 dB, (c)
SNR=20 dB, (d) SNR=25 dB.

The Structural-SImilarity-Measure (SSIM) is defined as the average similarity of the total set of
pairs of signal patches. For a pair of patches M1 and M2, SSIM reads

s(M1,M2) = (
2µM1µM2 + c1

µ2
M1

+ µ2
M2

+ c1
) · ( 2σM1M2 + c2

σ2
M1

+ σ2
M2

+ c2
) (5.18)

where (µM1 , µM2) are the means of two patches M1 and M2, (σM1, σM2) are their standard devia-
tions, and σM1M2 is the cross-correlation. Its values lie in the range −1 ≤ s(M1,M2) ≤ 1, where
the value s(M1,M2) = 1 means that M1 and M2 are identical sets.

We compute PSNR values of the interpolated spherical signals for the two competing schemes
(IM and NN). Interpolated spherical signals are illustrated in Figs. 5.7-5.10 for different levels of
Signal-to-Noise ratio values, SNR ∈ {10, 15, 20, 25} dB. Also, we provide in Tab. 5.3 the SSIM
values for all the datasets. We now discuss these results for each of the test sets.

(a) Chess-smooth data set The Chess smooth set does not have the sharp transitions
between the white and black patches, but it consists of regular smooth variations of intensities
that build the chess pattern (see Fig. 5.6 (a)). The results for the Chess smooth irregular dataset
are given in Fig. 5.7. As we can see, the NN method presents higher PSNR values. However,
visual quality in the transition regions between white and black chess fields is not satisfactory,
which is demonstrated by its lower SSIM values (Tab. 5.3) compared to the proposed method. In
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(a)PSNR=24.69 dB (b)PSNR=25.31 dB (c)PSNR=25.62 dB (d)PSNR=25.73 dB

(a)PSNR=24.43 dB (b)PSNR=25.11 dB (c)PSNR=25.43 dB (d)PSNR=25.52 dB

(a)PSNR=15.12 dB (b)PSNR=18.70 dB (c)PSNR=21.11 dB (d)PSNR=22.25 dB

Figure 5.9: Results for the irregular Room image data set. Top row: Proposed method (IM, n = 2),
σ = 0.07. Middle row: Proposed method (IM, n = 0), σ = 0.01. Bottom row: The Nearest Neighbor method
uses optimized parameter value. (a) SNR=10 dB, (b) SNR=15 dB, (c) SNR=20 dB, (d) SNR=25 dB.

comparison, the IM method gives results that are visually more pleasant.

(b) Earth data set For the Earth data set, the union of interpolation points and input
samples forms an equiangular spherical grid. In such a scenario, interpolation points form “patches”
of missing data and the minimal standard deviation of a kernel of the IM method is fixed by the
diameter of such a patch. Consequently, the quality of the local information gathered by the IM
and NN methods for the interpolation changes over regions in the image. The proposed IM method
outperforms the baseline NN method in such settings, as demonstrated in Fig. 5.8 for PSNR and
Tab. 5.3 for SSIM. Also, the results are visually more pleasant.

(c) Room irregular data set For the Room irregular data set data samples are taken irreg-
ularly but provide a good spatial coveradge. Therefore, this set does not impose strict constraints
to the choice of standard deviation of the kernel for the IM method. As we can see in Fig. 5.9,
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(a)PSNR=24.05 dB (b)PSNR=25.18 dB (c)PSNR=25.78 dB (d)PSNR=26.02 dB

(a)PSNR=23.69 dB (b)PSNR=24.76 dB (c)PSNR=25.33 dB (d)PSNR=25.55 dB

(a)PSNR=15.54 dB (b)PSNR=19.41 dB (c)PSNR=22.03 dB (d)PSNR=23.35 dB

Figure 5.10: Results for the regular Room image data set. Top row: Proposed method (IM, n = 2). Middle
row: Proposed method (IM, n = 0). Bottom: The Nearest Neighbor method uses optimized parameters. (a)
SNR=10 dB, (b) SNR=15 dB, (c) SNR=20 dB, (d) SNR=25 dB.

the proposed IM method outperforms the baseline NN method. In addition to the results for the
proposed method with second order Taylor expansion, we also present results for the case when
lower order Taylor expansion is considered (IM, n = 0). As explained before, IM in the latter setup
corresponds to the Nearest Neighbor method adapted to the manifold. Therefore, results shown
in Fig. 5.9 demonstrate the benefits of incorporating manifold knowledge into the interpolation
algorithms, in particular in the noisy setups. Overall, IM with (n = 2) achieves the best visual
quality of the reconstructed image, as well as the best PSNR and SSIM (Tab. 5.3) results.

(d) Room regular data set The Room Regular sample set is formed by down-sampling a
higher resolution image. Due to the geometry of the sphere, this leads to dense sampling around
poles and a less dense sampling in equatorial areas. In this case, the proposed method achieves
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s1
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s3

s4

s5

Figure 5.11: Schematic illustration of the measurement dissemination process that is based on a gossip
algorithm with pull protocol. Every sensor requests one measurement from one of its neighbor, chosen
uniformly at random.

better performance in terms of SSIM (Tab. 5.3). The visual quality and the PSNR results are
illustrated in Fig. 5.10. The results for the IM with n = 0 show again that exploiting manifold
knowledge in the interpolation algorithms is helpful, in particular in noisy environments. More
precise estimation and weighting of the relative importance of sensor measurements by the kernel
function further improve the performance of the interpolation algorithm, as shown in Fig. 5.10 for
the proposed method with IM with n = 2.

5.4 Iterative nonparametric weighted kernel regression on geomet-

ric manifolds

In the previous section we assumed that the set of q neighbor measurements is available at the
interpolation sensor. However, this is not usually the case in realistic scenarios. Therefore, we pro-
pose in this section an iterative interpolation algorithm and provide a fully distributed interpolation
algorithm, where sensors exchange measurements with their neighbors using a gossip dissemination
algorithm and perform in-network computations that iteratively refines the interpolated values.

