
A Parallelized Layered QC-LDPC Decoder for IEEE 802.11ad
Alexios Balatsoukas-Stimming∗, Nicholas Preyss∗, Alessandro Cevrero∗, Andreas Burg∗, Christoph Roth†

∗Dept. of Electrical Engineering, EPFL, Lausanne, Switzerland.
†Integrated Systems Laboratory, ETHZ, Zürich, Switzerland.

Email: {alexios.balatsoukas, nicholas.preyss, alessandro.cevrero, andreas.burg}@epfl.ch, rothc@iis.ee.ethz.ch

Abstract—We present a doubly parallelized layered quasi-cyclic low-
density parity-check decoder for the emerging IEEE 802.11ad multi-
gigabit wireless standard. The decoding algorithm is equivalent to a non-
parallelized layered decoder and, thus, retains its favorable convergence
characteristics, which are known to be superior to those of flooding
schedule based decoders. The proposed architecture was synthesized
using a TSMC 40 nm CMOS technology, resulting in a cell area of
0.18 mm2 and a clock frequency of 850 MHz. At this clock frequency,
the decoder achieves a coded throughput of 3.12 Gbps, thus meeting
the throughput requirements when using both the mandatory BPSK
modulation and the optional QPSK modulation.

I. INTRODUCTION

The emerging IEEE 802.11ad standard [1] aims to provide
multi-gigabit wireless connectivity over relatively short distances.
It promises to do so by exploiting the large amount of bandwidth
available in the 60 GHz unlicensed band. A mandatory mode with a
coded throughput of 1.54 Gbps and two optional modes with coded
throughputs of 3.08 and 6.16 Gbps are defined, using BPSK, QPSK
and 16-QAM modulations, respectively. The standard employs quasi-
cyclic low-density parity-check (QC-LDPC) codes of rates 1/2, 5/8,
3/4, and 13/16, with a codeword length of 672 bits.

LDPC codes [2] are powerful capacity-approaching channel codes,
which have found their way into most modern communications
standards due to their exceptional error-correcting performance and
the existence of highly efficient decoding algorithms. Nevertheless,
the design of low power and high throughput LDPC decoders
remains a challenging task. The key towards achieving multi-gigabit
throughputs is parallelization. To this end, [3] presents a multi-gigabit
decoder with fully parallelized variable nodes. This decoder uses the
flooding schedule, which is known to have slower convergence than
the layered schedule. Moreover, in [4], a multi-layered decoder for
IEEE 802.11ad is presented, which effectively uses a hybrid between
a layered and a flooding schedule. In both cases, parallelization has
a negative effect on convergence speed.

Contribution and Outline: In this paper, we present a low-area
layered QC-LDPC decoder specifically targeted at the codes defined
by the IEEE 802.11ad standard. Our architecture adds a level of
parallelism to the reference architecture of Studer et al. [5] by
carefully splitting the parity-check matrix of the codes into parts,
without any sacrifice in terms of convergence speed.

The rest of the paper is structured as follows. In Section II, we
provide background on LDPC codes and the layered offset min-
sum (L-OMS) decoding algorithm. Section III describes the proposed
decoder architecture and some throughput enhancing optimizations.
Finally, in Section IV we present our synthesis results and provide a
comparison to existing work. Section V concludes the paper.

II. BACKGROUND

A. QC-LDPC Codes
An LDPC code C is defined through its m×n sparse binary parity-

check matrix H as

C = {c ∈ {0, 1}n : Hc = 0} , (1)

where additions are performed modulo-2 and 0 denotes the all-zeros
vector of length m. A graphical representation of the code can be

obtained if we regard the parity-check matrix as an adjacency matrix
for a bipartite graph. This graph, which is called a Tanner graph,
contains nodes of two types, namely variable nodes and check nodes.
A variable node j is connected to a check i if, and only if, Hij = 1.

QC-LDPC codes [6] have structured parity-check matrices, which
enable the design of efficient encoders and decoders. The parity-check
matrix of a QC-LDPC code is an M ×N block matrix defined as

H =

Pα11 Pα12 . . . Pα1N

Pα21 Pα22 . . . Pα2N

...
...

. . .
...

PαM1 PαM2 . . . PαMN

 , (2)

where P is a Z × Z identity matrix which has been cyclically right
shifted by one position, and αij ∈ {1, . . . , Z − 1} ∪∞, with the
conventions that P0 = IZ×Z and P∞ = 0Z×Z . Additionally,
n = ZN and m = ZM .

The parity-check matrices of the QC-LDPC codes defined in
IEEE 802.11ad use blocks of size Z = 42. Furthermore, they have
N = 16 block columns. The number of rows of each code defines
the corresponding rate.

