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Abstract. This paper describes a new design of the multipurpose cryp-
tographic primitive ARMADILLO3 and analyses its security. The AR-
MADILLO3 family is oriented on small hardware such as smart cards
and RFID chips. The original design ARMADILLO and its variants were
analyzed by Sepehrdad et al. at CARDIS’11, the recommended variant
ARMADILLO2 was analyzed by Plasencia et al. at FSE’12 and by Abdel-
raheem et al. at ASIACRYPT’11. The ARMADILLO3 design takes the
original approach of combining a substitution and a permutation layer.
The new family ARMADILLO3 introduces a reduced-size substitution
layer with 3 × 3 and 4 × 4 S-boxes, which covers the substitution layer
from 25% to 100% of state bits, depending on the security requirements.
We propose an instance ARMADILLO3-A1/4 with a pair of permutations
and S-boxes applied on 25% of state bits at each stage.

1 Introduction

Tiny computing devices such as smart cards, sensor networks and RFID tags
are becoming more and more widespread. The implementation of standardized
cryptographic algorithms such as the block cipher AES [21] or the hash func-
tions SHA [10] are very expensive in terms of the number of gates and power
consumption. Moreover, the security requirements of these tiny devices are often
weaker than which of algorithms such as AES or SHA. The widespread usage
of the constrained devices triggered a spontaneous competition for the tiniest
and the most secure designs. There have been several designs of such primitives
[5,8,9,14,15,17,25].

Since these devices communicate over an insecure channel, usually a wireless
channel, there is a threat of an attacker trying to listen to the communication or
trying to impersonate a server or another device. Therefore, there is a need for an
authentication protocol to provide authenticity of the device, and an encryption
to provide the confidentiality. However, as we want to reduce the implementa-
tion cost as much as possible, it is important to find a universal design, which
can be used in many different applications. This allows to further reduce the
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implementation cost, as it is not necessary to implement multiple algorithms
on the small device. Some recent designs deal with this issue by reusing some
parts of the implementation, for instance the hash function QUARK [2] and
the message authentication code SQUASH-128 [23] use some components of the
stream cipher GRAIN [14]. This approach is the first step towards a multipurpose
cryptographic primitive, that can be used in all applications.

We introduce a new primitive ARMADILLO3 which is designed to be used as
a message authentication code (MAC), a hash function and a pseudo-random
number generator. The ARMADILLO3 is the third generation of the multipur-
pose cryptographic function ARMADILLO [3] introduced at CHES’10. The new
version ARMADILLO3 prevents all known attacks against the ARMADILLO [22]
design and the attack against ARMADILLO2 based on parallel matching [1], and
Hamming weight preservation in PRNG mode [19]. We provide a security anal-
ysis against known types of attacks and discuss some dedicated attacks and
counter-measures. We support our security claims using the security analysis
based on properties of the underlying expander graph of ARMADILLO3.

The ARMADILLO is a family of cryptographic functions based on data depen-
dent permutations. That is, we use an internal function P defined by P (p‖b, Z) =
P (p, S(Zσb

)) iteratively, where b is the tailing bit of the first operand p‖b, S is
a substitution layer, σb is a permutation (σ0 or σ1) and Zσb

denotes the trans-
position of Z based on permutation σb. The extension ARMADILLO3 adopts a
preprocessing to prevent the known attacks against ARMADILLO1 reported in
[22], and it introduces a reduced-size S-box layer to improve the confusion of
ARMADILLO2 which lead to a practical low complexity attack reported in [19].

The ARMADILLO3 internal function generalizes the SPN structure by intro-
ducing a second permutation. In every round, we choose one of the two permu-
tations based on a pseudorandom value.The internal function is then followed by
an XOR with the input and the control register value similar to the Davies-Meyer
construction.

