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Abstracts

Coupling reduced basis and numerical homogenization methods for
solving quasilinear elliptic problems

Assyr Abdulle

We study finite element (FE) discretizations of quasilinear second-order elliptic
problems of the form

(1) −∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω, uε(x) = 0 on ∂Ω,

where Ω is a bounded convex polyhedron in Rd with d ≤ 3. The d × d tensor
aε(x, s), assumed to be uniformly elliptic and bounded, is allowed to vary on a very
small spatial scale denoted by ε. We note that the homogenization of this problem
has been studied in [8],[9], where it is shown that the homogenized equation is of
the same quasilinear type as the original equation, with aε(x, uε(x)) replaced by a
homogenized tensor a0(x, u0(x)) depending nonlinearly on a homogenized solution
u0. We are interested in the following two problems:

• derive an efficient numerical homogenization of (1) (i.e., a numerical me-
thod that approximate the homogenized solution u0 without the a priori
knowledge of a0(x, u0(x))),

• control the error of the approximation process, i.e., derive an a priori error
analysis.

Notations. We consider a macro finite element (FE) space S"
0(Ω, TH) made of

piecewise polynomial of degree # defined on a family of (macro) partition TH of Ω
in simplicial or quadrilateral elements K of diameter HK (H % ε is allowed). We
then define a quadrature formula (QF) {xKj ,ωKj}Jj=1 on each K ∈ TH given by

an affine transformation of a QF from a reference element K̂. For each K ∈ TH
and xKj ∈ K, j = 1, . . . , J, we define a sampling domain Kδj = xKj + (−δ, δ)d,
(δ ≥ ε) and we consider a micro FE space Sq(Kδj , Th) ⊂ W (Kδj ) with simplicial
or quadrilateral FEs and piecewise polynomial of degree q (Th is a conformal and
shape regular family of triangulation Th). The space W (Kδj ) is either the Sobolev
space W (Kδj ) = W 1

per(Kδj ) = {z ∈ H1
per(Kδj );

∫
Kδj

zdx = 0} or W (Kδj ) =

H1
0 (Kδj ).

The numerical homogenization method. We work in the framework of the
finite element heterogeneous multiscale method (FE-HMM) [1, 10, 4] and consider
the following micro-macro FEM [5]: Find uH ∈ S"

0(Ω, TH) such that

BH(uH ;uH , wH) = F (wH), ∀wH ∈ S"
0(Ω, TH),

where

BH(uH ; vH , wH) =
∑

K∈TH

J∑

j=1

ωj,K

|Kδj |

∫

Kδj

aε(x, uH
Kj

)∇vhKj
(uH

Kj
) ·∇wh

Kj
(uH

Kj
)dx,
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and vhKj
(s) is sol. of the micro pblm vhKj

(s)− vHlin ∈ Sh(Kδj , Th)
∫

Kδj

aε(x, s)∇vhKj
(s) ·∇zhdx = 0 ∀zh ∈ Sh(Kδj , Th),

and similarly for wh
Kj

(s)). Here we use the short-hand notation uH
Kj

= uH(xKj ).

The Newton method. A practical computation of a macroscopic numerical
solution relies on a Newton method: consider a sequence {uH

k } such that

∂BH(uH
k ;uH

k+1 − uH
k , wH) = FH(wH)−BH(uH

k ;uH
k , wH) ∀wH ∈ S"

0(Ω, TH),

where the Fréchet derivative ∂BH is given by

∂BH(zH ; vH , wH) := BH(zH ; vH , wH)

+
∑

K∈TH

J∑

j=1

ωKj

d

ds
a0Kj

(s)|s=zH (xKj
)v

H(xKj )∇zH(xKj ) ·∇wH(xKj ).

For the implementation we consider zHk =
∑Mmacro

i=1 U i
kφ

H
i , Uk = (U1

k , . . . , U
Mmacro

k )T
(
B(zHk ) +B′(zHk )

)
(Uk+1 − Uk) = −B(zHk )Uk + F.