5.4.1 Interpolation algorithm

Our goal is to build an interpolation algorithm at any sensor si in the network, where the sensors
estimate the parameters of the function required for interpolation from the set of neighboring
measurements Nsi

that are currently available. Initially, sensors do not have knowledge about the
measurements of neighboring sensors and the measurements are distributed in the network by a
gossip dissemination algorithm. When sensors receive measurements from neighbors, they update
the interpolated value.

Communication between sensors is performed at each system round, indexed by t. The measure-
ment dissemination initiates at the transmission round t = 1. At each round, the sensors randomly
choose one of their neighbors and request its measurement, as illustrated in Figure 5.4. This type
of mechanism for message transmission is called the gossip pull algorithm [17]. As rounds proceed,
the sensors gather more measurements and obtain a better estimate of the interpolated values.
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We explain in more details the distribution of the operations at sensors. Let q(t) be the number
of measurements available at a sensor at round t and yt be the measurement collected in the round
t. Then, we rewrite the optimization problem in Eq. (5.4) in terms of the data available at rounds
(t− 1) and t, which respectively represent the previous and the current transmission round

β∗ = min
{βn}

q(t−1)
∑

i=1

‖yi − f̃(θ0, φ0)‖2K(θi, φi) + ‖yt − f̃(θ0, φ0)‖2K(θt, φt), (5.19)

where f̃(θ0, φ0) is defined in Eq. (5.5) by the Taylor expansion and K(θi, φi) are the weights
computed by the kernel function. As before, the solution is obtained analytically, according to Eqs.
(5.7 - 5.8). At round (t−1), where (t > 1), the sensors store the values of z(t−1) and P(t−1) from
the previous round. The computed matrices are equivalent to those computed by Eq. (5.8), using
the current available set of q(t − 1) measurements at sensors. We use the notation ki = K(θi, φi)
and

{c0, c1, c2, c3, c4, c5} (5.20)

= {1, g1(θi)(θ0 − θi), g2(φi)(φ0 − φi), g3(θ
2
i )(θ0 − θi)

2, g4(θi, φi)(θ0 − θi)(φ0 − φi), g5(φ
2
i )(φ0 − φi)

2}.

We observe the inherent additive structure of matrices and rewrite it by
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(5.21)
The elements of matrices P(t − 1) and z(t − 1) are respectively functions of the values of the
kernel function and measurements, for the sensors whose messages have been received up to the
communication round (t − 1). We denote the matrices that represent the contributions of the
measurement yj received at round t, by Pj and zj . Then the values of Taylor coefficients b̂(t) at
round t are computed by

b̂(t) = (P(t− 1) + Pj)
−1 · (z(t− 1) + zj). (5.22)

We assume that every sensor receives all the data from its neighbors in T rounds. It is then
straightforward to show that as the number of rounds approaches T , the iterative algorithm con-
verges to the solution of Algorithm 3, that is given for the case when all the data from neighboring
sensors are available at once.

The iterative distributed interpolation algorithm is summarized in Algorithm 4. It proceeds
similarly to Algorithm 3. The elements of the matrices P(t) and Z(t) are computed using the
expressions obtained for the solution of the optimization problem in Eq. (5.22). At each round t,
every sensor requests a message (denoted as a caller sensor) from a randomly chosen neighboring
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Algorithm 4 Iterative local signal interpolation algorithm
Input:

The coordinates of the set of neighboring sensors mi.
Parameters of the kernel function (standard deviation, function choice).
Position of the interpolation point m0.

Preprocessing:
Representation of the coordinates of position mi in terms of coordinates on the geometric

manifold.
Computation and storage of the sets {ki} and {c1, . . . , c5} which are given by ki = K(mi)

and Eq. (5.20), respectively.
Computation of the first and second order derivatives of the objective function in Eq. (5.4)

with respect to covariant basis vectors.
Initialization:

Set the counter t = 0.
while t ≤ T do

Message transmission from a randomly chosen neighbor.
Computation of Pj and the vector zj .
Update of the sensor estimate b̂ as in Eq. (5.22).
Update of P(t) and z(t) that represent the weight and measurement contributions of the

received measurement.
t← t + 1.

end while
Output:

The interpolated value f̃(m0) at point m0, defined in Eq. (5.5).

sensor (a sender sensor). The sender forwards the novel message to the caller in case it collected such
a message in previous rounds, as explained later on in details. After receiving the measurements
at the first round, the sensors compute P(1) and Z(1). At each subsequent round, the sensors
update the values of the stored matrices in Eq. (5.21) with the values Pj and zj . Depending
on application settings and computational constraints at sensors, the parameters β∗ might be
computed periodically and not at every communication round. After T transmission rounds, we
assume that all the sensors received all messages from their neighbors with high probability. Finally,
the interpolation values at arbitrary positions within a network coverage range are computed by
plugging the coordinates of the locations of interpolated values into the Taylor expansion term in
Eq. (5.5), whose parameters are the elements of b̂(T ) in the final round.

5.4.2 Analysis of data transmission phases

The convergence of the proposed interpolation algorithm is reached when the total set of mea-
surements are available to the sensor which performs the interpolation. We analyze now the data
transmission in sensor networks and we observe that it can be separated into several phases. We
use the general probabilistic framework to model the data dissemination phases.

Without loss of generality, we study the setup where a single interpolation sensor s0 collects
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Figure 5.12: Schematic illustration of the two main dissemination cases. The standard deviation of a
kernel defines the interpolation data set as the set of sensors Ns0

that are positioned at a distance smaller
than σ from the interpolation sensor s0. (a) Sensors within a distance σ can directly communicate with the
interpolation sensor. (b) The range σ is larger than the maximal sensor communication range, so that adhoc
transmision of measurements is adopted. To simplify the measurement dissemination analysis, the sensors
are divided in sets Hj of cardinality hj , j ∈ {1, . . . , J}, based on the number of the transmission rounds j
required for the sensor measurement to reach the interpolation sensor, using the shortest transmission path.

neighbor sensor measurements. We denote the sensor that requests the measurements as the caller
sensor, while the sensor chosen to transmit its measurement is denoted as the sender. The sensors
follow a gossip dissemination algorithm with pull protocol (see Fig. 5.4), and data dissemination is
performed over transmission rounds, indexed by t. At each round, gossip is achieved by all sensors.
A caller si requests from a randomly chosen sensor in neighborhood to send a novel measurement
to the caller, when available.