The ARMADILLO3 reduces the number of S-boxes due to both the higher
number of rounds and the pseudorandom selection of the permutation. This
means that only some bits of the internal state go through the S-boxes in a sin-
gle round. The pair of permutations for ARMADILLO3 has to be selected in such
a way that even when the attacker controls the selection of the permutation at
every round, which is the case for hash functions, she should be unable to pre-
vent the diffusion of the input. Therefore, the selection of the two permutations
is a non-trivial task. We introduce a notion of Hierarchical Permutations which
ensure that every bit goes through an S-box in a minimum number of steps
for all possible sequences of data-dependent permutations, while making no sig-
nificant restrictions on other properties of these permutations. The selection of
the final pair is based on the diffusion properties of both permutations and the
expansion properties of the expander graph corresponding to the pair of the
permutations.
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2 The ARMADILLO3 Function

The ARMADILLO3 is based on a recursive function P which takes two param-
eters P (Y,X). The register Y is used as a control register for selecting the
permutation in each step of the function P , and the ith step of P consists of
applying permutation σ0 or σ1, depending on the value Y [i], and the S-boxes
on specified bits. Since the value Y has to be pseudo-random which is difficult
to control for an attacker, we set Y = P (X,X) for an input X . Therefore, the
ARMADILLO3 consists of two steps: preprocessing step for computing the value
Y and the computation of P (Y,X) followed by an XOR with the input X and
the control register Y . We give recursive definition of ARMADILLO3 followed by
the pseudo-code. The parameters for the algorithm are: the type of S-boxes, the
number and placement of S-boxes, and the permutation pair.

The ARMADILLO3 algorithm on input W = H‖X is defined as follows.

ARMADILLO3(W) = P (Y,W)⊕W⊕ Y, for

Y = P (W,W)

P (p‖b, Z) = P (p, S(Zσb
))

P (λ, Z) = Z

Y = P (H‖Xi,H‖Xi)
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Fig. 1. Scheme of ARMADILLO3
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where p denotes a bit string, b denotes a bit, S denotes the substitution layer
which is defined separately, and λ denotes the empty string. The substitution
layer of ARMADILLO3 consists of r identical t× t S-boxes. In our example, i.e.,
ARMADILLO3-A1/4, we build the permutation pair σ0, σ1 for the placement of
3 × 3 S-boxes at positions 0-32 (so we have 11 3 × 3 S-boxes), which gives the
“coverage rate” = rt

k , where k is the size of register Y.

Algorithm 1. ARMADILLO3 pseudo-code

input X, H
W = H‖X
R = H‖X
for i=0 to |W| do

b = W[i]
R← S(Rσb)

end for
for i=0 to |W| do

b = P [i]
W← S(Wσb)

end for
return W

The substitution layer S, i.e., the S-boxes and the bits covered by S-boxes, together
with permutations σ0, σ1 are defined later for ARMADILLO3-A1/4.

The function ARMADILLO3 differs from the original design ARMADILLO1
[3] in several ways. Like ARMADILLO2 [3], it has an internal register of size k
instead of 2k, which makes the design more compact, and as ARMADILLO2 it
also includes a preprocessing step, i.e., Y = P (H‖X,H‖X). The preprocessing
prevents the attacker from controlling the permutation P (Y,H‖X), since it is
difficult for an attacker to predict Y = P (H‖X,H‖X) without a knowledge of
H. In the case of the hash function, when the attacker knows the value H or
is allowed to choose this value to find a pseudocollision, the attacker can only
control the register in the preprocessing phase. The ARMADILLO3 differs from
ARMADILLO2 [3] by removing the XOR with a constant and adding a reduced-
size substitution layer.

2.1 Modes of Operations in ARMADILLO3

FIL-MAC. The fixed input-length message authentication code is required in
RFID applications. The output X’ is used for authentication of the tag. In ap-
plications such as Pathchecker [20], the secret key of the RFID tag is renewed
with the value H’.

Hashing. For a variable-length input message we use the strengthened Merkle-
Damg̊ard construction [18,7]. The ARMADILLO3 is used as a compression func-
tion. The value H is taken as the IV and the compression function ARMADILLO3
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produces H’ which is the new IV. The value X is a message block to be processed.
Such construction is similar to a sponge construction proposed in [4]. The inner
function of ARMADILLO3 could also be used in a sponge construction as an
alternative to our construction.

PRNG, PRF. In this mode we use the j most significant bits of the output
value (H’‖X’) = ARMADILLO3(H,X), where j is a parameter. The input value X
is chosen sequentially, and can be sent in clear for the resynchronization purposes
for a self-synchronizing stream cipher.

