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Introduction

Scrape-off layer physics crucial for magnetic fusion

Scrape-off

Plasma outflowing from
Layer

the core

Perpendicular
transport

Parallel flow

Open field lines and
sheath physics

Heat load to PFCs, rotation, impurities, L-H transition...
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Introduction

Questions we need to answer

» What instabilities are present and which one is dominant ?
» What is the mechanism setting the turbulence levels ?

» How does the SOL width change with plasma parameters ?
> What is the role of electromagnetic effects?

» How is toroidal rotation generated in the SOL?

» How are impurities transported ?

> |s SOL transport related to the density limit ?

» How is the SOL coupled with the closed flux surface region ?
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Introduction

Global model for SOL turbulence

What have we le:

A tool to simulate SOL turbulence

Global Braginskii Solver (GBS) [Ricci et al. PPCF 54, 124047, 2012]

» Drift-reduced Braginskii equations
d/dt < wej, kI > kf

» Evolves 3D fields : n, T, ¢, \/He, \/||,-

» Annular region of full torus,
full flux-surface

» Flux-driven, no separation between
equilibrium and fluctuations

> Global balance between plasma
outflow from the core, turbulent
transport, and parallel losses
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Global model for SOL turbulence

Equations will be given in normalized units...

» Coordinate system : (y, x, z) — (poloidal length, radial, toroidal)
» Equations expressed in normalized units :

» L —ps

» L —R

>V — G

» t~y !> R/c
» Simplified notation :

> po = (p), with t >~
> L, =—(p/0xp),
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Global model for SOL turbulence

Drift-reduced Braginskii equations to describe the SOL
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Introduction

Global model for SOL

What have we lez

BCs at the Magnetic Pre-Sheath entrance (MPS)

» SOL interfaces with the limiter at the MPS
> lons accelerated towards wall with v = ¢
> Large electric field 9,6 ~ ¢/ps
» Drift-Braginskii egs. invalid inside the Magnetic Pre-Sheath
» Derived model describing SOL-MPS entrance interface
> Generalized version of Bohm-Chodura BCs for ALL fluid fields

[ Loizu et al, Phys. Plasmas 19, 122307, 2012]
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Introduction
Global model for SOL turbulence

What have

Understanding developed by increasing complexity

ITER like
Limited SOL
SOL
TORPEX,
CRPP

B HelCat, UNM Helimak, UTexas
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Global model for SOL turbulence ¢

Examples of 3D simulations (poloidal cross-sections)
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Saturation mechanism

What have we learnt so far?

Topics under investigation

» Turbulent saturation mechanisms

» ldentification of the main instabilities

» Electromagnetic effects

» Size scaling

» Intrinsic rotation

» Toroidicity effects (finite aspect ratio, Shafranov shift...)

» Impurity transport

We will discuss topics in bold face
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Saturation mechanism

What have we learnt so far?

Modes saturate due to pressure non-linearity
We observe in simulations [Ricci et ai. Phys. Plasmas 20, 010702 (2013)] :

» Perturbation removes background pressure gradient

» Radial eddy length described by linear non-local theory

[Ricci et al., PRL 100, 225002 (2008)]
Ox &4/ Lp/ky

» Turbulent flux dominated by radial E x B convection
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Saturation mechanism
What have we learnt so far?

Saturation model yields E x B turbulent flux

Gradient removal
hypothesis op=—R [qb,p]
w > I 0y = 7(p1/p0)(Ly/R)

L» I''~R ]915y</51><J
v

v
I't ~po (E)max
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Saturation mechanism

What have we learnt so far?

Self-consistent prediction of pressure gradient length

In steady state, V - I'1 balances parallel losses ~ V| - (pvje), hence

> Results in iterative scheme to predict L, self-consistently :
» Obtainy=f(L,, k, ,R,q,v,5 mi/m.) from linear code
~ — ———
vary  scan fixed

» Compare q(7/ky),,. With input L,
» Vary L, until LHS = RHS (bisection, secant method, etc..)
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Saturation mechanism

What have we learnt so far?

Good agreement between theory and simulations

L, predicted using self-consistent procedure

160 ‘ ‘ —n

0 40 80 120 160
L, (simulation)

GBS simulations : R = 500-2000, q = 3-6, v = 0.01-1, 3 = 0-3 x 1073
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Dominant instabilities

What have we learnt so far?

Topics under investigation

» Turbulent saturation mechanisms

» Identification of the main instabilities

» Electromagnetic effects

» Size scaling

» Intrinsic rotation

» Toroidicity effects (finite aspect ratio, Shafranov shift...)