B. Layered Decoding
LDPC codes can be efficiently decoded by means of message-

passing algorithms, which exchange messages between the variable
nodes and the check nodes. Traditional LDPC decoding algorithms,
such as the sum-product (SP) [7] and the min-sum (MS) [8] algo-
rithms and its variants, such as offset MS (OMS), use a flooding
schedule. This schedule first computes all messages from the variable
nodes towards the check nodes and then computes the messages
from the check nodes back to the variable nodes. However, it has
been shown that the alternative layered schedule [9] can lead to a
significant reduction of the number of iterations required to achieve a
target bit error rate (BER) when compared with the flooding schedule,
thus having the potential to provide significant energy savings.

In the layered schedule, first all the messages flowing into and out
of the first layer (i.e., check node) are calculated. Then, the messages
flowing into and out of the second layer are calculated, possibly using
the information that has already been updated by the first layer, etc.
More formally, let Qi denote the outgoing message at variable node i
and let Rj,i denote the corresponding incoming message from layer
j. When processing layer j, the layered OMS (L-OMS) algorithm
calculates:

Ti ← Qold
i −Rold

j,i (3)

Rnew
j,i ← max

(
0, min
k∈Nj/i

|Tk| − β
) ∏
k∈Nj/i

sign (Tk) , (4)

Qnew
i ← Ti +Rnew

j,i , (5)

for every i ∈ Nj , where Nj/i denotes the set of all variable nodes
connected to check node j except variable node i, and β is an
empirical correction factor called the offset, which is set to 1 in the
reference design. We used Ti as a temporary variable for clearer
notation. After the values have been updated, we set Qold

i ← Qnew
i

and Rold
i,j ← Rnew

i,j . An iteration is completed when all layers have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147995935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
E
R

Rate 1/2, L−OMS, FP, 5 iter

Rate 1/2, SPA, FP, 10 iter

Rate 5/8, L−OMS, FP, 5 iter

Rate 5/8, SPA, FP, 10 iter

Rate 5/8, L−OMS, FP, 5 iter

Rate 5/8, SPA, FP, 10 iter

Rate 13/16, L−OMS, FP, 5 iter

Rate 13/16, SPA, FP, 10 iter

(a) Floating point L-OMS vs. floating point flooding SP.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

B
E

R

Rate 1/2, L−OMS, FP

Rate 1/2, L−OMS, Q5.0

Rate 5/8, L−OMS, FP

Rate 5/8, L−OMS, Q5.0

Rate 3/4, L−OMS, FP

Rate 3/4, L−OMS, Q5.0

Rate 13/16, L−OMS, FP

Rate 13/16, L−OMS, Q5.0

(b) Floating point L-OMS vs. fixed point L-OMS.

Fig. 1. BER performance of IEEE 802.11ad codes.

been processed. The initial values for Qold
i are the channel LLRs,

i.e., Qold
i = ln

(
p(yi|xi=+1)
p(yi|xi=−1)

)
, where yi is the channel output at

codeword position i and xi is the corresponding input. All Rold
j,i are

initialized to 0. When the maximum number of iterations has been
reached, decoding stops and hard decisions are taken based on the
sign of each Qnew

i . It is clear that the rows of the parity-check matrix
have to be processed sequentially. However, by construction, every
block of the parity-check matrix of a QC-LDPC code consists of Z
independent layers which can be processed in parallel.

In Fig. 1(a), we present the BER performance of the codes defined
by the IEEE 802.11ad standard under floating point implementations
of the L-OMS algorithm when performing 5 iterations and of the
flooding SP algorithm when performing 10 iterations. The L-OMS
algorithm can closely match, and in many cases even surpass, the
performance of the flooding SP algorithm, even though it only
performs half the number of iterations. Furthermore, in Fig. 1(b),
we observe that the quantization loss for the L-OMS algorithm when
using 5 bits for the representation of messages is about 0.25 dB.

The downside of the layered schedule is that decoding proceeds
in a sequential fashion across the layers of H. It is therefore very
challenging to achieve high throughput because parallelization is not
straightforward due to data dependencies. However, this sequential
nature and the reduced number of required iterations enables LDPC
decoder architectures which are based on the layered schedule to be
highly efficient in terms of area and energy consumption. A multi-
gigabit decoder based on a hybrid between a layered and a flooding
schedule was presented in [4]. This multi-layered OMS decoder
performs OMS decoding on K (not necessarily independent) layers
simultaneously, providing a trade-off between parallelism (flooding)
and convergence speed (layered). In the following section, we will
describe our proposed architecture which parallelizes the L-OMS
schedule with no negative effect on convergence speed.