2.2 The Permutation Pair for ARMADILLO3

We introduce a concept of Hierarchical Permutation which ensures the avalanche
effect in small number of rounds even if the selection of permutations is under
full control of the attacker. Given the set of indices X and a set of indices
S, covered by S-boxes, we define a height of i ∈ X for the permutation π as
h(i) = minj{j : πj(i) ∈ S}. We now explain how to build the Hierarchical
permutation for t × t S-boxes, and give a concrete example for the case t = 3.
We suppose that the layer of S-boxes covers bits [0, tr − 1]. We define sets of

indices Ai, Bi, and Ci so that

h∑

i=0

|Ai| +
h−1∑

i=0

|Bi| +
h−2∑

i=0

|Ci| = k, i.e., Ai, Bi,

Ci are partitions of [0, k − 1]. In the case t = 3 let a, b and c be integers such
that a+ b + c = 3r, and similarly in the case t = 4 let a, b, c and d be integers
such that a + b + c + d = 4r. Ideally, we would have a = b = c = r, but this
is not always possible. So, we target a ≈ b ≈ c ≈ r. We define several sets Ai,
Bi and Ci to partition {0, 1, 2, . . . , k − 1}: Ah = {a+ b+ c, . . . , 2a+ b+ c− 1},
Ah−1 = {2a+ b+ c, . . . , 3a+ b+ c− 1}, Bh−1 = {3a+ b+ c, . . . , 3a+2b+ c− 1},
Ah−2 = {3a+2b+c, . . . , 4a+2b+c−1},Bh−2 = {4a+2b+c, . . . , 4a+3b+c−1},
Ch−2 = {4a+3b+c, . . . , 4a+3b+2c−1},Ah−3 = {4a+3b+2c, . . . , 5a+3b+2c−1},
. . . , A0 = {0, 1, 2, . . . , a−1},B0 = {a, . . . , a+b−1},C0 = {a+b, . . . , a+b+c−1}.
In what follows, ABi denotes the union of Ai and Bi. ABCi denotes the union
of Ai, Bi, and Ci. We further define pairwise disjoint sets Ah+1, Bh, and Ch−1

so that Ah+1 ∪ Bh ∪ Ch−1 = S = ABC0 and that output bits from an S-
box fall into different sets Ah+1, Bh and Ch−1 (with very few exceptions). In
the case when |Ah+1| = |Bh| = |Ch−1| we set Ah+1 = {3i : i ∈ [0, r − 1]},
Bh = {3i + 1 : i ∈ [0, r − 1]} and Ch−1 = {3i + 2 : i ∈ [0, r − 1]} or in case
of 4 × 4 S-boxes Ah+1 = {4i : i ∈ [0, r − 1]}, Bh = {4i + 1 : i ∈ [0, r − 1]},
Ch−1 = {4i+ 2 : i ∈ [0, r − 1]} and Dh−2 = {4i+ 3 : i ∈ [0, r − 1]}. In the case
when the sets Ah+1, Bh and Ch−1 are not balanced, we select the excess elements
to be far from each other. We construct σ such that Ah+1 is mapped to Ah. Bh

is mapped to Bh−1. Ch−1 is mapped to Ch−2. Ah is mapped to Ah−1. ABh−1

is mapped to ABh−2. ABCh−2 is mapped to ABCh−3. ABCh−3 is mapped to
ABCh−4. Etc. These constraints are depicted in Fig. 2. Note that

T = {Ah+1, Bh, Ch−1, Ah, ABh−1, ABCh−2, ABCh−3, . . . , ABC1}
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is a partition of {1, . . . , k}, since Ah+1∪Bh∪Ch−1 = ABC0. From the construc-
tion of Hierarchical Permutation, we have that every i in Ai (i ≤ h+ 1) and Bi