» |Impurity transport
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Introduction
Global model for SOL turbulence

What have we learnt so far?
Conclusions

Dominant instability depends principally on g, v, s

» Which instability dominates in the non-linear stage ?
» Resistive/inertial ballooning modes/drift waves ?

0/\
5

‘Circular, limited circular plasmas — §, ~ 2 — RBM
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Dominant instabilities

What have we learnt so far?

Dominant instability confirmed using GBS

Compute phase between potential and density fluctuations :

(as indicated in [B.Scott, Phys. Plasmas 12, 062314, 2005])

0.4 0.4
10° 10°
0.3 0.3
> 0.2 0.2
< 407 = 10"
0.1 0.1
_2 -2
10—1 -0.5 0 0.5 0 10—1 -0.5 0 0.5 0
X/ X/
x~0 X~7/2
Drift wave Resistive ballooning mode
5<0 5>0
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Electromagnetic effects

What have we learnt so far?

Topics under investigation

» Turbulent saturation mechanisms

» Identification of the main instabilities

» Electromagnetic effects

» Size scaling

» Intrinsic rotation

» Toroidicity effects (finite aspect ratio, Shafranov shift...)

» |Impurity transport
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Electromagnetic effects

What have we learnt so far?

SOL turbulence : interplay between (3, v, and w,

1.2} . s
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Resistivity increases

<

[LaBombard et al., Nucl Fusion (2005), lower-null L-mode discharges]

Important to understand resistive — ideal ballooning mode transition
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What have we learnt so far? Electromagnetic effects ¢

Resistive ballooning modes destabilized by EM effects

» Starting from reduced MHD, obtain simple dispersion relation

2
» Beo 7 R Beo 7 ki
Fe0 T ) o [0 T [

P P =2 (v B )

» Neglecting ideal ballooning mode, the resistive branch gives

(v* —b) ki = —7(1_a>

q?v

and we identify v ~ v, = \/2R/L, and ky, ~ /(1 — ) /(vb)/q
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Electromagnetic effects

What have we learnt so far?

Electromagnetic phase space

» Build a dimensionless phase space...
» Combine simple dispersion relation with L, ~ q (v/ky)

max
1 100
0.8 80
0.6
3 60
0.4 '
0.2 / 40
0 20
107° 107

ad/q
(Color gives L, for each contour)

» Enhanced transport regime found at high v, high g8
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Electromagnetic effects

What have we learnt so far?

Electromagnetic phase space

» Build dimensionless phase space with full linear system...
» Verify turbulent saturation theory with GBS simulations
» R=500, B =0to3x 1073 v=001,01,1, g =3,4,6

1 100
0.8 80
0.6

3 60
0.4
02 40
’ u]
0 o 20
107°

(Contours of L, given by theory, squares are GBS simulations)
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What have we learnt so far?

Scrape-off layer width scaling

under investigation

Turbulent saturation mechanisms

Identification of the main instabilities
Electromagnetic effects

Size scaling

Intrinsic rotation

Toroidicity effects (finite aspect ratio, Shafranov shift...)

Impurity transport
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Intro

Global model for ! HLHM, nce

What have we Iearnt so far?

onclusions o N
Intrinsic rotation

SOL length scales with R, q, 3, v
SOL L transport driven by gradient removal saturated RBMs

» Combine saturation theory with typical linear growth rate and

wavelength
— = V2R]L,

b = V=0

» Our simple model leads to a dimensionless scaling :

—-1/2

Ly/RY? ~ [2rag(l — a)/2/q]

F.D. Halpern et al. LYK Global EM simulations of tokamak SOL turbulence



5
Wi (iwe o ez e (Frs Scrape-off layer width scaling

Effect of increasing plasma size favorable
GBS simulations with R = 500, 1000, 2000 (TCV size)

Poloidal cross sections of density
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What have we learnt so far?

Scrape-off layer width scaling

Scaling follows GBS simulation data

Comparison carried out over wide range of parameters (R, q, 3, V)

8 :
o ¢=3,R=>500
0 g=6,R=500
6f v ¢g=4,R=500 o
Q & g=4,R=1000 ﬁ
E:} > ¢ =4, R=2000
4
Q
~
2,
O L
0 2

4 6 8
[27rozd(1 - Oé)l/Q/Q] 1
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Introduction
Global model for SOL turbt

What have we learnt so far? = dges
Conclusions ape-off layer width scaling

Intrinsic rotation

Comparison with L-mode limited discharges (preliminary!)