III. DECODER ARCHITECTURE

A. Reference Architecture

Our architecture improves the architecture presented in [5], which
we will briefly review below. With the OMS algorithm, instead of
calculating a different minimum, which is used in (4), for each one
of the variable nodes to which a layer is connected, it suffices to find
the two smallest values, denoted m1 and m2. We then use m1 for
the calculations of the messages towards all variable nodes except for
the one where m1 was found, where we use m2 instead. Similarly,
we can calculate the overall product of the signs and then multiply
the result with the sign of the value coming from variable node i

which we want to exclude. Moreover, m1 and m2 can be found in
parallel or serially within one row. The reference architecture uses a
serial approach, which reduces complexity and area significantly.

The main building blocks of the reference architecture are the MIN
and SEL units, which we collectively call processing units. Each
MIN unit operates on one non-zero element of a row of the parity-
check matrix per cycle. It is responsible for finding m1 and m2,
as well as the overall sign and the position where m1 was found.
The reference architecture contains Z MIN units which process the
Z independent check nodes of every row of the block parity-check
matrix simultaneously. To this end, Z Q-values are read per cycle
from the Q-memory and fed into a cyclic shifter, which routes the
Q-values to the correct MIN units, based on the entries of H. The
need for a second cyclic shifter which rotates the values back to
their original orientation for proper storage is eliminated by using
differential shifts. The shifter stores the old shift value of each block
in a small memory and computes the shift required based on this
value and the shift value corresponding to the current entry of H.
The temporary T-values of (3) are calculated by the MIN units
and stored in the T-memory. Once the MIN units have finished
processing all non-zero blocks in a row of the block parity-check
matrix, the SEL units use the resulting m1, m2, sign and T-values
to update Z R-values and Q-values according to (4) and (5). The
MIN units can start processing blocks of the next row which do not
have data dependencies with the rows on which the SEL units are
currently operating on. Data forwarding and memory bypassing is
applied whenever possible in an effort to reduce pipeline stalls and
energy consumption, respectively. For example, if a Q-value which
is produced at some cycle k is needed by some MIN unit in cycle
k + 2, it can be fed directly to the cyclic shifter instead of waiting
for it to be written to and read from the Q-memory. An overview of
the reference architecture is presented in Fig. 2(a).

The Q and T-memories have sizes N · Z · NQ and N · Z · NT
bits, respectively, where NQ and NT is the number of bits used
for quantization (in this work, NQ = NT = 5). The R-memory is
slightly larger, having Nnnz ·Z ·NR bits, where Nnnz is the maximum
number of non-zero blocks in the parity-check matrices defined by
the standard (in this work, Nnnz = 56 and NR = 5).

B. Parallelized Architecture

Due to the serial nature of the reference architecture, it is very
challenging to achieve multi-gigabit throughputs. One solution would
be to overlap the decoding of two codewords, as done in [3]. However,
this approach would require twice the memory and it would also
increase decoding latency. Since the reference architecture consists of

(a) Reference architecture. (b) Proposed doubly parallelized architecture.

Fig. 2. High level overview of decoder architectures.

����������

�����

�	
�
��

�	
�
��

���

���

��������

���

����������

�	
�
��

�	
�
��

���

���

��������

���

������

���	

��������

��������

������	��

������	��

���	

�����

�������

����
�	�
����

�����

����� �����

�����

������

������

����������
����������

�����

�����

��������

�
�
�
�
�
�
�
�

�
�
�
�
	

�
�
�
��
�
��
�
�
�
	

Fig. 3. detailed diagram of parallelized architecture.

almost 60% memory [5], a more elegant approach is to try to increase
the number of processing elements. In order to process each layer
more rapidly, we propose to split the parity-check matrix into two
parts and to double the number of MIN and SEL units. Each of the
two groups of Z MIN and Z SEL units operates on a different group
of 8 columns of the block parity-check matrix. The grouping has to
be chosen carefully in order to balance the processing load between
the two groups of MIN and SEL units as much as possible, thus
minimizing the number of additional pipeline stalls and maximizing
hardware usage. It is possible to use more units but the returns are
diminishing as data dependencies quickly become the limiting factor.

It is important to note that the total number of messages that need
to be stored is the same as that of the reference architecture. However,
since we are processing two blocks of H in parallel, memory
bandwidth is doubled with respect to the reference architecture.
Fortunately, the set of memory addresses that the the two groups of
MIN and SEL units read and write are disjoint for all three types of
memories. Therefore, we can split each memory into two independent
memories of half the storage capacity, eliminating the need for a high
throughput memory.