The local contribution to the stiffness matrix relies on the matrices BK(zHk ) and
B′

K(zHk ). This latter matrix involves the computation of ∂
∂s (BK,j(s)) that can

be approximated by ∂
∂s (BK,j(s)) ≈ BK,j(s+

√
eps)−BK,j(s)√
eps . Hence, at each iteration

of the Newton method, we have to solve O(Mmac) micro problems, where Mmac

represents the macroscopic degrees of freedom (DOF). Furthermore the a-priori
estimates given in [5] indicate that the DOF in each micro problem have to increase
as Mmac increases.

Reduced basis FE-HMM. In order to reduce the computational complexity
of the FE-HMM, we suggest a reduced basis (RB) FE-HMM. The use of RB for
numerical homogenization problems has first been proposed in [12] and analyzed
for the FE-HMM for a class of linear elliptic problems in [3],[6]. The RB-FE-
HMM method is based on offline and online stages. In the offline procedure,
accurate micro solutions for the original problem on sampling domains are selected
and computed. Theses micro problems are parametrized by the location of the
cell problem in the domain Ω and (for nonlinear problems) by the value of the
macroscopic solution at this location. We consider a compact subspace D of Ω×R

(D should be chosen such that Tδ ⊂ Ω, for all (xτ , s) ∈ D). For any randomly
chosen parameter we define the map Gxτ from the physical sampling domain
Tδ = xτ + (−δ/2, δ/2)d centered at xτ to the reference domain Y . A greedy
algorithm allows to choose an optimal basis of micro functions

ŜN (Y ) = span{ξ̂N ,n(y), n = 1, .., N}
that is computed with high accuracy for selected values of the parameters.

We note that a crucial ingredient for the Greedy algorithm are appropriate a
posteriori error estimates for the construction of the basis of ŜN (Y ). As the pre-
computed microscopic functions depend nonlinearly on the macroscopic solution,
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we introduce a new a posteriori error estimator for the Greedy algorithm that
guarantees the convergence of the online Newton method and the uniqueness of
the method.

In the online stage, the micro problems are then computed in the sampling
domains Kδj as defined above using the reduced basis space (a shifted and scaled

version of ŜN (Y )). If one has an “affine” representation of the tensor aε(x, s) =
a(x, x/ε, s) =

∑Q
q=1 Θq(x, s)aq(x/ε) then the online micro problems can be com-

puted by solving a small N × N linear system (essentially pre-assembled in the
onfline stage), whereN is the dimension of ŜN (Y ) (N is usually small when the RB
strategy applies). When the affine representation is not available an interpolation
method [11] can be used to approximate the tensor in an affine form.

A priori error estimates in terms of macro, micro, modeling and reduced basis
errors have been derived for the RB-FE-HMM applied to quasilinear homogeniza-
tion problems have been derived in [7], generalizing results for quasilinear problems
previously obtained for the FEM [2] and the FE-HMM [5].

References

[1] A. Abdulle, On a-priori error analysis of Fully Discrete Heterogeneous Multiscale FEM,
SIAM Multiscale Model. Simul., 4, no. 2 (2005), 447–459.

[2] A. Abdulle and G. Vilmart, A priori error estimates for finite element methods with numer-
ical quadrature for nonmonotone nonlinear elliptic problems, Numer. Math., 121(3) (2012),
397–431.

[3] A. Abdulle and Y. Bai, Reduced basis finite element heterogeneous multiscale method for
high-order discretizations of elliptic homogenization problems, J. Comput. Phys., 231(21)
(2012), 7014–7036.

[4] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden, The heterogeneous multiscale
method, Acta Numer., 21 (2012), 1–87.

[5] A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method
for quasilinear elliptic homogenization problems, to appear in Math. Comp.

[6] A. Abdulle and Y. Bai, Adaptive reduced basis finite element heterogeneous multiscale
method, Comput. Methods Appl. Mech. Engrg., 257 (2013), 203–220.

[7] A. Abdulle, Y. Bai and G. Vilmart, Reduced basis finite element heterogeneous multiscale
method for quasilinear elliptic homogenization problems, preprint MATHICSE Technical
Report Nr. 12.2013, 2013.

[8] M. Artola and G. Duvaut, Un résultat d’homogénéisation pour une classe de problèmes de
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