
108

Designing Best Effort Networks-on-Chip to Meet Hard
Latency Constraints

CIPRIAN SEICULESCU, EPFL
DARA RAHMATI, Sharif University of Technology
SRINIVASAN MURALI, iNoCs
HAMID SARBAZI-AZAD, Sharif University of Technology
LUCA BENINI, University of Bologna
GIOVANNI DE MICHELI, EPFL

Many classes of applications require Quality of Service (QoS) guarantees from the system interconnect. In
Networks-on-Chip (NoC) QoS guarantees usually translate into bandwidth and latency constraints for the
traffic flows and require hardware support in the NoC fabric and its interfaces. In this article we present
a novel NoC synthesis framework to automatically build networks that meet hard latency constraints of
end-to-end traffic streams without requiring specialized hardware for the network components. The hard
latency constraints are met by carefully designing the NoC topology and selecting the appropriate routes for
flow using lean best-effort network components. We perform experiments on several System on Chip (SoC)
benchmarks. We compared against a topology synthesis method with no support for real-time constraints
and we show that the proposed method can produce topologies that can meet significantly tighter worst case
latency constraints (on average 44%). We also show that the tightest worst case latency can be provided with
little overhead on power consumption (on average 8.5%).

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture
and Design—Packet-switching networks

General Terms: Design, Algorithms

Additional Key Words and Phrases: NoC, topology, worst case latency, topology synthesis

ACM Reference Format:
Seiculescu, C., Rahmati, D., Murali, S., Benini, L., De Micheli, G., and Sarbazi-Azad, H. 2013. Designing
best effort networks-on-chip to meet hard latency constraints. ACM Trans. Embedd. Comput. Syst. 12, 4,
Article 108 (June 2013), 23 pages.
DOI: http://dx.doi.org/10.1145/2485984.2485996

1. INTRODUCTION

Networks on Chips (NoCs) use scalable networking principles on a chip scale. They
provide better performance, modularity and faster design closure when compared to
bus based interconnects. Today, building NoCs that meet hard latency constraints
imposed by real-time streams is a major challenge for designers. Several applications
have strict requirements on latency for one or more traffic streams. For example, in

The authors would like to acknowledge the financial contribution of European Research Council under
project AdG-246810-NANOSYS and project AdG-291125-MULTITHERMAN.
Authors’ addresses: C. Seiculescu and G. De Micheli, LSI EPFL Switzerland; email: {ciprian.seiculescu,
giovanni.demichli}@epfl.ch; D. Rahmati and H. Sarbazi-Azad, HPCAN, Sharif University of Technology,
Tehran, Iran; email: drahmati@ce.sharif.edu, azad@sharif.edu; S. Murali, iNoCs Sarl Lausanne Switzerland;
email: murali@inocs.com; L. Benini, DEIS, University of Bologna, Bologna, Italy; email: luca.benini@unibo.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/06-ART108 $15.00

DOI: http://dx.doi.org/10.1145/2485984.2485996

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147996002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

108:2 C. Seiculescu et al.

radar and avionics applications, packets should be delivered from source to destination
within a maximum time interval.

Many classes of applications require some amount of determinism in the behavior
of the communication flows. Providing guarantees for communication flows in NoCs is
usually referred to as providing Quality of Service (QoS) guarantees. Usually, the QoS
guarantees translate into bandwidth and latency constraints for the traffic flows. The
bandwidth constraints can be met by allocating enough resources, giving a bound on
worst case latencies is a bigger challenge. While the guarantees that are required by
applications in the multimedia domain are concerned with the average case, and infre-
quent cases that do not meet the requirements are allowed (also called soft QoS); there
are applications in safety critical domains (such as automation, aerospace, military)
that require hard bounds that must be always met (also called hard QoS).

To meet the hard real-time latency constraints, designers use NoC architectures that
provide in hardware some form of guaranteed QoS support. Several different schemes
are used, such as the use of TDMA (Time Division Multiple Access) slots [Goossens et al.
2005; Kopetz et al. 1989], packet priorities [Shi and Burns 2008] and time-triggered
communication [Paukovits and Kopetz 2008]. Some of the schemes, such as the use
of simple packet priorities, achieve soft QoS guarantees, where an absolute worst-
case bound of latency cannot be provided. While some schemes, such as the TDMA
based ones, can provide hard worst-case bounds. However, all these QoS based NoC
architectures incur additional hardware overhead and/or penalize average performance
to provide worst case guarantees. In fact, NoC architectures are usually classified as
either “best effort” or “QoS” architectures.

In this article we present a novel NoC synthesis framework to automatically build
networks that meet hard latency constraints of end-to-end traffic streams. One key
novelty in our approach is that we do not use special hardware mechanisms to meet
the QoS constraints, but we build our networks using simple, lean network components,
identical to those used for best-effort NoC instantiation. Moreover, the worst-case guar-
antee is achieved with minimal impact on the average-case performance of the NoC. In
other words, we can build a network that provides hard QoS guarantees on end-to-end
packet delivery time using a best-effort hardware infrastructure.

While there are many works that have addressed the issue of synthesizing best-effort
NoCs to meet the zero-load latency constraints [Pinto et al. 2003; Ho and Pinkston 2006;
Ahonen et al. 2004; Srinivasan et al. 2005; Hansson et al. 2005; Zhu and Malik 2002;
Xu et al. 2006; Murali et al. 2006], none of them synthesize topologies that can meet
hard latency constraints. To the best of our knowledge, this is the first work on NoC
topology synthesis that can build NoCs that meet hard worst-case bounds on latency
constraints of traffic streams using only best-effort network components. In fact, we
target the design of NoCs that use wormhole flow control, with round-robin arbitration
at the switches, which are commonly used in most best-effort designs. We leverage
mathematical models to compute safe worst case latency bounds on a wormhole based
best effort NoC. We integrate these models with the topology synthesis process. Along
with meeting the worst-case QoS constraints, the topologies synthesized also meet the
average bandwidth and latency constraints, while minimizing power consumption.

Several works [Murali et al. 2006; Seiculescu et al. 2010] have shown the power
and area advantage of application specific NoC topologies for Systems-on-Chip (SoCs)
where the communication patterns are known. Apart from improving power and area
through the customization of the interconnect according to application requirements,
in this work we show that other performance metrics like hard QoS requirements can
be fulfilled. Therefore, the contributions of this article are twofold.

—Through experiments we show that through careful topology design the required
worse-case delay bounds can be met using even best-effort NoC hardware.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:3

—We provide an algorithm to automatically design the NoC topology to meet the
required worse-case delay bounds.

We perform experiments on several System on Chip (SoC) benchmarks. When com-
pared to a topology synthesis methods with no support for real-time constraints, our
proposed method can produce topologies that can meet significantly tighter worst-case
latency constraints (on average 44%). The results also show that the power consump-
tion and average zero-load latency values of the topologies designed using the proposed
scheme are only marginally higher than a synthesis method that does not support real
time constraints (on average 8.5%). Indeed, when only certain traffic streams require
hard QoS guarantees, the topologies synthesized by our proposed method has negligible
power consumption or area overhead.