Recall that Ns0 defines the sensors whose values are used for interpolation, while N (g)
s0 defines

a set of sensors linked by edges with s0. The sensor s0 can receive and send data only to the direct
link sensors in N (g)

s0 . We assume that the interpolation sensor s0 knows the identifiers of all the
sensors whose measurements are used to perform the proposed interpolation algorithm. In total,
there are q such sensors. Then, based on the values of the standard deviation of the kernel function
σ, and the communication range ρ, dependent on the geodesic distance between sensors linked by
an edge w, we distinguish two data dissemination cases:

The first case is illustrated in Fig. 5.12 (a). In this case, all the sensors used in the interpolation
algorithm, Nsi

are positioned within the communication range ρ of s0. Therefore, within t =
ds0 rounds, where ds0 is the degree of s0, the full set of neighboring measurements reaches the
interpolation sensor with probability one.

The second case is illustrated in Fig. 5.12 (b). In this case, the number of data dissemination
rounds necessary for the full set of neighbor measurements to reach s0 with high probability is a
function of several parameters. In particular, the number of rounds is the function of the connec-
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tivity, the standard deviation of a kernel and the number of sensors in Hj , j ∈ {1, . . . , J}. The set
Hj is the collection of sensors whose measurements reach s0 in j transmission rounds, when the
transmission is performed over the shortest transmission path between the sensors Hj and s0. The
number of sensors in Hj is equal to hj = |Hj |. Note that N (g)

s0 = H1. We assume that the connec-
tivity matrix and the values J and hj , j ∈ {1, . . . , J} are known. We denote the total degree of all
the sensors in Hj by dhj

. Amongst the connections dhj
, we distinguish the outgoing connections

do,hj
, the incoming connections di,hj

and the connections db,hj
between sensors from the set Hj ,

where dhj
= do,hj

+ di,hj
+ db,hj

. The degree ds0 of the interpolation sensor is equal to the total
number of its communication links with the sensors in H1. The total set of neighboring sensors
Ns0 is equal to q =

∑J
j=1 hj . In the rest of this section, we focus on the dissemination analysis for

this setup.
We now model dissemination phases for the setup illustrated in Fig. 5.12 (b). Let r denote

the number of different sensor measurements collected by the sensor s0. We introduce the random
variable Tr whose value is equal to the number of transmission rounds which ensures that a novel
message reaches the sensor s0 with high probability, where s0 previously collected (r−1) messages.
We analyze now the evolution of Tr when the data dissemination phase corresponds to a worst case
scenario. We distinguish the following phases in the data dissemination process:

(a) The first dissemination phase corresponds to the phase when novel measurements reach the
interpolation sensor s0 at every round with high probability. The sensor s0 gathers measure-
ments only from H1. In the first round, all the measurements in H1 are novel for s0. This
phase ends when the number of sensors with novel messages is less than half of the number
of sensors in H1. A more detailed description is given below in this section.

In this phase, the random variable Tr is bounded by the geometric random variable Yr in a
stochastic sense, which we denote by Tr ≺st Yr. Here, Tr ≺st Yr denotes that for any r ∈ Z,
the probability of Tr exceeding r is smaller than the probability that Yr exceeds r.

(b) The second phase represents the phase of the accumulation of novel measurements at nodes
in the set H1 that arrive from more distant sensors Hj, j > 1. At the beginning of this phase,
the novel messages reach the sensor that performs interpolation with low probability. As the
rounds evolve, measurements of more distant sensors reach sensors in H1, so the probability
that novel message arrives to s0 increases. Therefore, the random variable Tr is the function
of the current number of measurements known to s0, as well as of the current round. Such
random variables follow a discrete phase type distribution. This phase finishes when the
number of novel accumulated messages is bigger than half of the number of sensors in H1.

Then, the random variable Tr ≺st Yr, where Yr has a discrete phase type distribution, as
shown in Fig. 5.4.2. We note that in setups with a dense local connectivity and small value
J (see Fig. 5.12), the first two phases (a) and (b) are in general sufficient to transmit all the
interpolation data when the sensors are well connected.

(c) The third dissemination phase itself consists potentially from three phases: (i) novel mea-
surements at first reach the interpolation sensor s0 with high probability; in (ii) this number
decreases, but still, novel messages arrive after several rounds; finally in (iii) a set of a remain-
ing few measurements arrives only after a larger number of rounds. Such random variables
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are respectively modeled by (i) the geometric probability whose parameter is a probability
pg > 0.5 (almost at every round, novel measurements arrives to s0), (ii) binomial probability
(every few rounds, novel measurements arrive) and (iii) geometric probability whose success
probability is low, pg < 0.5.

We assume that J is not large in our case (it is dependent on the σ) and we therefore
approximate this phase with the phase (i).

Then, in the third dissemination phase, the random variable Tr ≺st Yr, where Yr follows a
geometric distribution. We can not analyze this phase in details, since it is highly dependent
on the connectivity and previous phases.

The probability of the random variable Tr is a function of the number of elements in the set of
non-helper sensors, which we denote by U0(t). Non-helper sensors are direct neighbors of s0 that
can not transmit a novel measurement to s0 at the round t. Let Ss0(t) denote the set formed by
the measurements available at s0 at the beginning of the transmission round t. The dimension of
the set r = dim(Ss0(t)) is equal to the number of distinct measurements collected by s0. Then, the
set of non-helper sensors is defined by U0(t) = {si ∈ Ns0|Ssi

(t) ⊆ Ss0(t)} and their number is equal
to |U0(t)|. The non-helper sensors form the subset of the sensors in H1, U0(t) ⊂ H1. We define
helper sensors as all the sensors in H1 that are not in U0(t). The probability that s0 contacts a
non-helper sensor at the round t is defined by

p(|U0(t)|) = |U0(t)|/h1, (5.23)

where h1 is the number of sensors with direct links with s0.