(i < h), Ci (i < h − 1) has height i. The unbalanced-height structure makes it
such that the output bits of the S-box will meet the S-box layer every h + 1,
h, or h − 1 iterations. That is, two bits of the same height are likely to have
different heights after going through their respective S-box. When the structure
is balanced with a = b = c, we can take Ah+1 to the list of the first output bits
of S-boxes, Bh to the list of the second output bits of the S-boxes, and Ch−1

to the list of the third output bits of the S-boxes. This way, two bits going out
from the same S-box cannot meet in the same S-box the next time since they
have different height. When the structure is unbalanced, it should be close to
the same situation. Exceptions to this rule are called “collisions”. In the case of
ARMADILLO3-A1/4 we have a = 9, b = 11, and c = 13 for r = 11, h = 4. This
gives coverage 33

128 ≈ 1
4 , and A5, B4, C3 as follows

– A5 = {0, 3, 6, 9, 12, 18, 21, 24, 27}
– B4 = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31}
– C3 = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 15, 30}

Additionally, we check that for σ′(x) = σh(x)(x) we have

⌊
σ′(15)

3

⌋
�=

⌊
σ′(17)

3

⌋
and

⌊
σ′(30)

3

⌋
�=

⌊
σ′(32)

3

⌋
.
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�
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Fig. 2. Hierarchy for Permutations with h = 4 and t = 3

We provide additional criteria to achieve the highest possible diffusion for a pair
of Hierarchical permutations.
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Definition 1 (Distance). Let σ0, σ1 be a pair of the permutations on a set
{1, . . . , k}. We say that they have a distance d� at level � where

d�(σ0, σ1) = min
U,V ∈{0,1}�,U �=V

|{j : σU (j) �= σV (j)}|

For the selection of σ0 and σ1 we maximize d2(σ0, σ1). The high distance d1 is
associated with small number of fixed points of permutation σ0σ

−1
1 . Similarly,

the high distance d2 is associated with small number of fixed points of the per-
mutation σUσ

−1
V , for all U, V ∈ {0, 1}2. Otherwise, for some values U and V of

the control register, the bit from position i is mapped to σU (i) = σV (i) = j
for some j. This allows the attacker to predict the behavior of the unknown
permutation. In ARMADILLO3-A1/4, which is defined in Section 4, we require
d2(σ0, σ1) = 127, which means there is at most one index i which is mapped to
the same index j by the permutations σU and σV , where U, V ∈ {0, 1}2.

Definition 2 (Graph Ωσ0σ1,U). Let U be a bitstring and r, t be integers (repre-
senting the number and the types of S-boxes respectively). We define a multigraph
Ωσ0σ1,U = (V,E) for permutations σ0, σ1 and parameters r and t as follows:

V =

|U|⋃

i=0

V i V i = {vi,j : j ∈ {1, . . . , k}} E =

|U|⋃

i=1

(
Ei ∪ Si

)

Ei =

⎛

⎜⎝
(
vi−1,j , vi,σUi

(j)

)
, . . . ,

(
vi−1,j , vi,σUi

(j)

)
;

︸ ︷︷ ︸
t

rt < j ≤ k

⎞

⎟⎠

Si =
((

vi−1,j∗t+a+1 , vi,σUi
(j∗t+b+1)

)
; j < r and a, b ∈ {0, . . . , t− 1}

)

where Ui denotes the ith bit of U .

The set Ei is a multiset of edges between level i − 1 and level i where every
edge is taken t times, and the set Si is a set of edges representing the S-boxes,
i.e., for every S-box we have a complete bipartite graph t × t. Therefore, the
definition 2 gives a t-regular multigraph (since some edges are repeated t times),
i.e., Ωσ0σ1,U is an expander graph. Combinatorically, the expander graphs are
highly connected sparse graphs, probabilistically expander graphs behave like
random graphs. Let λ0 denote the second largest eigenvalue of adjacency matrix
of graph G. We now introduce a new criterion which measures the randomness
of the graph Ωσ0σ1,U . This criterion is based on the expander graph theory, the
reader is referred to [24] for details. We recall that an expander graph is a τ -
regular graph G with expansion factor D(G) > c for some constant c > 0 and
some τ ∈ N, where the expansion factor D(G) is given by the following formula.
Let δ(S) denote a set of edges neighboring of S, then

D(G) = min
0<|S|≤ |V |

2

|δ(S)|
|S|
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Let σ0, and σ1 be permutations. We say that the graph Ωσ0σ1,U diffuses if for
all v ∈ V 0 and w ∈ V |U| there exists an oriented path from v to w in graph
Ωσ0σ1,U . We say that the pair (σ0, σ1) has diffusion level difσ0,σ1 where

difσ0,σ1 = min{h : ∀U ∈ {0, 1}h graph Ωσ0σ1,U diffuses }.