Since the MIN units in the original layered architecture compute
the two minima over the entire row they are operating on, we need
to combine the results of the two MIN units which operate on half
a row each. This task is performed by the combiner (COMB) unit,
which computes the overall minima, as well as the overall sign. Let
mi,j , i, j = 1, 2, denote the j–th minimum of the i–th MIN unit.
Since mi,1 ≤ mi,2, i = 1, 2, the first overall minimum value is

m1 = min (m1,1,m2,1) . (6)

Let i1 ∈ {1, 2} denote the value of i that minimizes (6) and let
ic1 denote its complement. Since mic1,1

≤ mic1,2
, finding the second

minimum value is also simple, i.e.,

m2 = min
(
mic1,1

,mi1,2

)
. (7)

For the signs, we have s = s1 ⊕ s2, where s1 and s2 are the signs
calculated by the first and second MIN unit, respectively.

The COMB unit is the key that enables our parallelized architec-
ture to be equivalent in operation to the non-parallelized reference
architecture. A high level overview of the proposed parallelized
architecture can be seen in Fig. 2(b). We also provide a more detailed
diagram of the architecture, where all pipeline registers are visible,
in Fig. 3. Dashed lines represent places where data forwarding and/or
memory bypassing is performed.

C. Sequence Length and Throughput

Every iteration of the decoder is controlled by a command se-
quence. The sequence is created offline based on the parity-check
matrices of each one of the codes. Every command of the sequence
contains all memory addresses which have to be read from and written
to, as well as information on which pipeline stages have to be stalled
and at which stages forwarding or memory bypassing has to be
performed. One command is issued per cycle and the information
contained in each command propagates through the pipeline. The
sequence length L is defined as the number of commands that have
to be issued in order for the decoder to complete a full iteration of
the L-OMS algorithm.

For a fixed number of iterations I , coded throughput is a function

TABLE I
COMPARISON WITH EXISTING WORK

This work Reference Arch. [5] ISCAS’11 [3] JSSC’12 [10] ACSSC’11 [11] ISCAS’11 [4]
Standard 802.11ad 802.11n 802.11ad 802.15.3c 802.15.3c 802.11n

Technology 40 nm 180 nm 65 nm 65 nm 65 nm 45 nm
Core Area 0.18 mm2 3.39 mm2 1.30 mm2 1.56 mm2 0.72 mm2 0.81 mm2

Normalized Area 0.18 mm2 0.16 mm2 0.49 mm2 0.59 mm2 0.27 mm2 0.64 mm2

Clock Frequency 850 MHz 208 MHz 150 MHz 197 MHz 235 MHz 815 MHz
Coded Θmin 3.12 Gbps 780 Mbps 3.08 Gbps 6.16 Gbps 7.90 Gbps 3.60 Gbps

TABLE II
COMPARISON OF SEQUENCE LENGTHS

Sequence Length
Code Rate Natural Optimal (Gain) Reference/2 (Loss)

1/2 34 29 (15%) 28 (4%)
5/8 34 28 (18%) 27 (4%)
3/4 40 35 (13%) 30 (17%)

13/16 30 28 (7%) 25 (12%)

TABLE III
BEST COLUMN GROUPING FOR EACH CODE

Code Group 1 Group 2
Rate 1/2 {1, 2, 3, 4, 7, 10, 13, 14} {5, 6, 8, 9, 11, 12, 15, 16}
Rate 5/8 {1, 2, 3, 6, 9, 11, 13, 15} {4, 5, 7, 8, 10, 12, 14, 16}
Rate 3/4 {1, 2, 3, 4, 5, 6, 10, 15} {7, 8, 9, 11, 12, 13, 14, 16}
Rate 13/16 {1, 2, 3, 4, 5, 6, 7, 15} {8, 9, 10, 11, 12, 13, 14, 16}

of the sequence length L [5]

Θ(L) =
Z ·N
L · I + 8

fClk, (8)

where 8 cycles are needed to flush the pipeline after the last sequence
command has been issued. The worst-case throughput, denoted by
Θmin, is the throughput achieved by using the code-rate which leads
to the longest sequence, denoted Lmax, i.e., Θmin = Θ(Lmax). Our
goal is to maximize the minimum throughput that our decoder can
support, or, equivalently, to minimize the maximum sequence length.