(a) The first dissemination phase

In the first dissemination round, the sensors acquire the signal. All the measurements in H1 are
novel for the interpolation sensor, therefore, s0 for sure collects a novel measurement, so T1 = 1.
In general, the probability of the event that s0 receives a novel measurement in a round t, denoted
by Ss0(t) > Ss0(t− 1), is equal to the probability of calling a helper sensor

p
(
Ss0(t) > Ss0(t− 1)

)
≥
(
1− |U0(t)|

h1

)
, (5.24)

The s0 has more than 50% chance to receive the novel measurement at each round (since the number
of non-helpers is lower than 1/2|H1|, see Eq. 5.23), due to the probabilistic data transmission. This
happens when |U0(t)|/h1 is smaller than 1/2. In our scenario, the number of non-helper sensors
|U0(t)| in the round t depends on the number of measurements in Hj for j > 1 that arrived to
sensors si ∈ H1 during previous rounds. The value of |U0(t)| can increase, stagnate or decrease over
rounds. For instance, the number of non-helpers increases over two consequent rounds if the sensor
si ∈ H1 called by s0 transmits a novel message, but in the same round, si calls the sensor sj with
sj /∈ H2 that can not increase the number of novel measurements at s0 in the following rounds. In
the opposite case, the number of non-helper nodes decreases. The number of non-helpers remains
the same in two consequent rounds if the sensor si ∈ H1 that has one novel message sends it to s0,
while at the same time it also receives a message novel to s0.
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Figure 5.13: Schematic illustration of a general discrete phase type distribution, defined by the absorbing
Markov chain with one absorbing state A. Each of the states of the Markov chain {1, 2, . . . , s∗} represents
one of the phases. We use it to model the random variable Tr that describes the number of rounds that
pass until the interpolation sensor that collected r sensor measurements receives a novel measurement that
is different to the previously collected values.

In this work, we assume the worst case scenario, where the number of non-helpers increases
at every round. Then, the duration of the first phase is equal to the number of rounds for which
p(|U0(t)|) < 1/2 holds. Given p(|U0(t)|) = |U0(t)|/h1 < 1/2, we conclude that t < h1/2, or,
t ∈ [1, ⌊h1/2⌋). Here, the operator ⌊·⌋ is the floor operator. The random variable Tr is bounded
in a stochastic sense by the random variable Yr, Tr ≺st Yr, that follows the geometric probability
Yr ∼ Geom(pg), pg ≥ 1/2.

(b) The second dissemination phase

At the beginning of this phase, the probability of the non-helper sensors is p(|Us0(t)|) > 1/2. Since
p(|Us0(t)|) > 1/2, the interpolation sensor has a low probability to receive a novel message in the
first several rounds of this phase. However, over rounds, the novel measurements of sensors in Hj ,
j > 1 reach sensors in H1. Then, the probability p(|Us0(t)|) monotonically drops and s0 may receive
a novel measurement after a number of dissemination rounds R = {1, 2, . . . , s∗}. From these facts
we observe that a random variable Tr in the second dissemination phase is related to the class of the
discrete-phase distributions. The absorbing Markov chain that models such sequential geometric
distributions is given in Fig. 5.4.2. The states of the discrete-phase distribution are the elements of
R, while its absorption state Amodels the event that s0 received a novel message. The probabilities
{p∗1,A, . . . , p∗s∗,A}, {p∗1,2, . . . , p

∗
(s−1)∗,s∗} and {p∗1, . . . , p∗s∗} define the absorption probability (i.e., the

sensor s0 receives a novel message), the state transition probabilities (i.e., the sensor s0 does not
receive a novel message in the round t and it shifts to the next state) and the recurrent probability
(probability to stay in the same state for one more round), respectively. In our setup, the recurrent
probabilities are zero, because the states in R represents the value of the round, which continuously
increases. We define below these probabilities.

We first study the state transition probabilities. The sensor s0 does not receive a novel message
if it calls a non-helper sensor. This happens with probability defined in Eq. (5.23). Then, s0 does
not receive a novel message during consecutive rounds as long as the probability of calling a non-
helper sensor remains |Us0(t)|

h1
> 1/2 in a novel round t. For the current state s1, this probability is
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Figure 5.14: Schematic illustration of probabilities of the state s1 in Markov chain with one absorbing
state.

equal to

p∗(s1−1),s1
= p

(

dim
(
Ss0(t)

)
= r | dim

(
Ss0(t− 1)

)
= r

)

≤ 1−
(

1− |Us0(t)|
h1

)

=
|Us0(t)|

h1
. (5.25)

We now study the probability that the sensor obtains a novel measurement within one disse-
mination round, where the current state in the Markov chain is s1. This probability is called the
absorption probability and it is denoted by p∗s1,A for the state s1, as previously mentioned. To
analyze the absorption probability values, we compute the state transition probability. Then, the
absorption probability is equal to p∗s1,A = 1 − p∗s1,s1+1 for the state s1. Note that the transition
probabilities p∗s1−1,s1

(defined in Eq. (5.25)) and p∗s1,s1+1 given in Fig. (5.14) are different. The
latter one is related to probability that Tr increases. In particular, it is the probability of the event
that a non-helper sensor remains the non-helper sensor in the following round, conditional to the
event that s0 did not receive novel messages in both rounds.

Let F(t) denote the event that the sensor s0 fails to obtain a novel sensor measurement at the
round t. Then, the probability that the non-helper sensor sj ∈ Us0(t) remains a non-helper sensor
in the following round (t + 1), conditional to F(t) reads

p(sj ∈ Us0(t + 1) | sj ∈ Us0(t),F(t)) ≤ (
1

h1

di,h1

dh1

)
|UH1(t)|

h2
. (5.26)

The ratio on the right hand side is equal to the probability of choosing a particular sensor sj ∈ H1

that does not receive a novel measurement from the set H2 of size h2. Here, UH1 is the set of
non-helper sensors in H2.

Now, we observe the event illustrated in Fig. (5.14), that a non-helper sensor remains a non-
helper in two consequent rounds, where in these rounds s0 does not receive a novel message. We
introduce the random variable Zr to model this event. Then, this event is equal to choosing one
out of |Us0(t+1)| non-helper sensors that remain non-helpers, which occurs with probability in Eq.