2. RELATED WORK

An introduction to the NoC principles can be found in De Micheli and Benini [2006].
More aspects for the design of NoCs are summarized Flich and Bertozzi [2010] and
Cristina Silvano and Palermo [2011]. Several works have addressed the synthesis of
NoC topologies to meet application performance constraints [Pinto et al. 2003; Ho and
Pinkston 2006; Ahonen et al. 2004; Srinivasan et al. 2005; Hansson et al. 2005; Zhu
and Malik 2002; Xu et al. 2006; Murali et al. 2006]. However, all of these works produce
topologies that meet the average latency constraints and not the worst-case ones. Map-
ping of core to regular topologies is addressed in Hu and Marculescu [2003], Murali
and Micheli [2004a, 2004b], and Murali et al. [2005]. However, except for [Murali et al.
2005], QoS is not considered. In [Murali et al. 2005], the authors consider critical
streams and map them more efficiently than normal streams. However, they do not
provide any bounds on the latencies. Hansson et al. [2005], present a method to synthe-
size NoCs for a TDMA based architecture. They also consider the design of TDMA slot
tables to meet hard QoS constraints. However, the method only applies to NoCs where
the underlying architecture uses additional hardware to support QoS. Moreover, with
a TDMA scheme, the average performance of the system could be poorer than with a
scheme where packet injection times are not so tightly constrained.

There have been many works that provide QoS guarantees by adding specialized
hardware to the NoC architecture. The Æthereal NoC, presented in Goossens et al.
[2005], adds guaranteed services on top of best effort services to provide QoS support.
Kopetz et al. [1989] describe the MARS architecture where TDMA is used to provide
QoS guarantees. In Shi and Burns [2008], a priority based scheme is used to pro-
vide QoS, and Paukovits and Kopetz [2008] present the concept of a predictable Time-
Triggered NoC, where QoS is ensured through communication services. Marescaux and
Corporaal [2007] present a QoS NoC architecture that uses both best effort and guar-
anteed traffic, but requires specialized hardware and virtual channels. Many works
present improvements and variations [Bolotin et al. 2004; Bjerregaard and Sparso
2005; Bouhraoua and Elrabaa 2006; Feliciian and Furber 2004; Kavaldjiev et al. 2004;
Leroy et al. 2005; Mello et al. 2006; Millberg et al. 2004; Mondinelli et al. 2004;
Mullins et al. 2006; Radulescu et al. 2005; Rijpkema et al. 2003], but all use spe-
cialized hardware to provide QoS. A recent survey of NoCs [Salminen 2008] shows
that most NoC architectures do not have specialized hardware for QoS and therefore a
method to design NoCs that provides guarantees on the delay of communication flows is
necessary.

Lee [2003], presents a method to characterize the real time behaviour of communi-
cation flows in best effort wormhole general networks for parallel computing. However
this method requires traffic regulation, which is not desirable in a majority of appli-
cations. In Rahmati et al. [2009], we presented models to analyze and compute worst

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:4 C. Seiculescu et al.

Fig. 1. Algorithm flow: a) Task mapping with QoS, b) Real-time topology synthesis.

case latency bounds, even the input traffic is not regulated. In this work, we use the
methods for calculating the worst-case latencies during the topology synthesis process
itself, and we use the computed values to tune the instantiation of network components
to produce topologies that meet the real time-constraints.

3. REAL-TIME SYNTHESIS COMPARED TO MAPPING ONTO REGULAR TOPOLOGIES

In our previous work [Murali et al. 2005] we showed a method to automate tasks (cores)
mapping onto custom topologies with QoS guarantees. There are three main differences
between the mapping algorithm and the proposed application specific NoC synthesis
algorithm with worst-case delay guarantees. First of all the mapping algorithm takes
as input (apart from the application specification) the topology on which to map and
the routing function that is to be used. As the mapping problem is constrained by the
topology and the routing function the search space is significantly reduced as compared
to topology synthesis, where there are no such constraints. Because of the larger search
space that needs to be explored it is not trivial to go from the mapping of cores to
application specific NoC topology synthesis. As such the synthesis algorithm has to
solve new problems like connecting cores to switches, determine the switch to switch
connectivity and find routes for flows that meet the worst-case latency requirements.

In Figure 1 we show the main parts of the task mapping algorithm (a) and for the
real-time synthesis algorithm (b). As can be seen from the figure the second main differ-
ence comes from the way that QoS is provided. In case of the task mapping algorithm,
QoS is ensured by checking the constraints for a given mapping and remapping if the
constraints are not met. Also given a mapping of the cores, the routes are determined
by the routing function. In the case of the topology synthesis algorithm, routing of each
communication flow is integrated and with the topology building process and strongly
connected to worst-case delay constraint checking. This integrated approach not only

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:5

ensures better performance of the designed NoC when compared to the mapping ap-
proach, but also give us the ability to build topologies that meet worst-case latency
constraints without the need for specialized hardware. The synthesis algorithm also
explores solutions with different number of switches to determine the topology that
has the lowest power consumption and meets the worst-case latency constraints.

The final difference is related to the QoS model used in the two works. In the mapping
algorithm an average case QoS metric is used, as the models are based on simulation.
The previous work assumes a sort of soft QoS where traffic is regulated and therefore it
is different from the hard QoS metrics we consider in this work. In the present work, the
integrated topology design and routing with constraints checking enables the synthesis
algorithm to use the extra degrees of freedom not only to design topologies that meet
worst-case latency constraints, but minimal power and area as well. In the remainder
of the article we will describe in detail the integrated synthesis approach.

4. WORST CASE LATENCY MODELS

If a fair arbitration scheme like round-robin is used in the switches, then the worst-
case latency of packets is determined by the topology of the NoC and the routes chosen
for the communication flows. A carefully designed NoC topology and well-selected
routes can decrease the worst case latency bound and QoS can be provided without the
use of extra hardware in the switches. To improve the design methods for designing
application specific NoC that can provide real time guarantees, it is important to be
able to calculate the worst-case latency of the flows for a given network configuration.

For this work we assume that the switches use round-robin arbitration. For illustra-
tive purposes, we consider an architecture with input-queued switches with no virtual
channels, characteristic of many existing NoC designs [Stergiou et al. 2005]. The meth-
ods presented here can be easily modified for other switch architectures and to support
virtual channels. A credit based (or on-off) flow control is used to provide back-pressure
and to prevent the switches from forwarding the flow control units (flits) when the
downstream buffers are full. The target cores are assumed to be ideal and eject the flits
as soon as they reach the target network interface. If a target core is not ideal an end
to end flow control mechanism can be used to prevent flits from entering the network
when it is backlogged. Buffer size is assumed to be uniform across all the switches. In
this work we do not address the issue of buffer sizing, as it is beyond the scope of this
article.

In this section, we present a brief description of the mathematical model proposed
in Rahmati et al. [2009] to calculate worst-case latencies for a given topology, routing
function and traffic flows. In the next section, we show how the model can be used to
build the topology and find paths for the given set of traffic flows between the cores of
the applications.