For the selection of σ0, σ1 we minimize difσ0,σ0 , difσ1,σ1 , and difσ0,σ1 .

Additionally, we verify the randomness of selected pair permutations. Let G =
(V,E) be a 4t-regular multigraph where V = V (Ωσ0σ0,0) and E = E(Ωσ0σ0,0) ∪
E(Ωσ1σ1,0)∪E(Ωσ−1

0 σ−1
0 ,0)∪E(Ωσ−1

1 σ−1
1 ,0). We require the second largest eigen-

value λ0 of adjacency matrix of multigraph G to be small. According to the
Expander mixing lemma, we have

∣∣∣∣E(S, T )− d|S||T |
n

∣∣∣∣ ≤ λ0

√
|S||T |.

This criterion helps us to select pair of permutations which minimizes difσ0,σ1 ,
where E(S, T ) denotes the number of edges between S and T , and d is the degree
of each vertex (in our case 4t), and n is the total number of vertices (in our case
2k). It allows to quantify the diffusion coming from the the data dependent
permutation layer, as the high number of edges means the higher diffusion. The
Expander mixing lemma gives an estimate, on how far we are from an optimum
(Ωσ0σ1,U behaving like a random d-regular graph). We refer the reader to [3] for
further analysis of ARMADILLO family based on expander graphs.

3 The Security Analysis of ARMADILLO3 Function

3.1 Differential and Linear Cryptanalysis

The differential and linear cryptanalysis is complicated by the fact, that the at-
tacker does not know the sequence Y , i.e., the sequence in which permutations
σ0 and σ1 are selected. In the differential cryptanalysis, the attacker looks for
differentials which propagate with a high probability through the cipher. Since
the permutation Y is not fixed while it varies according to the input X and the
input H, the input Y is hard to predict, i.e., it is hard for an attacker to find a
good differential path and mount differential cryptanalysis. Similarly, the linear
relations between input and output of ARMADILLO3-A1/4 depend on the value
Y which is unpredictable, and therefore obtaining a good linear characteristic
is hard. Moreover, the S-boxes are selected to provide good security guarantees
against both differential and linear cryptanalysis, therefore even if the value Y is
known to the attacker, the differential/linear cryptanalysis should be impossible.
From LAT, resp. DDT we can see that any linear characteristic resp. differential
have probability at most 1

4 . Therefore, any differential/linear characteristic over
(h + 1) rounds will have a probability at most 1

4 from the construction of the
S-box. Consequently, any (h + 1) · g round differential characteristic will have
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probability 2−2g and any (h + 1) · g round linear characteristic will have a cor-
relation of at most 2−2g. In the case of ARMADILLO3-A1/4, we have k = 128,
and h = 4. Therefore, the best differential/linear characteristic has probability

probability at most 2−2 128
5 ≈ 2−51. The security margin is obtained from the

fact that the attacker have to know the values in the control register to be able
to use such differential/linear characteristics.

3.2 High Order Differentials and Algebraic Attacks

The number of S-boxes and the structure of the selected permutations ensure
that the degree of underlying ANF equations is close to maximum and the data-
dependency of the design ensures that these equations do not have any simple
structural properties.

3.3 Statistical Saturation Attacks

The statistical saturation attacks were introduced in [6] against PRESENT [5].
Such attack is based on low diffusion trails in the linear layer of PRESENT.
However, as the low diffusion trails are not constant and the permutations are
selected in such a way that the distance of σ0, σ1 and their compositions σ0σ0,
σ0σ1, σ1σ0, and σ1σ1 are maximal, the low diffusion trace changes substantially
for different sequences Y . As the value Y depends both on the secret key C and
the challenge U , and since Y = P (X,H‖X), we expect that it would be difficult
for an attacker to control the low diffusion paths and to utilize them at the same
time.