94 Chapter 5. Distributed interpolation of sensor network signals on manifolds

(5.26), so Zr is bounded in the stochastic sense by a binomial distribution

Zr ≺st Bin

(

|Us0(t)|
︸ ︷︷ ︸

nb

,
1

h1

di,h1

dh1

· |UH1(t)|
h2

︸ ︷︷ ︸

pb

)

, (5.27)

where one non-helper was chosen from nb with probability pb, where nb and pb are the parameters
of the binomial distribution. Also, (t + 1) is denoted as t, for convenience. The Chernoff bound
[125] for the binomial random variable Bin(nb, pb) is given by

p

(

Bin
(
|Us0(t)|,

1

h1

di,h1

dh1

· |UH1(t)|
h2

)
≥ |Us0(t)|

1

h1

di,h1

dh1

· |UH1(t)|
h2

(1 + ǫ)

)

≤ exp

(

− ǫ2di,h1|Us0(t)||UH1(t)|
4dh1h1h2

)

. (5.28)

We know that for this dissemination phase |Us0(t)| ≤ h1/2 holds and we want to examine when the
exponential function has a small values. We here make an assumption that dissemination at sensors
in H1 is also in the second dissemination phase. Then it similarly holds |UH1(t)| ≤ h2/2, so the

exponent value boils down to exp(− ǫ2di,h1
16dh1

). We choose the value of ǫ to be ǫ∗ = 4
√

3

√

ln(di,h1
/dh1

)

(di,h1
/dh1

) ,

to enforce the exponent bound to scale inverse to the third degree of the probability di,h1/dh1 .
The probability di,h1/dh1 is equal to the probability of choosing the transmission links that help in
receiving novel messages by H1 and s0, which is possible only over the links di,h1 .

Using ǫ∗, we obtain exp(− ǫ2di,h1
16dh1

) = 1/(di,h1/dh1)
3. From Eq. (5.28)

p

( |Us0(t + 1)|
h1

≤ 1

(h1)2
di,h1

dh1

· |UH1(t)|
h2

(1 + ǫ)

)

≥ 1− 1/(di,h1/dh1)
3. (5.29)

Finally, we compute the absorption probabilities. The value of the p∗1,A is equal to the value

p∗1,A =
|Us0 (t+1)|

h1
, bounded by Eq. (5.29), |Us0(t+1)| ≤ 1

h1

di,h1
dh1

|UH1
(t)|

h2
(1+ǫ∗). When the connectivity

and the sets HJ are given, the remaining absorption probabilities can be similarly computed.
This phase lasts as long as the value |Us0(t)|/h1 < 1. Then, the phase termination state s∗ can

be computed as the maximal |Us0(t)| that satisfies |Us0(t)|/h1 < 1, if the connectivity and the sets
HJ are given.

Finally, the random variable Tr takes the value in R by the absorption probability p∗s1,A.

5.4.3 Data dissemination analysis

The performance of the iterative interpolation algorithm depends on the available data at the
interpolation sensor when the measurement transmission is performed in dissemination rounds.
We here study data dissemination in the network. We first introduce the network connectivity
model, which we then use in estimations of the average number of sensors reachable from the
interpolation sensor in the given number of hops. This value is used to estimate the minimal
number of dissemination rounds sufficient for gathering of the full set of sensor values used in the
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interpolation algorithm for ideal cases, when sensors use the minimal hop path to deliver their
measurement to the interpolation sensor.

We here provide detail on the used connectivity model. The deterministic connectivity models
[126] are very often unsuitable for practical network scenarios, because connections between sensors
in the network may change in time. Therefore, we assume here that the sensor connectivity follows
a probabilistic model. Particularly, the number of sensors’ connections follows a certain probability
distribution. This connectivity distribution function is modeled by a generating function. For more
details on generating functions refer to [127].

In order to illustrate the performance of our distributed interpolation algorithm, we assume
that the connectivity of the local neighborhood in the network follows a small world model [128].
The main characteristic of such networks is that the shortest path between two sensors increases
logarithmically with the increase of the graph size. We use the particular connectivity model of
random graphs with specific degree distributions as in [129]. We below compute the hop distance
between two sensors for this model. This value is used later on to compute the minimal number of
dissemination rounds for gathering of the set of sensor values used in the interpolation algorithm,
in the ideal case (sensors send their values over the shortest transmission paths to the interpolation
sensor). We now describe properties of the probabilistic model.

Let d denote the degree of a sensor, which is defined as the total number of connections with
other sensors. Then, the probability that a sensor has exactly d connections is given by the gene-
rating function D(x) that reads

D(x) =

∞∑

d=0

pdx
d, (5.30)

where pd is the probability that a sensor in the network has the degree d and |x| ≤ 1 is the
parameter of the generating function. The distribution pd is properly normalized, such that D(1) =
∑

d pdx
d|x=1 = 1. The function D(x) has several important properties [129]. The function D(x)

contains all the information about the probability pd because pd is computed as the d-th derivative
of the function D(x), pd = 1

d!
∂dD
∂xd |x=0. When the generating function D(x) is given, the mean

and the higher order moments of D(x) are computed using the derivatives d̄ =
∑

d dpd = D
′
(1)

and d̄n =
∑

d dnpd = [(x ∂
∂x)nD(x)] |x=1. The sum of the degrees of the randomly chosen set of

sensors in the network is equal to the power of the generating function proportional to the set size.
For example, the distribution of the sum of degrees of two randomly chosen sensors is equal to

D(x)2, since D(x)2 =
(
∑

d pdx
d
)2

=
∑

i

∑

j pipjx
i+j. The crucial property used for determining

the distribution of the sensor degree comes from the observation that the measurement arrives to
a sensor with a probability proportional to the degree of that sensor [129]. Let j ∈ {1, . . . , J}
denote the shortest number of hops between the interpolation sensor and the neighbor sensors used
for interpolation. The degree probability that a neighbor of the observed sensor has a degree d is

proportional to dpd (not only pd), it holds
P

d dpdxd
P

d dpd
= xD

′
(x)

D′ (1)
.