The buffer depth of a switch is calculated as the sum of all buffers between the
arbitration points of two consecutive switches. Since no traffic regulation is assumed
in the model, the worst-case latency is achieved when all buffers are full and when
the packet of a flow loses arbitration to all other flows that it can contend with. Under
these assumptions, the upper bound on delay for a flow is given by Equation (1) (UBi
represent the upper bound delay for flow i) where ts1 and ts2 represent the packet
creation and ejection times which are constant. The sum adds the contribution of the
worst-case interference at every hop (uj

i interference of other flows on flow i at switch
j) from the path of the flow for which the upper bound delay is calculated. The number
of hops on the path of flow i is denoted by hi.

UBi = ts1 + ts2 + ∑
∀ j uj

i with j = 0 . . . hi. (1)

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:6 C. Seiculescu et al.

If a core has flows going to different destinations and it is capable of having multiple
outstanding transactions, then the packets generated by the same core to different
destinations can also contend with one another. Source contention, as it is also called,
is modeled by using a virtual switch that does not physically exists on the path of the
flow. Equation (2) describes how to calculate the contribution of the source contention.

u0
i = MAX

(
U 0

i ,U 0
I(x)

) + ∑
∀x U 0

I(x).

with x = 0 . . . z0(i, 0)
(2)

The hop delay from output buffer to output buffer is denoted by U j
i and I(x) returns

the index of a flow from the pool of flows that contend with flow i at switch j. The
number of flows that contend with flow i at switch j and use the output port c is
denoted by zc(i, j). Using the same notation, the delays at the rest of the switches on
the path of flow i can be calculated with Equation (3).

uj
i = MAX

(
U j

i ,U j
I(x)

) + ∑
∀x U j

I(x)
with x = 1 . . . zc(i, j), 1 ≤ j ≤ hi.

(3)

The delay of a flow at the current switch U j
i is calculated in a similar manner, only

this time it is based on the delays from the next switch.

U j
i = MAX

(
U j+1

i ,U j+1
I(x)

) + ∑
∀x U j+1

I(x)
with x = 1 . . . zc(i, j + 1), 0 ≤ j ≤ hi − 1.

(4)

To calculate the upper bound delay, the Equations (2), (3), and (4) have to be cal-
culated in a recursive manner. The recursive formulation is guaranteed to complete
because the delay of any flow at the last switch in the path is fixed. The termination
conditions are given by Equation (5):

U hi
i = Li, U hl(x)

l(x) = Ll(x). (5)

The ejection time of a packet at the last switch in cycles for flow i is denoted as Li.
In Rahmati et al. [2009], we show the correctness of the models and the tightness of

the bounds. We also show how the models can be extended to address multiple virtual
channels, buffer sizes and packet lengths.

5. TOPOLOGY DESIGN TO MEET WORST-CASE CONSTRAINTS

In this section, we give an example of how topology design can reduce the worst-case
delay for some flows when compared to a single switch (crossbar) topology, which is
non intuitive. Consequently we will give the intuition of why careful synthesis can
potentially reduce the worst case delay of some flows. Intuitively one would expect the
crossbar to have the lowest worst-case delay. While that is true for the average worst
case delay over all flows, it is not true for individual flows. In many design there are
few flows that have hard real-time constraints (e.g., interrupts) and many flows that
are best effort (e.g., cache refills). Therefore a multi-switch topology can be optimized
to reduce the worst case delay of only those flows that have real-time constraint in the
detriment of the other that are best effort.

In Figure 2, we present a simple example of the worst case delay for three flows
for a single switch (crossbar) and a two switch topology. Let us assume that flow 1 is
a real-time flow while flow 2 and 3 are best effort flows. Also let us assume that the
packet size for all flows is 5 flits and the sink is ideal so the ejection latency is 5 cycles.
In Figure 2(a) we show the case for the single switch. In this case the three flows that
have the same destination will contend for the output port. In the worst case for flow
one we have to assume that it would lose the arbitration to both flows 2 and 3. Since the

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:7

Fig. 2. Example of topologies with worst case delays: a) single switch (crossbar); b) multi-switch.

ejection latency of the flows is 5 cycles and flow 1 could in the worst case wait for the
other two flows, it would see a delay of 10 cycles to win the arbitration for the output
port. If we add to this the ejection latency of flow 1 we can compute a worst case delay
of 15 cycle for flow 1. Since the topology is symmetric we can similarly calculate the
same worst case delays for flows 2 and 3 (i.e., 15).

However since only flow 1 is a real-time flow we want to improve the worst case
delay of only this flow. In Figure 2(b) we show how that can be done with a two switch
topology. In this case flow 2 and flow 3 first contend for the output port of one switch
and only the winner will contend with flow 1 for the output of the other switch. So in
this case when we calculate the worst case delay for flow 1 we have to assume that in
the worst case flow 1 will lose the arbitration to a packet of either flow two or 3 coming
from the other switch. So the worst case delay is 10 cycles (5 cycle to win the arbitration
and 5 cycles ejection latency). This will however increase the worst case delay of flow
2 and 3. When we calculate the delay of flow 2 we must assume that it will lose the
arbitration with flow 3 on the first switch and with flow 1 on the next switch. Add to
that the ejection delay and the total worst case delay for flow 2 is 20 cycles. Similarly
flow 3 will have 20 cycles worst case delay.

If we look at the average worst case delay over all the flows we see that the single
switch topology is better. However since only flow 1 has real time constraint in our
example, in the two switch topology the worst case delay of flow one was reduced
compared to the single switch case.

6. REAL-TIME NETWORK SYNTHESIS

The goal of the real-time network synthesis algorithm is to find a power-efficient topol-
ogy that meets the application requirements and the real-time constraints. Therefore
the real-time network synthesis algorithm requires the following inputs. The most im-
portant input is the communication description of the SoC. The description is given in
the form of a directed graph that is defined as follows.

Definition 6.1. The communication graph is a directed graph, G(V, E) with each
vertex vi ∈ V representing a core and the directed edge (vi, v j) with i ∈ 1, 2 . . . n and
with j ∈ 1, 2 . . . n representing the communication between the cores vi and v j . The
bandwidth of the traffic flow from cores vi to v j is represented by bwi, j and the latency
constraint for the flow is represented by rti, j .

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:8 C. Seiculescu et al.

The number of switches and the values of the architectural parameters (the required
operating frequency and the flow control unit size) are varied to explore different design
points. For a given combination of the number of switches and architectural parameters
the real-time network synthesis algorithm designs a topology.

We provide power, area and delay models for the NoC components to the algorithm
in order to estimate the power consumption of the topology and to make sure that the
architectural requirements are met. For a given technology library, we do synthesis and
place&route of RTL code of the NoC components using commercial tools, to obtain the
models. Floorplan information can also be provided as input in order to better estimate
the wire length and the wire power consumption.

The output of the synthesis algorithm is a topology that minimizes the power con-
sumption and that meets the worst case delay constraints given in the communication
specification.

6.1. Real-Time Synthesis Algorithm

The major steps of the method that finds designs the topology for a given combination
of the number of switches and architectural parameters, are presented in Algorithm 1.
Please note that the step number corresponds to the line number in the Algorithm 1
listing. The algorithm takes as parameters the communication graph (G), the number
of switches (num sw) and the architectural parameters.