The two lowest rate parity-check matrices of IEEE 802.11ad
contain 4 and 2 groups of non-overlapping rows, respectively [3].
We re-arranged the rows of these matrices in order to group the non-
overlapping rows, thus reducing data dependencies significantly. The
grouping of columns can be either done naturally, i.e., by splitting the
parity-check matrices into half, or with some specific goal in mind,
which in our case is the minimization of the sequence length. In order
to achieve this goal, for each code, we performed an exhaustive search
over all possible combinations of 16 columns into two groups of 8
columns each and calculated the resulting sequence lengths using our
sequence generator script. The resulting codes are always equivalent
to the corresponding original ones, since by permuting the elements
of c accordingly, (1) still holds.

From the results in Table II, we see that with the natural grouping
Lmax = 40, while with the proposed transformations we obtain
Lmax = 35, which is a 12.5% reduction of the maximum sequence
length. As the only thing that changes is the order in which we
access the Q-memory when writing the channel LLR values and when
reading the output, this improvement comes at absolutely no cost.
We also present the sequence lengths for the reference architecture
divided by two, which could be achieved by an ideal parallelization.
We see that, on average, the applied paralellization results in an
average overhead of less than 10%. The column indices of the best
grouping for each code can be seen in Table III. In principle, the
same procedure can be applied to any QC-LDPC code in an attempt
to reduce the resulting sequence length. However, for QC-LDPC
codes with a larger number of block columns or for more groups, the
number of combinations quickly becomes prohibitively large. Similar
schedule optimizations based on column re-arrangement have been
explored before, see, e.g., [12]. However, these works considered

schedules for the overlapping of the two phases of the flooding
schedule, whereas our method considers strictly the layered schedule.

IV. SYNTHESIS RESULTS

We synthesized the proposed architecture using a TSMC 40 nm
CMOS technology with a target clock frequency of 850 MHz, which
leads to a coded throughput of 3.12 Gbps. The logic area of the
resulting design is 0.18 mm2. A comparison with existing work can
be seen in Table I. The core area of our decoder is significantly
smaller than most previously existing multi-gigabit designs, even
when they are scaled to 40 nm for fair comparison.

V. CONCLUSION

In this paper we showed that the use of a layered QC-LDPC
decoder is feasible even when multi-gigabit throughputs are required.
In order to achieve these throughputs, we doubled the number of
processing units of an existing architecture for layered decoding,
thus processing independent blocks of the parity-check matrix si-
multaneously. In order to maximize throughput, we provide a simple
and efficient procedure which assigns blocks to processing units by
carefully splitting the parity-check matrix into two parts.

ACKNOWLEDGMENT

The work of N. Preyss was supported by the Swiss National
Science Foundation (SNSF) under Grant PP002-119057.

REFERENCES

[1] Draft Standard for Information Technology, Draft Amendment 5, IEEE
P802.11ad/D5.0, IEEE Std., Sep. 2011.

[2] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[3] M. Weiner, B. Nikolic, and Z. Zhang, “LDPC decoder architecture for
high-data rate personal-area networks,” in Proc. IEEE Int. Symp. Circuits
and Systems, May 2011, pp. 1784–1787.

[4] Y. Sun, G. Wang, and J. Cavallaro, “Multi-layer parallel decoding
algorithm and VLSI architecture for quasi-cyclic LDPC codes,” in Proc.
IEEE Int. Symp. Circuits and Systems, May 2011, pp. 1776–1779.

[5] C. Studer, N. Preyss, C. Roth, and A. Burg, “Configurable high-
throughput decoder architecture for quasi-cyclic LDPC codes,” in Proc.
42nd Asilomar Conf. on Signals, Systems and Computers, Oct. 2008,
pp. 1137–1142.

[6] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1788–1793, Aug. 2004.

[7] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[8] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linköping University, Linköping, Sweden, 1996.

[9] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedules for LDPC decoding,” IEEE Trans. Inf. Theory, vol. 53, no. 11,
pp. 4076–4091, Nov. 2007.

[10] S.-W. Yen, S.-Y. Hung, C.-L. Chen, H.-C. Chang, S.-J. Jou, and C.-Y.
Lee, “A 5.79-Gb/s energy-efficient multirate LDPC codec chip for IEEE
802.15.3c applications,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp.
2246–2257, Sep. 2012.

[11] H. Shirani-Mehr, T. Mohsenin, and B. Baas, “A reduced routing network
architecture for partial parallel LDPC decoders,” in Proc. 45th Asilomar
Conf. on Signals, Systems and Computers, Nov. 2011, pp. 2192–2196.

[12] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm2 52
mW multi-mode LDPC decoder design for mobile WiMAX system in
0.13 µm CMOS process,” IEEE J. Solid-State Circuits, vol. 43, no. 3,
pp. 672–683, Mar. 2008.