Next, we provide details about how to model the degree distribution of d graph neighbors of the
interpolation sensor given D(x). For a randomly chosen interpolation sensor, the degree probability
distribution of its d neighbors is proportional to the remaining number of connections, without
counting the edges between the neighbors and the interpolation sensor. Now, the distribution of
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the connections of the first-hop neighbors is given by D1(x) = D
′
(x)

D
′
(1)

= 1
d̄
D

′
(x), where d̄ is the

average degree of the sensors. We observe the model where the number of connections between
the interpolation sensor and its first-hop neighbors is small compared to the number of connections
among its first-hop neighbors. Then, the generating function for the probability distribution of the

number of connections for the second-hop neighbors of the interpolation sensor is
∑

d pd

(

D1(x)
)d

=

D(D1(x)). The number of the second-hop neighbors is d̄2 =
(

∂
∂xD(D1(x))

)

|x=1= D
′
(1)D

′

1(1). For

the j-hop neighbors, the distribution is equal to Dj(x) = D(D1(. . . Dj(x) . . . )), because D1(1) = 1,
while the number of neighbors is d̄j = D

′
(1)D

′

1(1) . . . D
′

j−1(1). The number of neighbors that are
j-hop distant from the interpolation sensor is now equal to

d̄j =
∂Dj(x)

∂x
|x=1= D

′

j(1)d̄j=1.

Since d̄1 = D
′
(1), we rewrite d̄j = ( d̄2

d̄1
)j−1d̄1. Finally, we can compute the shortest number of

hops j between two randomly chosen sensors in the network. As the total number of neighbors is
equal to q, the following holds: q = 1 +

∑J
j=1 d̄j , where J is the maximal, but unknown value of j.

Finally, from this equation and the definition of d̄j , we obtain that amongst q sensors used in the
interpolation algorithm, the sensors located the farthest from the interpolation sensor can reach
the interpolation sensor in at least J transmission rounds, where J is equal to

J =
log
(

(q − 1)(d̄2 − d̄1) + d̄1
2
)

− 2 log(d̄1)

log(d̄2/d̄1)
. (5.31)

This value can be used for estimation of the minimal number of dissemination rounds sufficient for
gathering of the full set of sensor values used in the interpolation algorithm for particular networks
with known parameters d, pd and q.

5.4.4 Experimental measurement transmission analysis

We provide interpolation and data transmission analysis for a spherical Room irregular dataset
(illustrated in Fig. 5.6) and discuss them. In particular, we perform iterative interpolation for a
subset of seventy sensors that are randomly distributed on the sphere. Provided values are the
mean values of ten random network realizations. The key parameters for the iterative interpolation
are the selection of parameters σ and ρ and the selection of the network protocol. The parameters
σ and ρ determine the data used for interpolation (defines the set Nsi

) and the communication
range parameter (defines the set N (g)

si ), respectively.
We now provide the iterative interpolation results for the two main dissemination cases described

in section 5.4.2 (see Fig. 5.12). We show in Fig. 5.15 (a) the iterative interpolation results for
the case when sensors used for interpolation are positioned within the communication range ρ from
the interpolation sensor. The interpolation results for the second case, when a subset of sensors is
positioned within the communication range ρ is given in Fig. 5.15 (b). The slight differences in the
interpolated results for cases (a) and (b) are the consequence of random choices of network realiza-
tions. The results demonstrate that the iterative interpolation algorithm converges to the solution



5.4 Iterative nonparametric weighted kernel regression on geometric manifolds 97

5 15 25 35 45 55 65 75
0

100

200

300

400

500

Number of rounds

A
ve

ra
ge

 M
S

E

 

 

σ =0.05
σ =0.06
σ =0.07

5 15 25 35 45 55 65 75 85 95 105
0

50

100

150

200

250

300

Number of rounds

A
ve

ra
ge

 M
S

E

 

 

σ =0.05
σ =0.06
σ =0.07

(a) (b)

Figure 5.15: Mean square error of interpolation decreases over the transmission rounds, (|Nsi
|, σ) =

({42, 54, 69}, {0.05, 0.06, 0.07}): (a) most of the sensors are positioned within the communication range ρ;
(b) a small subset of sensors is positioned within the communication range ρ.
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Figure 5.16: Average rank values of the sensors vs. the number of transmission rounds: (a) most of the
sensors are positioned within the communication range ρ; (b) a small subset of sensors is positioned within
the communication range ρ.

in a reasonable number of rounds. Used parameters are (|Nsi
|, σ) = ({42, 54, 69}, {0.05, 0.06, 0.07}).

We proceed with the analysis of the rank of data available at sensors. We use two data dissemi-
nation protocols in simulations. The first one is the gossip algorithm (pull mechanism) denoted by
GD, where each sensor randomly calls one of the sensors from a direct link neighborhood to forward
a measurement. The second algorithm follows a broadcasting rule, where all sensors forward the
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Figure 5.17: Total bit consumption for different number of transmission rounds for cases: (a) most of the
sensors are positioned within the communication range ρ; (b) a small subset of sensors is positioned within
the communication range ρ.

randomly chosen measurement from their set to all their direct link neighbors N (g)
si . In graphs,

we denote this broadcasting algorithm as BD. The average rank of messages available at sensors
is illustrated in Fig. 5.16. We notice that the rank analysis for GD matches the model given in
Section 5.4.2. In the first phase, the rank increases in every round. The second phase models
the flat regions and the iterative interpolation result converges to the estimated value before the
second transmission phase terminates. The broadcasting protocol disseminates the messages in the
network in couple of rounds. However, in terms of bit consumption the algorithm denoted as BD
is inefficient, as illustrated in Fig. (5.17).

Finally, we estimate the generating function D(x) (defined in Eq.(5.30)) from the data and we
compute that messages reach the interpolation in average in J = 2 hops in the ideal case. This is
valid for the case when most of the sensors are positioned within the communication range ρ. In
the case (b) the computed number of hops over the shortest path between the neighboring sensors
and the interpolation sensor is equal to J = 4.