0.15

o CMOD [Zweben PoP 2009]

= TCV
o Tore-Supra [Kocan PPCF 2010]

Acknowledgments :
I.Furno (EPFL)
\ B.Labit (EPFL)

D‘i\mm | B.LaBombard (MIT)

start-up phase S.Zweben (PPPL)

e®) ¢=58

0 0.05 01 0.15
L, [ m ] (experiment)

Ly~ 7.97 x 10 8¢8RS TB=4TT2/"p2" | [ m,T, eV, m~3]
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What have we learnt so far?

Intrinsic rotation

Topics under investigation

» Turbulent saturation mechanisms

» Identification of the main instabilities

» Electromagnetic effects

» Size scaling

» Intrinsic rotation

» Toroidicity effects (finite aspect ratio, Shafranov shift...)

» |Impurity transport
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Global model for SOL Lml

nce
What have we learnt so far?
Conclusions

Intrinsic rotation

Intrinsic toroidal rotation

» Tokamak plasmas have been observed to rotate toroidally in
the absence of momentum injection.

» Effects on MHD stability and turbulent transport
» Important effect for ITER where torque/particle is small

» Experimental evidence for the role of SOL flows in determining
core rotation profiles in L-mode [LaBombard NF 2004]

» SOL flows set boundary conditions on the confined plasma and
can determine the L-H power threshold [LaBombard PoP 2008]
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What have we learnt so far?

Intrinsic rotation

GBS simulations show intrinsic toroidal rotation

Snapshot Time-average
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Introdu
Global model for SOL turl

\ce
What have we Iearnt so far?
Conclu 5

Intrinsic rotatlon

GBS simulations show intrinsic toroidal rotation

Snapshot Time-average +/-

» There is a finite volume-averaged toroidal rotation (~ 0.3¢;)
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Saturation

Dc nt in

2D equation for the equilibrium flow

» Time averaged momentum balance equation coupled to BCs

turbulent contribution (radial) poloidal parallel generation
7 - T 9y Vi Ov 5
0 V)i 8v||,- 0 (9V||,- V)i 8V||,' € Op
—— + to- o te -+ —— =0

-D
ax2 TV ax Ox Oy ‘ g Oy ng dy
==
v 909
I eox

boundary condition

> Role of the sheath driving toroidal rotation

» Source term through boundary condition
» Asymmetry of pressure profile
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What have we learnt so far?

Intrinsic rotation

GBS simulations agree with the theory

<v||,->t from GBS simulations

WS :C/
7 C) N

v|| . from Theory

o

5

(limiter position — HFS, down, LFS, up)
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Summary and conclusions

>

Developed and verified model for turbulent saturation
» Pressure non-linearity flats background pressure profile

v

Identified dominant instability in non-linear steady state
> Resistive ballooning modes relevant for SOL in limited plasmas

v

Derived a simple scaling for SOL width

> Agrees with simulation results over wide parameter range
» Will be compared with experiment (in progress)

v

Sheath BC drives significant toroidal rotation in SOL
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Conclusions
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Conclusions e

A simple theory of SOL intrinsic rotation

» Within the drift-reduced Braginskii model :

1
+ VH,-VHVH,' + (VE . V)V”, + EVH'D =0

» Time-averaging :

_ _ 1 1 _
V||,-V||V||,' + Bfw<v : rv>1.‘ + ﬁv||p =0

> (Muy)e =0 =75k

> (M)t (rVTf;RB>t = —<V‘|;%§>t
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Conclusions

Estimate of ¥,

» Linearising the parallel ion momentum equation :

V .Niavw%
i = B, 0x Oy

» Thus we have

F.D. Halpern et al. 35/36 Global EM simulations of tokamak SOL turbulence



Conclusions

Estimate of %
y

» Using the pressure continuity equation :

op _ 1 06 0p 1a¢ ~

ot B, 0y Ox v B, 8y Ky
Oxp~0xp

where ky = \/k, /L, and v = c51/2/RL,. [Ricci PRL 2007]

» The turbulent radial momentum flux is then

2L C 5V|
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-D + ao, v —— =0
Ox? Ox  |B,| ox Oy Y9y min Oy
radial pol?)?dal parallel generation

D, = %E—; has units of a
diffusion coefficient

vi = D;/2Lt has units of speed
By = 0,|Byl, By = ay|By

The solution of this equation
requires boundary conditions
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Conclusions

GBS simulations agree with the theory

Simulation

Theory
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Experimental trends are reproduced