ALGORITHM 1: Real Time Topology Synthesis(G, num sw, architectural parameters)
1: set α = 0
2: if α ≥ maxα then
3: Exit
4: end if
5: assign cores to switch(num sw, α)
6: for i = 1 to |E| do
7: Choose next unmapped inter switch flow
8: set β = α
9: build cost graph(β)
10: Find min cost path
11: if path not found or β ≥ maxβ then
12: increment α
13: Goto step 2
14: end if
15: Check RT constraints for all mapped flows
16: if previously mapped flow violates RT constraints then
17: if destination(current flow) = destination(violated flow) then
18: destination contention(violated flow)
19: else
20: path contention(violated flow)
21: end if
22: increment β
23: Goto step 9
24: end if
25: if current flow violates RT constraints then
26: increment β
27: Goto step 9
28: end if
29: end for
30: Save topology

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:9

The assignment of switches to cores is done by partitioning the cores in blocks (one
partition block per switch) using a min-cut partition method. Minimum cost routes
for flows are found using Dijkstra’s shortest path algorithm in conjunction with turn
prohibition for routing level deadlock freedom. These steps are general and use well
know algorithms and we will not describe them in detail as they are similar to similar
to our previous work [Murali et al. 2006]. However, the customization of Dijkstra’s
general algorithm, for finding shortest path, to perform routing is done through the
cost graph that is fed as input. One important difference from our previous work is
the way that the cost are calculated that allows us to drive the path finding routine to
create routes that meet the real time constraints. As flows are routed one by one, unlike
in our previous work, routing a flow does not influence only its worst-case delay, but
it also changes the worst-case delay of the previous flows. So another major difference
from our previous work is the iterative approach to find a route that meets it own
constraint but also does not cause the previously mapped flows to miss theirs. As part
of the iterative approach, there are also some special cases that are treated differently
during routing in order to find viable route. These new feature needed for finding
routes that meet worst-case delay constraints are described in detail in the following
paragraphs.

Since the number of switches is most of the time different than the number of cores,
the core to switch connectivity has to be decided (step 5). The core to switch assignment
is done by partitioning the cores in as many blocks as there are switches. To perform
the partitioning, we define a Partitioning Graph (PG) as in our earlier work [Murali
et al. 2006].

Definition 6.2. The partitioning graph is a directed graph, PG(U, H, α), that has
same set of vertices and edges as the communication graph. The weight of the edge
(ui, uj), defined by hi, j , is set to a combination dependent on α of the bandwidth and
the latency constraints of the traffic flow from core ui to uj .

The PG is built using the parameter α (initialized to 0 in step 1) which is varied
to generate different core to switch assignments when the required worst case delays
cannot be met. Initially only the bandwidth influences the core to switch assignment
and as α is varied, more importance is given to the real-time constraints of the flows. We
use min-cut partition and an existing tool [Hendrickson 1994] to generate the core to
switch assignment. The cores in one partition block are connected to the same switch.
If the parameter α reaches a certain upper bound, the algorithm exits as it is unable
to find a solution.

After the core to switch assignment is decided, the flows between cores that are on
different switches (inter switch flows) have to be routed. We loop through the flows
(step 6) and we first choose which is the next flow to be routed. The choice of the
next flow can be done using several criteria. For example the highest bandwidth flows
could be mapped first, or alternatively the flows with the tightest real-time constraint
could be mapped first. We use a linear combination of the bandwidth requirements
and the real-time constraint requirement to decide the order of the flows. The linear
combination is calculated in a similar way to how the weights of the edges in the
partitioning graph are calculated.

Since we do not use indirect switches, we have to route the inter switch flows through
the switches to which the cores are connected (the number of switches is given as input).
To find routes for the flows we do the following: i) we calculate the costs to go from each
switch to every other switch; ii) using Dijkstra algorithm we find a minimum cost path,
which becomes a temporary route for the flow (the route lists the hops and the ports
used at each hop); iii) we test the real time characteristics the found route; iv) if the
found route does not fulfill the real time requirements we repeat these steps changing

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:10 C. Seiculescu et al.

the cost until a path is found that meets the bound. The details for these steps are
described in the following parameters.

A parameter β is used to influence the cost calculation in order to shift the optimiza-
tion criteria from minimizing power to minimize the worst case delay. In step 8 we
initialize the parameter β to the current value of α. This parameter is varied locally to
change the optimization criteria only for the current flow that is routed, when a valid
route is not found. In step 9 a cost graph is built. The cost graph is defined as follows.

Definition 6.3. The cost graph is a fully-connected directed graph, C(S, L, β), where
the vertices represent the switches in the topology. The weight of the edge (li, lj), defined
by costi, j , gives the cost of routing the flow from switch i to switch j.

The way the weights of the edges in the cost graph are calculated is presented in
more detail in Section 6.2. Based on the cost graph the minimum cost path is found in
step 10. This path is used as the route for the current flow. We use Dijkstra algorithm
and turn prohibition to find deadlock-free minimum cost routes, as presented in Murali
et al. [2006]. If a path is not found for any flow or the parameter β has reached the
maximum value, then α is incremented and we return to step 2 to retry with a different
core to switch assignment.

After a valid route is found for the current flow the algorithm tests weather the
real-time constraints are met (step 15). This is done using the worst-case delay models
presented in Section 4 recursively. Not only the current flow needs to be tested, but also
the previously mapped flows, because the interference of the current flow can cause
the already mapped flows to violate their bounds. If the constraints are met then the
algorithm proceeds to mapping the next flow.

If there is a bound violation, there are two cases that need to be considered: i) a
previously mapped flow has violated its constraint or ii) the current flow has violated
the constraint. If a previously mapped flow is the one that violates its worst case delay
constraint, there are a further two subcases that need to be considered. One subcase is if
the flow that violates the bound and the current flow that we are trying to route have the
same destination. This subcase is more complex as it is not possible to fully separate
the routes of the two flows and it is handled by the function destination contention
(step 18). In the other subcase the contention is along the path of the current flow
and the previously mapped flow and the function path contention is called (step 20).
The two functions annotate the states of some links so that in the next iteration (after
incrementing β, steps 22, 23) the weights in the cost graph are modified such that
the conditions that cause the previous flow to violate the constraint can be avoided. A
more detailed description of the two functions is presented in Sections 6.3 and 6.4. If
the current flow violated the worst case delay constraint then we simply increment the
parameter β, and we do a local iteration (steps 26, 27).

If all the inter switch flows could be routed successfully then the topology is saved
(step 30) and the algorithm finishes. The power and area of the generated topology is
estimated after this point.

The time complexity of the algorithm is O(|V |4|E|3ln(|V |)), where |V ||E|2 is the con-
tribution given by checking the worst-case latency constraints as presented in Rahmati
et al. [2009]. In practice the algorithm runs fast as valid path can be found much earlier
when the constraints are not that tight.