5.5 Conclusions

We have investigated the interpolation problem for sensor network data distributed on a geometric
manifold. We have proposed a new distributed interpolation method of an arbitrary set of values
given irregular and noisy sensor measurements that incorporates the geometry of the manifold.
We have performed extensive experimental analysis for spherical datasets in noiseless and noisy
environments and shown that the proposed method achieves better performance in terms of data
interpolation distortion than a baseline Nearest Neighbor method, particularly in the presence
of noise. Finally, we have shown that when the local neighborhood in the sensor network can
be represented by a small world model with probabilistic connections, the proposed distributed
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algorithm converges fast to good interpolation performance, and that our solution represents an
interesting alternative for processing sensor data on geometric manifolds. However, we also note
that the performance of the proposed method is quite sensitive to the choice of the standard
deviation of the kernel, which is certainly a topic for further investigations.





Chapter 6

Conclusions and Perspectives

This thesis investigates multiple instances of distributed signal processing problems under the per-
spective of modern challenges in sensor networks. We have first studied the problem of distributed
detection of the defective sensors in networks. We have proposed a probabilistic message design of
binary detection signals propagated distributedly, which allows for detection with an inexpensive
distance decoder at each sensor in the network. Next, we have studied efficient data gathering
methods for signal reconstruction with small number of messages in sensor networks. In particular,
we have proposed a practical reconstruction algorithm. We have then studied the interpolation
problem in distributed sensor networks deployed on geometric manifolds and we have designed a
distributed interpolation algorithm that incorporates manifold geometry for signal estimation, for
arbitrary set of interpolation positions.

We first addressed the problem of failure sensor detection in sensor networks. We proposed
a novel distributed algorithm that detects a small number of defective sensors in networks. We
propose a probabilistic design of signal messages based on local sensor observations. These messa-
ges represent observations of the binary failure signal and they are communicated using a gossip
algorithm. Sensors combine the collected messages into a new message that is further propagated
in the network by a gossip algorithm. After a number of collected messages at sensors, defectives
in the network are detected using a simple and efficient distance decoder. We derived the lower
bound on the required number of linearly independent messages per cluster that sensors need to
collect to ensure detection of one defective sensor with high probability. This result is given for
the worst case scenario. We next show experimentally that this derived value is quite smaller in
practice, even for the small size networks, which confirms the validity of the theoretical bound. The
simulation results show that the proposed method outperforms other detection schemes in terms
of successful detection probability.

Next, we considered the problem of efficient data collection in sensor networks and studied the
performance of the reconstruction methods for inverse problems, given partial network data. We
propose a distributed gathering algorithm that updates messages at sensors during the message
transmission. The observations represent the finite field combinations of quantized sensor network
measurements. The proposed encoding guarantees innovative message collection with high proba-
bility. For the proposed gathering framework, we developed the analytic decoding error expression
for signals with locally correlated values and analyzed its dependence on network parameters. In-
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creasing the size of the finite field and narrowing the potential solution set decrease the decoding
error. We also investigated coding matrix properties that decrease the analytic decoder error and
proposed its practical probabilistic design. Finally, we have proposed the practical Belief Propaga-
tion based decoder algorithm for signal reconstruction that exploits sensor priors and the topology
structure knowledge. We have shown experimentally that for signals with locally correlated values,
the proposed algorithm outperforms or is competitive with comparison gathering methods in terms
of the number of bits transmitted in the network for high probability signal recovery.

We studied the interpolation problem in sensor networks for the set of arbitrary interpolation
point positions. The goal is to compute values of the underlying function given the noisy values
of sensors that are positioned on a geometric manifold. The sensor distribute their observations
to other sensors in ad-hoc way. We posed the interpolation problem as the convex optimization
problem that incorporates the information of the geometric manifold. We solved the problem
analytically for a general manifold. The proposed method is based on the kernel regression and it
exploits properties of high dimensional signals and efficiently manages noisy irregular samples. We
proposed a novel distributed algorithm, where sensors perform computations as they collect novel
neighbor sensor measurements. We provided the analysis of data dissemination in the neighborhood.
We performed the experiments for typical sample data structures on 2-d spherical signals. Proposed
methods provide higher quality reconstruction results then the comparison method in terms of the
signal quality measures.

6.1 Limitations

Though our work on detection of failure signals have offered many insights into building of dis-
tributed algorithms by using the flexible designs, it has some limitations. The first limitation
comes from the noise model, which considers that bit flips may occur only for the nonzero values.
However, due to noise, it may occur that the zero valued bits are flipped as well. Another limitation
arrises from the fact that sensors generate the failure signal messages based on local observations.
In our work, we assume that sensors use a simple thresholding criteria to build the messages. How-
ever, we do not consider that sensors themselves may introduce the error (false alarms or missed
detections) in messages. Our algorithm is not robust in such cases. As discussed in the future
work, an extension of this work would be to consider solutions more robust to noise. The second
limitation is that the detection algorithm is designed to detect a small portion of defective sensors
that are geographically distributed. However, it is well known that in many applications, a failure
of one sensor may cause a neighbor sensor failure. Therefore, distributed detection of the failure
for network regions is the important research topic with many potential applications, for instance,
in power networks. The experimental analysis provided in this thesis is limited to synthetic data.
We considered to apply the algorithm for a rare event analysis; however, it was not pursued due to
lack of a ground truth signals.

The study of inverse problems in finite fields faces several significant limitations. The main
source of limitations arises from the decoder complexity. Due to the nature of the problem, decoders
in general search for the solution amongst a full set of potential solutions, known a priori by the
decoder. However, the size of this solution set is known to grow exponentially with the number of
unknowns. Therefore, the experimental analysis of large scope networks may be computationally
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challenging, so we limit the analysis provided in this thesis to the analysis of small and medium
sensor networks. The main limitation of our algorithm is that it is not prone to noise, due to the
nonlinearity of the problem. Therefore, the denoising problem in finite fields is a very interesting
problem.