3.4 The Internal Collision Attack

The attacker can try to force an internal collision. The internal collision can
appear during the computation, since it is possible to find a pair (Y , Y ′) such
that Yσ0 = Y ′

σ1
. Let consider a single step of ARMADILLO3, i.e., P (p‖b, Z) =

P (p, S(Zσb
)) and let consider how can we obtain an internal collision S(Zσb

) =
S(Z ′

σb′ ). We need to have Z ′ = Zσ−1
b σb′

as the substitution layer is bijective. This

means that either Z = Z ′ for b = b′ or we have a prescribed relation between
Z and Z ′. This allows the attacker to force the value Y (from the preprocessing
phase) to be the same for different inputs U and U ′. However, the attacker
has then no control over the propagation of the difference in the computation
ARMADILLO3(H‖X) and ARMADILLO3(H‖X′).

3.4.1 Invariant States. The relation Z ′ = Zσ−1
b σb′

also allows the attacker

to find invariant internal state, i.e, a state W such that Wσ0 = Wσ1 . Therefore,
the invariant state has to follow an equationW = Wσ−1

b σb′
which means that bits

of W are constant for each cycle of permutation σ0
−1σ1. Therefore, selecting σ0

and σ1 so that σ0
−1σ1 has long cycles is a good protection against these types of
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attacks. We note that a cycle of permutation σ0
−1σ1 is a subset of the set A, B or

C. Therefore, we cannot obtain a pair of permutations, such that σ0
−1σ1 has less

than h+1 cycles. Moreover, as the S-boxes takes input/output bits from different
cycles and changes the parity and therefore if Z ′i = Zi

σ−1
b σb′

=⇒ Z ′i+1 �= Zi+1

σ−1
b σb′

which means there is no invariant state in ARMADILLO3.

4 ARMADILLO3-A1/4

This section gives a concrete proposal of ARMADILLO3-A1/4 with k = 128 t = 3
and r = 11 and “coverage rate” ≈ 1

4 . This instance has only 11 3 × 3 S-boxes,
which makes it an interesting design for study by cryptographic community. We
give a description of S-boxes and the pair of permutations. We argue about the
security of ARMADILLO3 based on the properties of Hierarchical Permutations
and the low second largest eigenvalue of the selected pair of permutations.

4.1 The S-box Layer of ARMADILLO3

The function S is defined as follows:

S(z1‖z2‖z3‖ . . . ‖z31‖z32‖z33‖ . . . ‖z128) = s(z1, z2, z3)‖ . . . ‖s(z31, z32, z33)‖z34‖ . . . ‖z128

The reader should notice that the indices covered by S-boxes correspond to the
sets A0, B0, and C0 of the Hierarchical Permutation.

Table 1. ARMADILLO3 variants with “coverage” 1
4

version k c m r t
ARMADILLO3-A1/4 128 80 48 11 3
ARMADILLO3-B1/4 192 128 64 16 3
ARMADILLO3-C1/4 240 160 80 20 3
ARMADILLO3-D1/4 288 192 96 24 3
ARMADILLO3-E1/4 384 256 128 32 3

Table 2. Implementation results with throughput at 1MHz, using 0.35μm

Algorithm Block Key Area Time Cell power
(bits) (bits) (GE) (cycles/block) (mW)

ARMADILLO3-A1/4 48 80 4048 176 60
ARMADILLO3-B1/4 64 128 6065 256 89
ARMADILLO3-C1/4 80 160 7576 320 110
ARMADILLO3-D1/4 96 192 9133 384 134
ARMADILLO3-E1/4 128 256 12239 512 177
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Table 3. Implementation comparison for hash functions with throughput at 100 kHz

Algorithm Digest Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (μm) (nanobit/cycle.GE2)

ARMADILLO2-A 80 48 4 030 44 109 0.18 67.17
PHOTON [13] 80 20 1168 132 775 0.18 59.27

ARMADILLO3-A1/4 80 48 4 302 44 109 0.35 58.95
ARMADILLO2-A 80 48 2 923 176 27 0.18 31.92
ARMADILLO3-A1/4 80 48 2 991 176 27 0.35 30.49