6.2. Cost Calculation

Calculating the weights of the edges of the cost graph is an important step, because
through the cost assigned to the different edges we can drive the algorithm to find paths
that meet the worst case delay constraints and that minimize the power consumption
of the topology. The cost calculation for one edge is presented in Algorithm 2.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:11

ALGORITHM 2: cost(switchi, switchj , β)

1: Find link between switchi and switchj that support the required bandwidth
2: if link found and flow count on(link) ≥ BOUND/β then
3: Goto step 1 and find next link
4: end if
5: if link not found then
6: if can open new link then
7: link = link count(switchi, switchj) + 1
8: cost[switchi][switchj] = marginal power new link(switchi, switchj , bandwidth)
9: else
10: cost[switchi][switchj] = INF
11: end if
12: else
13: cost[switchi][switchj] = marginal power existing link(switchi, switchj , bandwidth)
14: cost[switchi][switchj] + = (flow count on(link) / max f low count) ∗ β
15: end if
16: if link status[switchi][switchj][link] = PROHIBITED then
17: cost[switchi][switchj] = INF
18: end if
19: if link status[switchi][switchj][link] = ADD EXTRA COST then
20: cost[switchi][switchj] + = max cost
21: end if

In the first step the function tries to find a link that exists between the two switches
and that has sufficient capacity to accommodate the bandwidth requirement of the
new flow. If such a link is found it tests to see if the number of flows already mapped
to that link are smaller than a certain bound determined experimentally (step 2). As
the bound depends on β, it forces the algorithm to reuses fewer existing links as β is
incremented in successive iterations. If the number of flows on the link is larger than
the bound then it goes back to step 1 to look for the next viable link.

If an existing link that can be reused was not found, then the algorithm would need
to open a new link between those switches. If a new link cannot be opened (because the
size of the switches would become too large and they would not support the required
frequency) the cost for that edge in the cost graph is set to a large (INF in step 10).
This prevents the flow to be routed between the two switches. If the link can be opened
then the cost of that link is given by the marginal power increase due to the addition
of the new link (step 8). The power consumption increases when a new link is open due
to an increase in the size of the switches and the increase in switching activity as the
low adds the extra traffic.

If an existing link is found and it can be reused, then the cost of reusing that link is
given by the marginal increase power that the new flow creates (step 13). In this case
the switch size remains the same, but the switching activity is increase due to the extra
traffic. In case a link is reused there are other flows that use that link. We add extra
cost that is proportional to the number of flows that are already mapped on that link
weighted by the value of the parameter β. In this way we drive the path computation
to reuse links that will be shared by fewer flows and even to use new links as the value
of β is increased.

Finally based on the status of the link that is set from a previous iteration by the
destination contention and path contention functions we can force to prevent commu-
nication between some switches (step 17) or to increase the cost in order to favor the
use of other links (step 20). The way the link status is set and the function that the
link status has, is presented in detail in Sections 6.3 and 6.4.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:12 C. Seiculescu et al.

6.3. Destination Contention

The destination contention function is called, if the route that was found for the current
flow, would lead to a previously mapped flow to violate its constraint. Also the contention
between the current flow and flow that violates the constraint happens on the output
port of the last switch, just before the destination NI. Thus we want to force the new
flow to contend with a previously mapped flow that does not have real-time constraints,
but that goes to the same output as the flow that violates the constraint. By doing this
we increase the worst-case delay of the flow that is not RT and of the new flow, but it
would not modify the worst case delay of the flow that now violates the constraint. The
steps to achieve this are presented in Algorithm 3

ALGORITHM 3: destination contention(violated flow)
1: ls = last switch for the violated flow
2: for i = 1 to num sw do
3: if i �= ls then
4: for j = 1 to link count(i, ls) do
5: if link[i][ls][j] is not used by non RT flow that contends with the violated flow at the

destination then
6: link status[i][ls][j] = PROHIBITED
7: end if
8: end for
9: {Prohibit the use of new link}
10: link status[i][ls][link count(i, ls) + 1] = PROHIBITED
11: end if
12: end for

In step 1 we find the last switch (ls) of the flow that was mapped and which violates
the constraint. We loop through all the existing switches (step 2) and see if there are
existing links to the switch ls. If such links exist, it checks whether it is used by a non
real-time flow that goes to the same output as the flow that violates the constraint.
If no such flow, exists the link is prohibited from being used in the next iteration by
setting the link status to PROHIBITED (step 6). If a new link is opened then there is
no flow mapped on that link. So if the current flow uses a new link it will still contend
with the previously mapped flow at the destination. Therefore the use of new links
toward the switch ls is prohibited (step 10).

Example 6.4. In Figure 3 we show an example of how the destination contention is
removed. Assume we have the topology from Figure 3(a) and there are three flows. Flow
1 is a real time flow that is routed through switch 3 and 4. Flow 2 is a non-real-time flow
and is routed through switch 2 and 4. Flow 3 is the current flow that has to be routed
and after the first iteration the path using switch 1 and 4 was found. Suppose that
by routing flow 3 through switch 1 and 4 causes flow 1 to violate the worst case delay
bound. Therefore the destination contention function will set the state of the links as
shown in Figure 3(b). The link between switch 3 and 4 is prohibited, and also opening
new links between switch 1 and 4, 2 and 4 and 3 and 4 is also prohibited. The existing
link between switch 2 and 4 can be used as it is currently used by flow 2 which does not
have real-time constraint but already contends with flow 1. A potential route for flow
3 is shown in Figure 3(c), where flow 1 uses the existing link between switch 2 and 4
that is also used by flow 2.

6.4. Path Contention

If path contention function is called, it means that the route of the current flow inter-
sects the route of previously mapped flow before the destination switch and causes the

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:13

Fig. 3. Destination contention example: a) initial topology; b) link status annotation; c) final topology.

previously mapped flow to violate its bound. In this case we want to drive the path
finding algorithm to avoid to use the links that the previously mapped flow uses. If the
route of the new flow does not intersect with the previously mapped flow than it will
not increase the worst case delay of the previously mapped flow. To that end the links
used by the flow that violate its worst-case delay constraint are annotated so that in
the next iteration the cost for using such a link is increased.

The steps to annotate the links are presented in Algorithm 4. The function loops
through the existing links in the topology and if it finds a link that is used by the flow
that violates the bound it set its status to ADD EXTRA COST (step 5). The value of
maximum cost of all edges in the cost graph is added in the cost calculation function to
links that have the status set to ADD EXTRA COST. These links will have high cost
and will be avoided by the path finding routine. These links can be used (unlike in the
case where the cost is INF), if due to other constraints, no other links can be used.

ALGORITHM 4: path contention(violated flow)
1: for i = 1 to num sw do
2: for j = 1 to num sw do
3: for k = 1 to link count(i, j) do
4: if violated flow uses link[i][j][k] then
5: link status[i][j][k] = ADD EXTRA COST
6: end if
7: end for
8: end for
9: end for

Example 6.5. An example of how the path contention is avoided is shown in Figure 4.
An example topology is presented in Figure 4(a), and there are two flows. Flow 1 is a
real-time flow that is already routed. Flow two is the current flow for which we have to
find a route. Assume that in the first iteration the route that is found is from switch 1
to 2, 3 and 4. So flow 2 intersects with flow 1 at the output of switch 1. Assume that by
using this route for flow 2 causes flow 1 to violate the required worst case delay bound.
In this case the path contention function is called and will set the status of the link
between switch 1 and 2 and of the link between switch 2 and 3 to ADD EXTRA COST

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:14 C. Seiculescu et al.