) (1 — e/ A)
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Conclusions

Experimental trends are reproduced

A on  oT
sh;;th asymmetry
. o 6n<0 > Mpsl

04

» Typically co-current

t
=
o
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v

Rice scaling V, ~ Te/l,
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reversing B (o) or
divertor position (dn)
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Conclusions

Experimental trends are reproduced

Co-Current Directed Velocities
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e Lsn_ |
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of ]
=N ] counter-current by

reversing B (o) or
divertor position (dn)

N
S

Vi (kms)
a
3

[LaBombard PoP 2008]
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Conclusions

Dynamics of long wavelength SOL modes crucial

» Parallel dynamics and EM effects important

(] 50
T — xg [pso)

F.D. Halpern et al.

80
70
60
~ 50
40

30

-e-Gradient removal
—&-Simulation

20
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Conclusions

Extra slides : Why global ? why full-n?

» Global vs Local ?
» Flux-tube only valid if k«Leg > 1 but kyleg ~ \/kyLeg 21

> Full-n vs Delta-n?
» In the SOL én/n ~ 1 so cannot separate n and 7

» Flux-driven vs Gradient-driven?
» Need to evolve the equilibrium profile (e.g. mode saturation)
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Conclusions

Extra slides : Effect of the source details ?

» Details of the radial shape of the source not important

» Poloidal shape of the source may be important (asymmetries,
recycling) - to be studied

» Effect of source strength being explored : what do we expect ?
> If v > VéxB : no difference i.e. L, ~ ps

’ .
» If source strong to make ji, ~ Vg : turbulence suppression ?

[Ricci et al PRL 2007]
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Conclusions

Extra slides : How about kinetic effects ?

» SOL is fairly collisional :
> A K L||

» vt >1
> Vei > L
» Kinetic effects may be considered as a higher order correction

» e.g. Landau damping in Ohm’s law

Global EM simulations of tokamak SOL turbulence
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Conclusions

Extra slides : Importance of neutrals?

» For the magnetic presheath BC : inertia > i-n collisions ?
> Yes, as long as : w¢sina > v,

» For the SOL equilibrium : ionization ? recombination ?
» High recycling can affect the Vjj; profile - to be studied

> Intrinsic rotation theory may breakdown in detached regime

» For the SOL fluctuations : effect on the turbulence? blobs?
» Nature of turbulence unchanged, but can add some damping

» Cross-field currents due to i-n collisions can affect blobs
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Conclusions

Extra slides : Is the sheath resistive ? Ryutov's model ?

» Misconception about the concept of "sheath resistivity” :
» The sheath is essentially collisionless, A\p < ps < Aje

» How to define an effective resistivity if jj # jj|(E|)?

» Ryutov model for sheath resistivity :
» Linearized Ohm's law written as VH(;E = 1/]|| ~ v
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Conclusions

Extra slides : Parallel vs Toroidal rotation ?

» V= V|cosa+ Vysina

EXXB VP'XXB
> Vy = B2 = eII1)B2

> Vd/Cszs/L¢<<1
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Conclusions

Extra slides : lon temperature effects ?

» For the magnetic presheath :
» FLR effects on wall absorption can affect BC - to be studied

» For the SOL equilibrium :

» Finite T; introduces Pfirsch-Schluter flows

» For the SOL fluctuations : effect on turbulence ?
» RBM physics similar with ion temperature

» ITG physics appears, but not critical for SOL
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Introduction

del for SOL turt

have we learnt so
Conclusions

Extra slides : Electromagnetic effects ?

» GBS has EM effects - ideal ballooning modes present
» GBS could be used to get a "wall BC" for MHD codes

» Magnetic presheath BC are electrostatic - to be extended

[Ricci et al PPCF 2012, Halpern et al PoP 2013]
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Extra slides

Conclusions

: Summary of the BC

V)i = Cs <1 +0n — HTE - —¢9¢>

Vjje = Cs <exp (AN=nm) — %b% +2(6n + oTe))

8¢ _ 1 aVH,-

E = Cs (1 +9n + §0Te> 85

On n 1 8VH,-

9s o <1+9n+ 567e> Bs
oT.

Os =0

8 i 8 ;
w = —cos2a[(1+9Te)< 5! ) 4o (14 60+ 67./2) VH }

where 64 =

Ps x
2tan

F.D. Halpern et al. 36 /36

,and Nm = e(dmpe —

¢Wal/)/ Te

[Loizu et al PoP 2012]
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