PHOTON [13] 80 20 865 708 144 0.18 20.12

KECCAK-f[400][16] 128 128 5 090 32 200 0.18 110.41
H-PRESENT-128[5] 128 128 4 256 32 200 0.18 110.41
ARMADILLO2-B 128 64 6 025 64 1000 0.18 27.55
ARMADILLO3-B1/4 128 64 6 409 64 1000 0.35 24.34

PHOTON [13] 128 16 1 708 156 422 0.18 15.06
ARMADILLO2-B 128 64 4 353 256 250 0.18 13.19
ARMADILLO3-B1/4 128 64 4 449 256 250 0.35 12.62

MD5 [12] 128 512 8 400 612 83.66 0.13 11.86
U QUARK[2] 136 8 2 392 68 476 0.18 8.51
PHOTON [13] 128 16 1 122 996 66 0.18 5.48
U QUARK[2] 136 8 1 379 544 87 0.18 3.20

ARMADILLO2-C 160 80 7 492 80 100 0.18 17.81
PHOTON [13] 160 36 2 117 180 731 0.18 17.01

ARMADILLO3-C1/4 160 80 7 972 80 100 0.35 15.72
ARMADILLO2-C 160 80 5 406 320 250 0.18 8.55
ARMADILLO3-C1/4 160 80 5 526 320 250 0.35 8.18

D QUARK[2] 176 16 2 819 88 616 0.18 8.08
PHOTON [13] 160 36 1 396 1332 98 0.18 5.28
SHA-1 [12] 160 512 8 120 1 274 40.18 0.35 6.10

D QUARK[2] 176 16 1 702 704 76 0.18 2.77

ARMADILLO2-D 192 96 8 999 96 100 0.18 12.35
ARMADILLO3-D1/4 192 96 9 575 96 100 0.35 10.90
C-PRESENT-192[5] 192 192 8 048 108 59.26 0.18 9.15
ARMADILLO2-D 192 96 6 554 384 25 0.18 5.82
ARMADILLO3-D1/4 192 96 6 698 384 25 0.35 5.37

MAME [26] 256 256 8 100 96 266.67 0.18 40.64
ARMADILLO2-E 256 128 11 914 128 100 0.18 7.05
ARMADILLO3-E1/4 256 128 12 682 128 100 0.35 6.22

SHA-256 [12] 256 512 10 868 1 128 45.39 0.35 3.84
ARMADILLO2-E 256 128 8 653 512 25 0.18 3.34
ARMADILLO3-E1/4 256 128 8 845 512 25 0.35 3.19

PHOTON [13] 256 32 4 362 156 650 0.18 2.94
PHOTON [13] 256 32 2 177 996 1034 0.18 1.85
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Table 4. Implementation comparison for encryption with throughput at 100 kHz

Algorithm Key Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (μm) (nanobit/cycle.GE2)

PRESENT-80 [5] 80 64 1 570 32 200 0.18 811.39
Grain [14] 80 1 1 294 1 100 0.13 597.22

KTANTAN64 [8] 80 64 927 128 50 0.13 581.85
KATAN64 [8] 80 64 1 269 85 75 0.13 467.56

ARMADILLO2-A 80 128 4 030 44 291 0.18 179.12
ARMADILLO3-A1/4 80 128 4 302 44 291 0.35 157.19

Trivium [9] 80 1 2 599 1 100 0.13 148.04
PRESENT-80 [5] 80 64 1 075 563 11 0.18 98.37
ARMADILLO2-A 80 128 2 923 176 73 0.18 85.12
ARMADILLO3-A1/4 80 128 2 991 176 73 0.35 81.30

PRESENT-128 [5] 128 64 1 886 32 200 0.18 562.27
HIGHT [15] 128 64 3 048 34 189 0.25 202.61
TEA [25] 128 64 2 355 64 100 0.18 180.31

ARMADILLO2-B 128 192 6 025 64 300 0.18 82.64
ARMADILLO3-B1/4 128 192 6 409 64 300 0.35 73.03
ARMADILLO2-B 128 192 4 353 256 75 0.18 39.58
ARMADILLO3-B1/4 128 192 4 449 256 75 0.35 37.89

AES-128 [11] 128 128 3 400 1 032 12 0.35 10.73

Table 5. Permutation σ0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
33 61 92 34 52 86 36 54 89 41 59 93 39 53 84 94