Fig. 4. Path contention example: a) initial topology; b) link status annotation; c) final topology.

as shown in Figure 4(b). Therefore in the next iteration those links will have higher
cost and will be avoided if possible. A possible solution is shown in Figure 4(c) where a
new link between switch 1 and 3 is opened and the route of flow two uses switches 1, 3
and 4, and therefore the contention with flow 1 is removed.

7. EXPERIMENTAL RESULTS

To evaluate the real-time topology synthesis algorithm, we chose two complex bench-
marks extracted from real-life SoC platforms. The first benchmark is a state-of-the-art
multimedia and wireless communication SoC [Philips 2004; ST 2004; TI 2004]. The
communication patterns for this benchmark are very irregular [Seiculescu et al. 2010],
as the described SoC is composed of two subsystems. One subsystem handles the mul-
timedia functions. It contains an ARM processor, hardware video accelerator and a
complex memory system that can access off-chip SDRAM and FLASH. The second sub-
system is used for the wireless communication and is built around a DSP processor
and several peripherals. Communication between the two subsystems is done with
the help of a DMA core and several on-chip memories. There are a total of 26 cores
that communicate in the system. The second benchmark is a SoC for high-end signal
processing applications (such as those used in embedded image and radar processing).
This SoC features multiple local memories, having a spread communication pattern.
In this benchmark there are 36 cores and each core communicates to four other cores.

We applied our proposed synthesis algorithms on the two SoC benchmarks. For
comparisons, we used an existing state-of-the-art synthesis algorithm that does not
support hard QoS constraints [Murali et al. 2006] to design the topologies for the
benchmarks. We use the methods described in Section 4 to calculate the worst case
latencies for the flows for the generated topologies for both cases.

7.1. Effect on Latency

We designed four topologies using the original synthesis algorithm from Murali et al.
[2006], where real-time constraints are not considered. The different design points use
different numbers of switches: 5, 8, 14, and 20 for the D26 media benchmark. We show
results for 5 and 8 switches because, as we will show in the experiments, the worst
case latency tends to be worse when there are fewer switches. On the other hand,
these design points are important as they provide better power consumption when
compared with topologies with many switches. We also give results for topologies with

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:15

10 20 30 40 50 600

100

200

300

400

500

600

700

800

900

1000

1100

Communication flow index

W
o
r
s
t

c
a
s
e

l
a
t
e
n
c
y

(
c
y
c
l
e
s
)

ORIG
RT−5−Flows

Fig. 5. Worst case latency on each flow.

more switches (i.e., 14, 20) to give a clear picture of how the worst-case latency depends
on the number of switches.

We then ran our RT algorithm and found the smallest latency bound for which it
was possible to find solutions. While in many real applications only a subset of flows
have real time constraints, we wanted to study the maximum overhead incurred by our
proposed procedure. Thus, we put real time constraints on all flows. We found that for
the D26 media benchmark, the tightest constraint for the upper bound delay for which
feasible topologies could be build is 180 cycles. To find out how tight the constraint was,
we calculated the worst case latencies of the flows only due to source and destination
contentions. To perform this, we connected all the cores through a single crossbar
switch and calculated the worst case latencies. On the crossbar, the average worst case
latency for this benchmark was 92 cycle and the maximum value across all flows was
148 cycles. This shows that the constraint we imposed is quite tight, as it is only 1.25×
the maximum value of the flows from the ideal case.

In Figure 5 we show the worst case latencies for the 66 flows in the D26 media
benchmark. The worst case latencies are reported for the case when the crossbar
is used and for the cases when a 14 switch topology is designed with the original
algorithm and with the RT algorithm. As can be seen, for the topology designed with
the RT algorithm, the worst case latency of the flows is in the same range as the worst
case latency for the flows mapped on the crossbar. On the topology designed with the
original algorithm, most flows have worst-case latency values much higher than those
of the crossbar.

Another less intuitive effect that is visible in the plot is that the RT algorithm
provides lower worst-case latency than the crossbar. This is because, in a crossbar, each
flow will have to contend with all the other flows to the same destination. Whereas,
in a multiswitch case, this may not happen. For example, if there are 3 flows to the
same destination. In the multiswitch case, two of them may share a path until a point
where they contend with the third flow. The third flow only has to wait for one of
them (with the maximum delay) to go through. Whereas, in a full crossbar, the third
flow will have to wait for both the flows, in the worst case. Thus, we can see that,
when only few flows require real time guarantees a multi-switch topology can give

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:16 C. Seiculescu et al.

10 20 30 40 50 600

100

200

300

400

500

600

700

800

Communication flow index

M
i
n
i
m
u
m

g
u
a
r
a
n
t
e
e
d

b
a
n
d
w
i
d
t
h

(
M
B
/
s
)

ORIG
RT
Crossbar

Fig. 6. Minimum guaranteed bandwidth for each flow.

10 20 30 40 50 600

100

200

300

400

500

600

700

800

900

1000

1100

Communication flow index

W
o
r
s
t

c
a
s
e

l
a
t
e
n
c
y

(
c
y
c
l
e
s
)

ORIG
RT
Crossbar

Fig. 7. Worst case latency when only 5 flows are constrained.

better bounds and it is really difficult to come with the best topology directly using
designer’s intuition. The worst case model from Rahmati et al. [2009] also gives a
method to calculate the minimum guaranteed bandwidth under worst case contention
in the network. In Figure 6, we show the calculated minimum guaranteed bandwidth
for the 66 communication flows for the 14 switch topology.

So far we showed what happened to the worst-case latency when a constraint is set
to all the flows. In Figure 7, we show the behavior of the RT synthesis algorithm when
only 5 flows have worst-case latency constraints. The flows that had constraints are
marked with bubbles on the figure. The latency constraints were added to flows going
to and from peripherals. This is a realistic case, as many peripherals have small buffers
and data has to be read at a constant rate, so that it would not be overwritten. In this

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:17

Fig. 8. Average worst case latency for D26 media.

case, the bounds on those 5 flows could be tightened further (two flows at 160 cycles
and three flows at 60 cycles). Putting these constraints also leads to a reduction in the
worst case latency of other flows as well. Due to the tight constraints, the RT algorithm
maps the RT flows first. Then, the unconstrained flows also have to be mapped with
more care so that they do not interfere with the previously mapped ones.

In Figure 8, we show the worst-case latencies, averaged over all flows for both the
original algorithm and the proposed RT algorithm. From the figure, it can be seen that
a synthesis algorithm not considering the maximum latencies can incur a significantly
higher worst-case latencies than the required bound especially for low switch counts
and we can observe large variations depending on the number of switches in the
topology. For the RT case, the variations are much smaller as the algorithm builds the
topology in such a way so that all flows meet the constraints. One other important
remark is that even in the unconstrained case, increasing the number of switches can
help reduce the worst-case latency of flows. This is because, with increasing switch
counts, fewer flows share each link, there by reducing the chances of contention. This
is contrary to the zero load latency (the latency to go from source to destination without
having any interference on the way), which grows with the number of switches in the
topology, as can be observed from Figure 9.