The proposed iterative interpolation method for manifold network data faces several challenges.
The most important issue is related to the choice of the two parameters: the communication range
parameter, which determines the network connectivity, and the parameter that determines the
useful data for interpolation. The main limitation of our algorithm is that it does not provide the
way to set these values. Also, it does not optimize these two parameters jointly. The interesting
direction is to investigate their joint influence on the convergence in further works.

6.2 Future Work

We now briefly discuss some of the most interesting directions in sensor network signal processing
that are related to the problems discussed in this thesis. First, we discuss the extension of the
distributed detection and the recovery problems in sensor networks to noisy scenarios. It is not
trivial to model the influence of noise on data values, due to the nonlinearity of the problem. The
additional messages that encode the noise information should be designed and transmitted together
with the signal. However, these additional messages should not burden the network. In addition,
developing novel approaches that speed up signal decoding in ring algebraic structures are very
important, particularly for the future generations of sensors, that will operate with more than two
states per bit.
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A.1 Model for probability P (q|m)

We model P (q|m) that represents the probability of the event that multiple defective sensors exist
in the same cluster but only a subset of defective sensors participates in the test. This event
introduces errors while detection of defective sensors. Recall that sensors participate in the test
with the probability q. For m defective sensors, all the possible realizations of tests are given with
elements of the polynomial (q+(1−q))m. For example, qm represents that all the m defective sensors
take part in the test, qm−1(1− q) means that only one defective element does not participate in the
test, and so on. This polynomial represents the the binomial expansion of the form (x + y)m, with
x = q and y = (1− q). Polynomial expansion is equal to (x + y)m = c0x

m + c1xym−1 + · · ·+ cmym

and the coefficients ci =
(
m
i

)
represent the numbers of i-th row of Pascal’s triangle. Messages that

do not cause decoding error are the messages of all zeros and of all ones. These messages occur
with probabilities qm and (1 − q)m, respectively and they have coefficients equal to 1. Note that
(q + (1− q))m = 1m = 1 and that probability of error event is therefore equal to:

P (q|m) =
1− qm − (1− q)m

(q + (1− q))m
= 1− qm − (1− q)m. (A.1)

A.2 Ring properties

A ring (R,⊕,⊙) is an algebraic structure with the two binary operators ⊕ : R→ R and ⊙ : R→ R
which satisfies the following properties:

• (R,⊕) is an Abelian group under addition (closure, associativity under addition, existence of
additive identity, existence of additive inverse, commutativity of addition).

• (R,⊙) is a monoid under multiplication (closure, associativity under multiplication, existence
of multiplicative identity)

• The distributive laws ∀a, b, c ∈ R hold:
(a) a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c)
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(1) Closure under addition

(2) Associativity of addition

(3) Additive identity
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(5) Commutativity of addition

(6) Closure under multiplication
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Figure A.1: Properties of structures in algebra.

(b) (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c)

Therefore, a structure (Fq,⊕,⊙) whose elements are {0, 1, . . . , q − 1} and the addition and
multiplication are modulo q operations, where q has an arbitrary value, forms the ring.

A.3 The distribution of the product of two discrete random vari-

ables

The probability mass function (pmf) of the product of two discrete random variables X and Y,
namely h(XY), is defined below. We assume that the discrete random variable X with known pmf
f(X) is positive and defined on the interval (i1, i2), and that the discrete random variable Y with
known pmf g(Y) is positive and defined on the interval (i3, i4). These pmf-s can be defined in
a discrete piecewise fashion. We assume that the intervals of these variables are defined in the
I-st quadrant so 0 < i1 < i2 < ∞, 0 < i3 < i4 < ∞, i1i3 < i2i4. Using the transformation
technique, the transformation Z = X, V = XY constitutes the “1 − 1” mapping from A → B,
A = {(x, y)|i1 < x < i2, i3 < y < i4}, B = {(z, v)|i1 < z < i2, i3z < v < i4z}, where Z = X and
V = XY. Now we can write:

h(V) = fZ,V(z, v) =

i2∑

z=i1

f(z)g(
v

z
) =

i2∑

x=i1

f(x)g(
v

x
) (A.2)

A.4 Disjunct and separable matrix definitions

Theorem 1 (Definition 1). Disjunct matrix: A boolean matrix M with S columns
M1,M2, . . . ,MS is called (K, ǫ)-disjunct if, for every subset of T columns with |T | ≤ K and every
i ∈ {1, . . . , S} holds:

| supp(Mi)\(
⋃

j∈T\{i}

supp(Mj)) |> ǫ, (A.3)

where supp(Mi) denotes the nonzero elements (support) of the column Mi and \ is the set difference
operator.
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Theorem 2 (Definition 2). Separable matrix: A boolean B× S matrix M is K-separable if and
only if ∀S1,S2 ⊂ V = {s1, . . . , sS} and |S1|, |S2| ≤ K holds ∪j∈S1Mj 6= ∪i∈S2Mi.

In words, for a matrix to be K-disjunct, the Boolean sum of every K columns does not contain any
other column in the matrix, while K-separable property is fulfilled if the Boolean sum of every K
columns is unique. Note that K-disjunct matrices are also K-separable, while the reverse does not
hold.

A.5 Taylor multivariate expansion

For the sake of completeness, we provide the definition of the Taylor multivariate expansion for
functions f̃ : R

d → R that are n-times differentiable. Let ᾱ ∈ N
d be the index where ᾱ = ᾱ1 + · · ·+

ᾱd, ᾱ! = ᾱ1! + · · · + ᾱd!nand mᾱ
i = mi(1)

ᾱ1 . . . mi(d)ᾱd . Let the notation Dᾱf̃ = ∂|ᾱ|f̃

∂m
ᾱ1
i (1)...∂m

ᾱd
i (d)

,

|ᾱ| < n represents the higher order partial derivatives of f̃ . Then, given the neighborhood of
s0 ∈ Nsi

, the value of the function in the sensor si can be written as

f̃(mi) =
∑

|ᾱ|≤n

Dᾱf̃(m0)

α!
(mi −m0)

ᾱ +
∑

|ᾱ|=n

hᾱ(mi)(mi −m0)
ᾱ, (A.4)

where hᾱ : R
d → R and limm0→mi

hᾱ(mi) = 0.
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