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
55 88 35 57 90 37 58 85 38 56 82 40 51 91 83 60

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
87 50 45 43 49 42 47 44 48 46 78 69 70 73 79 63

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
72 75 67 81 71 64 76 66 77 62 65 80 68 74 118 119

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
100 122 127 107 108 117 109 121 111 105 110 98 97 96 120 103

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
99 115 116 123 126 124 114 113 125 95 106 104 101 102 112 0

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
24 29 2 13 6 25 16 10 32 21 15 18 1 27 7 11

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
17 22 19 31 9 30 4 8 12 28 5 20 26 3 23 14
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Table 6. Permutation σ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
34 53 88 37 61 82 35 51 86 36 58 85 41 55 94 90

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
57 87 40 52 89 38 59 83 33 60 84 39 56 92 93 54

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
91 46 49 42 47 48 44 43 50 45 64 65 67 80 75 76

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
66 71 68 63 73 70 72 74 79 77 62 78 69 81 104 116

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

113 106 126 105 95 119 127 124 100 122 117 114 112 123 96 102

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

125 120 103 110 98 99 97 111 121 115 109 118 108 101 107 25

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 18 22 21 12 16 23 4 26 32 11 0 7 30 17 29

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
13 15 8 24 6 20 9 14 19 31 1 3 10 27 28 2

The proposed instance of ARMADILLO3 has 3 × 3 S-boxes. The S-box satis-
fies the following equations. For an input (x0, x1, x2) and output (y0, y1, y2) =
S(x0, x1, x2). We have

⎧
⎨

⎩

y0 = x0 + x1 + x2 + x0 ∗ x1 + 1
y1 = x0 + x1 + x0 ∗ x2 + 1
y2 = x0 + x1 ∗ x2 + 1

The permutation defined by the S-box expressed in decimal is a non-linear cycle:
(0 7 5 3 2 4 6 1). Thus, with 3 AND, 6 XOR and 2 NOT we can implement a
single ARMADILLO S-box in hardware.

4.2 The Permutation Pair

For a selection of a good pair of permutations, we create a pool of Hierarchical
Permutations with low diffusion difσ and a small number of long cycles. After-
wards we select a pair which achieves a full diffusion in 25 rounds and the second
largest eigenvalue of graph Ωσ0σ1,U (Def. 2) is λ0 = 9.36. The permutation σ0 is
given in Table 5 and the permutation σ1 is given in Table 6.
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4.3 Test Vectors and Implementation

We give a test vector for the ARMADILLO3-A1/4 with the S-boxes above and
the permutation pair σ0 in Table 5 and σ1 in Table 6.

ARMADILLO3-A1/4(0k) = 0xF89FCBAB 0x47D36AF6 0xDC51602D 0x31C3EEA1

ARMADILLO3-A1/4(1k) = 0x7C7A0E1F 0xBA9214DF 0x5FC3CD65 0x374EB994

The synthesis results at 1MHz with typical 0.35μm library and 2.2V voltage
supply can be found in Table 2. We give the details for several instances with
“coverage” 1

4 . We give the figures for several variants of ARMADILLO3 depending
on the size of internal state, see Table 1 for details on the variants with coverage
“ 1
4”. Concrete proposals for variants ARMADILLO3-B1/4, ARMADILLO3-C1/4,

ARMADILLO3-D1/4, and ARMADILLO3-E1/4 are omitted due to the lack of
space.

5 Conclusion

We introduced a new hardware oriented class of cryptographic primitives AR-
MADILLO3. Our design of ARMADILLO3 is based on data-dependent permuta-
tions and a reduced size substitution layer. To meet the criteria for good confu-
sion and diffusion layers, we introduce the concept of Hierarchical Permutations.
Such permutations give guarantees, that the diffusion is fast despite the reduced
substitution layer. The applications for ARMADILLO3 include MACs, hashing
and PRNG. We propose an instance ARMADILLO3-A1/4 to encourage the study
of ARMADILLO3. The ARMADILLO3-A1/4 consists of a pair of carefully selected
Hierarchical Permutations and 11 3× 3 S-boxes.
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