For the D36 4 benchmark, we designed topologies with 6, 8, 14 and 20 switches and
we found that the tightest constraint for which topologies could be synthesized was
195 cycles. The average worst case latency for the different topologies designed for
the D36 4 benchmark are shown in Figure 10. The effects on the average zero load
latencies are shown in Figure 11. Using the original algorithm, for 6 switches, the zero
load latency is very high as most flows have to reuse existing links and cross more hops.
For all other switch counts the zero load latency is smaller, but it constantly increases
with the switch count. With the proposed RT algorithm the zero load latency dose not
suffer large variations, as the algorithm is reusing fewer links in order to meet the
constraints.

7.2. Effect on NoC Components

To design topologies that meet the required worst case latency constraints, the RT
algorithm may use more links and therefore additional switch ports when compared to
the original synthesis method. By adding more links, contention between flows can be
reduced, there by reducing worst-case latencies. But adding more links will increase the
switch sizes and the power consumption of the NoC may also increase. It is important
to analyze what is the overhead of the RT algorithm over the original method.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:18 C. Seiculescu et al.

Fig. 9. Average zero load latency for D26 media.

Fig. 10. Average worst case latency for D36 4.

Fig. 11. Average zero load latency for D36 4.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:19

Fig. 12. Number of links for D26 media.

In Figure 12, we plot the total number of links used in the different topologies for the
D26 media benchmark. As the number of switches is increased, the number of links
used increases as well. With more links, the contention on each link is lower, reducing
the worst case latencies. It can be seen that even though the number of links is more
in the topologies synthesized with the RT algorithm, the overhead with respect to the
original case is on average only 9.5%. In Figure 13 we show the corresponding plot on
the number of links in the topology for the D36 4 benchmark. Since the communication
pattern of this benchmark involves more flows, we have more links in the original design
as well so the bounds can be met with even smaller overhead (average 5.5%).

7.3. Effect on Power Consumption

In this section we analyze the overhead of the RT algorithm with respect to the original
algorithm in terms of the power consumption of the NoC topologies. To calculate the
power consumption of the designed NoC we used the NoC component models from
Stergiou et al. [2005]. The power consumption of the different switches are obtained
from placement&routing of the RTL designs in 65nm technology process. Switches
of different sizes are synthesized for different operating frequencies and switching
activities. Based on the power estimates obtained after place and route, the switch
power models are built. After the topology is built, based on the requirements from the
communication specifications, the activity at the switches can be determined. Based
on the switching activities and the power models, the actual NoC power consumption
for the application is calculated.

Our RT algorithm has the biggest impact on the switch power, because by adding
more links the size of the switches is increased, leading to an increase in the power
consumption. The link power is affected by the link lengths and the switching activity
(the amount of bandwidth that flows on the link). The length of the links depends
on the floorplan and the parallel links introduced by the RT procedure will have the
same length. Since the bandwidth of the flows remains the same as it depends on the
application, when you add more parallel links the bandwidth of the flows is distributed
among all the links. Therefore in the RT design you have more parallel links at lower
switching activity and with the same length and as such the total power for the links is
similar. Also the switching activity of the switches remains constant (as the bandwidth
is application dependent) even though the RT procedure adds more ports (to add the
parallel links). However since the power of the crossbar does not grow linear with the
number of inputs and outputs we see an increase in the total switch power consumption.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:20 C. Seiculescu et al.

Fig. 13. Number of links for D36 4.

Fig. 14. Switch power consumption for D26 media.

Thus, we only plot the switch power for topologies. The power consumption values for
the D26 media benchmark are shown in Figure 14. As can be seen, the switch power
increase due to the RT process is only marginal (11% on average). In Figure 15 we show
the power consumption for the D36 4 benchmark. The power overhead is slightly lower
(6% on average) in this case, as fewer links need to be added to meet the constraint.

Please note that an average the switch power account for about one third of the
total power of the topology, the rest being used by the links and the network interfaces
(NIs). Both the power of the NIs and of the links is unaffected by the RT procedure and
therefore the impact of the RT design on the total power of the topology is minimal,
while at the same time providing hard-latency guarantees for the flows.

A summary of all the results for the two benchmarks is presented in Table I. The table
reports average upper bund values for flow in cycles, the average zero load latency (in
cycles), the number of links in each topology and the corresponding power consumption
(in mW).

8. CONCLUSIONS

We have shown that guaranteeing worst-case latencies for communication flows in a
best-effort NoC fabric can be done without specific hardware support, by judiciously

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:21

Fig. 15. Switch power consumption for D36 4.

Table I.

Bench- Num of Upper bound (cycles) Zero load latency Num links Power (mW)
mark Switches RT ORIG RT ORIG RT ORIG RT ORIG

5 112.1 167.3 3.7 3.9 75 64 22.7 19.5
D26 8 113.8 205 3.5 3.77 85 75 25.1 21

media 14 105.9 289.9 3.5 4.71 97 92 35 32.5
20 108.9 195.6 3.7 4.71 105 103 39.3 38.8
6 143.5 331.7 3.27 3.85 104 99 66.2 68

D36 8 107.7 158.8 3.27 3.36 125 107 78 70.2
4 14 91.1 138.8 3.25 3.49 172 143 95.5 89.9

20 92.4 169.6 3.24 3.54 184 160 107 99.9

synthesizing a QoS-aware topology. The proposed method gives worst case latency
guarantees by carefully designing the application specific topologies for the NoC and
can be used with switches that do not have any specialized hardware for QoS. The
only assumption is that the switches use a fair arbitration policy, such as round robin.
In our experiments we show that our proposed algorithm can guarantee meeting real
time latency constraints with little resource and power consumption overhead (average
8.5%).

REFERENCES

AHONEN, T., SIGÜENZA-TORTOSA, D. A., BIN, H., AND NURMI, J. 2004. Topology optimization for application-specific
networks-on-chip. In Proceedings of the International Workshop on System Level Interconnect Prediction
(SLIP’04). ACM, New York, 53–60.

BJERREGAARD, T. AND SPARSO, J. 2005. A router architecture for connection-oriented service guarantees in the
mango clockless network-on-chip. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’05). Vol. 2. IEEE, 1226–1231.

BOLOTIN, E., CIDON, I., GINOSAR, R., AND KOLODNY, A. 2004. Qnoc: Qos architecture and design process for
network on chip. J. Syst. Archit. 50, 2–3, 105–128.

BOUHRAOUA, A. AND ELRABAA, E. 2006. A high-throughput network-on-chip architecture for systems-on-chip
interconnect. In Proceedings of the International Symposium on System-on-Chip. 1–4.

CRISTINA SILVANO, M. L. AND PALERMO, G. 2011. Low Power Networks-on-Chip, 1st Ed. Springer.
DE MICHELI, G. AND BENINI, L. 2006. Networks on Chips: Technology and Tools (electronic version). Elsevier,

Burlington, MA.
FELICIIAN, F. AND FURBER, S. 2004. An asynchronous on-chip network router with quality-of-service (QoS)

support. In Proceedings of the IEEE International System-on-Chip Conference. 274–277.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

108:22 C. Seiculescu et al.

FLICH, J. AND BERTOZZI, D. 2010. Designing Network On-Chip Architectures in the Nanoscale Era. Chapman
& Hall/CRC.

GOOSSENS, K., DIELISSEN, J., AND RADULESCU, A. 2005. Aethereal network on chip: concepts, architectures, and
implementations. IEEE Des. Test Comput. 22, 5, 414–421.

HANSSON, A., GOOSSENS, K., AND RADULESCU, A. 2005. A unified approach to constrained mapping and routing
on network-on-chip architectures. In Proceedings of the 3rd IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS’05). ACM, New York, 75–80.

HENDRICKSON, B. AND LELAND, R. 1994. The Chaco user’s guide: Version 2.0. Sandia Tech rep. SAND942692.
HO, W. AND PINKSTON, T. 2006. A design methodology for efficient application-specific on-chip interconnects.

IEEE Trans Parallel Distrib. Syst. 17, 2, 174–190.
HU, J. AND MARCULESCU, R. 2003. Exploiting the routing flexibility for energy/performance aware mapping of

regular noc architectures. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’03). Vol. 1, IEEE, 10688.

KAVALDJIEV, N., SMIT, G., AND JANSEN, P. 2004. A virtual channel router for on-chip networks. In Proceedings of
the IEEE International System-on-Chip Conference. 289–293.

KOPETZ, H., DAMM, A., KOZA, C., MULAZZANI, M., SCHWABL, W., SENFT, C., AND ZAINLINGER, R. 1989. Distributed
fault-tolerant real-time systems: The Mars approach. IEEE Micro 9, 1, 25–40.

LEE, S. 2003. Real-time wormhole channels. J. Parallel Distrib/Comput. 63, 3, 299–311.
LEROY, A., MARCHAL, P., SHICKOVA, A., CATTHOOR, F., ROBERT, F., AND VERKEST, D. 2005. Spatial division multiplex-

ing: a novel approach for guaranteed throughput on nocs. In Proceedings of the 3rd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’05).
ACM, New York, NY, USA, 81–86.

MARESCAUX, T. AND CORPORAAL, H. 2007. Introducing the supergt network-on-chip: Supergt qos: more than
just gt. In Proceedings of the 44th Annual Design Automation Conference (DAC’07). ACM, New York,
116–121.

MELLO, A., TEDESCO, L., CALAZANS, N., AND MORAES, F. 2006. Evaluation of current qos mechanisms in networks
on chip. In Proceedings of the IEEE International System-on-Chip Conference. 1–4.

MILLBERG, M., NILSSON, E., THID, R., AND JANTSCH, A. 2004. Guaranteed bandwidth using looped containers in
temporally disjoint networks within the nostrum network on chip. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE’04), Vol. 2. IEEE, 20890–.

MONDINELLI, F., BORGATTI, M., AND VAJNA, Z. 2004. A 0.13 mu;m 1gb/s/channel store-and-forward network
on-chip. In Proceedings of the IEEE International System-on-Chip Conference. 141–142.

MULLINS, R., WEST, A., AND MOORE, S. 2006. The design and implementation of a low-latency on-chip network.
In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’06). IEEE, 164–
169.

MURALI, S. AND MICHELI, G. D. 2004a. Bandwidth-constrained mapping of cores onto noc architectures. In
Proceedings of the Conference on Design, Automation and Test in Europe. 20896.

MURALI, S. AND MICHELI, G. D. 2004b. Sunmap: A tool for automatic topology selection and generation for
NoCs. In Proceedings of the Design Automation Conference. 914–919.

MURALI, S., BENINI, L., AND DE MICHELI, G. 2005. Mapping and physical planning of networks-on-chip architec-
tures with quality-of-service guarantees. Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC’05). ACM, New York, 27–32.

MURALI, S., MELONI, P., ANGIOLINI, F., ATIENZA, D., CARTA, S., BENINI, L., DE MICHELI, G., AND RAFFO, L. 2006.
Designing application-specific networks on chips with floorplan information. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’06). ACM, New York, 355–
362.

PAUKOVITS, C. AND KOPETZ, H. 2008. Concepts of switching in the time-triggered network-on-chip. In Proceed-
ings of the International Workshop on Real-Time Computing Systems and Applications. 120–129.

PHILIPS. 2004. Philips nexperia highly integrated programmable system-on-chip (mpsoc). http://www.
semiconductors.philips.com/products/nexperia.

PINTO, A., CARLONI, L. P., AND SANGIOVANNI-VINCENTELLI, A. L. 2003. Efficient synthesis of networks on chip. In
Proceedings of the International Conference on Computer Design. 146.

RADULESCU, A., DIELISSEN, J., PESTANA, S., GANGWAL, O., RIJPKEMA, E., WIELAGE, P., AND GOOSSENS, K. 2005.
An efficient on-chip ni offering guaranteed services, shared-memory abstraction, and flexible network
configuration. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1, 4–17.

RAHMATI, D., MURALI, S., BENINI, L., ANGIOLINI, F., DE MICHELI, G., AND SARBAZI-AZAD, H. 2009. A method
for calculating hard qos guarantees for networks-on-chip. In Proceedings of the 2009 International
Conference on Computer-Aided Design (ICCAD’09). ACM, New York, 579–586.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

Designing Best Effort Networks-on-Chip to Meet Hard Latency Constraints 108:23

RIJPKEMA, E., GOOSSENS, K., RADULESCU, A., DIELISSEN, J., VAN MEERBERGEN, J., WIELAGE, P., AND WATERLANDER, E.
2003. Trade-offs in the design of a router with both guaranteed and best-effort services for networks on
chip. IEE Proc.: Comput. Digital Techn. 150, 5, 294–302.

SALMINEN, E., KULMALA, A., AND HÄMÄLÄINEN, T. 2008. Survey of network-on-chip proposals. http://www.
ocpip.org.

SEICULESCU, C., MURALI, S., BENINI, L., AND DE MICHELI, G. 2010. Sunfloor 3d: A tool for networks on chip
topology synthesis for 3-d systems on chips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29,
12, 1987–2000.

SHI, Z. AND BURNS, A. 2008. Real-time communication analysis for on-chip networks with wormhole switching.
In Proceedings of the 2nd ACM/IEEE International Symposium on Networks-on-Chip (NOCS’08). IEEE,
161–170.

SRINIVASAN, K., CHATHA, K. S., AND KONJEVOD, G. 2005. An automated technique for topology and route gener-
ation of application specific on-chip interconnection networks. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD’05). IEEE, 231–237.

STERGIOU, S., ANGIOLINI, F., CARTA, S., RAFFO, L., BERTOZZI, D., AND MICHELI, G. D. 2005. ×pipes lite: A synthesis
oriented design library for networks on chips. In Proceedings of the Conference on Design, Automation
and Test in Europe (DATE’05), Vol. 2. IEEE, 1188–1193.

STMICROELECTRONICS. 2004. ST nomadik multimedia processor. http://www.st.com/stonline/prodpres/dedicate/
proc/proc.htm.

TI INSTRUMENTS. 2004. TI’s omap platform. http://focus.ti.com/omap/docs/.
XU, J., WOLF, W., HENKEL, J., AND CHAKRADHAR, S. 2006. A design methodology for application-specific networks-

on-chip. ACM Trans. Embed. Comput. Syst. 5, 263–280.
ZHU, X. AND MALIK, S. 2002. A hierarchical modeling framework for on-chip communication architectures. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’02). ACM,
New York, 663–671.

Received March 2011; revised July 2011; accepted September 2011

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 4, Article 108, Publication date: June 2013.

