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Abstract

Modern software often provides automated testing and
bug reporting facilities that enable developers to improve
the software after release. Alas, this comes at the cost of
user anonymity: reported execution traces may identify
users. We present a way to mitigate this inherent tension
between developer utility and user anonymity: automati-
cally transform execution traces in a way that preserves
their utility for testing and debugging while, at the same
time, providing k-anonymity to users, i.e., a guarantee
that the trace can at most identify the user as being part
of a group of k indistinguishable users. We evaluate this
approach in the context of an automated testing and bug
reporting system for smartphone applications.

1 Introduction

To debug a software failure, one must understand its
root cause; unfortunately this can be quite challenging,
with many bugs taking weeks to diagnose [1]. There-
fore, modern software often ships with built-in features
for automatically collecting program execution informa-
tion that enables developers to more quickly debug the
software (e.g., Windows Error Reporting collected bil-
lions of traces that helped developers fix 5,000 bugs [2]).

Current error reporting systems sacrifice developer
productivity to preserve user anonymity: they report
some execution information (e.g., backtraces, some
memory contents) but forgo other useful information,
such as the data the program was processing and the exe-
cution path it was following when it crashed, due to user
privacy and anonymity concerns. In this paper, we seek
to strike a better balance between user anonymity and
productivity-enhancing execution information.

We describe this technique in the context of ReMoTe,
an automated testing and debugging system that helps
programs to collaborate on doing some of the debugging
work that developers do: ReMoTe records program ex-
ecutions, modifies them to generate tests, runs the tests,
and validates discovered bugs. For each part of this pro-
cess, ReMoTe provides a so-called pod (Figure 1); pods
from different program instances collaborate via a hive.

Figure 1: Overview of ReMoTe’s architecture.

The Record pod logs a program’s execution to an inter-

action trace that contains the program’s interaction with
the user and with the program’s environment. Traces are
added to local storage, but never removed.

ReMoTe is a distributed system: pods running on dif-
ferent machines can collaborate to generate tests, execute
tests, and validate uncovered bugs by exchanging inter-
action traces. However, these traces contain information
that may identify users. Thus, before a trace is shared
with other pods, the Trace Anonymizing pod automati-
cally transforms it to preserve the user’s anonymity 1 .
Next, the pod informs the user about the amount of infor-
mation the transformed trace contains that can identify
her, and enables the user to veto the sharing.

There are two reasons why a ReMoTe user shares a
trace with other pods: either the user experienced a bug,
and the trace is put in the Bug Repository 2 , or the user
wishes to contribute the trace as a usage scenario, and the
trace is put in the User Trace Repository 3 . Developers
can inspect the Bug Repository and use the Replay pod
to replay bugs and understand how they occur 9 .

The Test Generation pods modify traces from the User

Trace Repository 4 to generate tests that populate the
Tests Repository 5 . Test Execution pods run these tests
6 and categorize them into bugs 7 and/or tests for the

regression suite 8 . These pods run inside the program
that generated a trace or inside other program instances.

This paper presents the Trace Anonymizing pod. We
describe means to quantify the degree of user anonymity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147995893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and the utility of a trace, and devise algorithms to im-
prove anonymity without harming utility.

First, we quantify the anonymity of a user sharing a
trace as the size k of the set of distinct users reporting
an equivalent trace. Second, we define a trace to have
debugging utility if replaying it triggers the root cause of
the bug and the failure [3], and to have test-generation
utility if it describes an execution generated by an actual
user. Third, our system improves user anonymity by ex-
punging personally identifiable information and ensuring
the user behavior encoded in a trace is not unique to that
user, while still maintaining replayability of the trace.

The contributions of this paper are: 1) two techniques
that provide users with k-anonymity, one using dynamic
program analysis, and another leveraging crowdsourc-
ing; and 2) a new metric that quantifies the amount of
personally identifiable information contained in a trace.
We built a ReMoTe prototype for Android applications
and showed that ReMoTe protects users’ anonymity (k >
100) and is more efficient than similar techniques.

In the rest of the paper, we define k-anonymity (§2),
describe the two algorithms (§3–§4), evaluate our proto-
type (§5), review related work (§6), and conclude (§7).

2 Anonymity of Interaction Traces

This section defines interaction traces, describes the con-
cept of k-anonymity that underlies our work, and defines
a metric to quantify the amount of user-identifying infor-
mation contained in a trace.

2.1 Interaction Traces and Event Types

We define an interaction trace T as a sequence of events,
T =< e1, . . . ,en >. Each event ei records one of four
sources of “non-determinism” that influence a program’s
execution: 1) user interaction with the program’s GUI,
2) network communication, 3) input read from the ma-
chine the program runs on, and 4) decisions made by the
runtime system. Replaying a trace T should consistently
drive the program along the same execution path.

An event plays one of two roles during replay: proac-

tive events cause a feature of the program to execute (e.g.,
click on the “Send SMS” button), while reactive events

provide the feature with the input it needs (e.g., the phone
number and SMS text). Events of both types may contain
information that identifies users. Table 1 shows events
for each source of non-determinism for interactive An-
droid applications, and maps them to a role.

ReMoTe targets interactive programs, which gener-
ate these events at a rate bounded by the speed with
which users interact with programs. Thus, compared to
recording solutions that target events at a lower software
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Table 1: Trace events for Android applications, classified
by covered non-determinism source and proactivity role.

layer (e.g., [4]), which are generated more frequently, the
Record pod is more scalable, since it runs less frequently.

We say a trace contains personally identifiable infor-
mation (PII) if it can be used to determine a user’s iden-
tity, either alone or when combined with other informa-
tion that is linkable to a specific user [5].

2.2 K-Anonymity

A data set satisfies k-anonymity if and only if each set of
values that can be used to identify the source of a data
element appears at least k times in the set [6], i.e., the
source of an element cannot be narrowed down to fewer
than k candidates. We say that each element of a data set
satisfying k-anonymity is k-anonymous.

In [6], the data set is represented as a table PT , and
each row contains information about a single subject.
Some table columns contain private information (e.g., re-
ceived medication), others provide identification details
about the subject (e.g., birth date and zip code), but none
contain information that explicitly identifies the subject
(e.g., the name of the patient). Thus, one may naïvely
conclude that table PT is anonymous.

K-anonymity quantifies the possibility of linking en-
tries from the PT table with external information to infer
the identities of the sources of the data in the PT table.

Consider there exists a set QI of columns in PT , called
a quasi-identifier, (e.g., QI = {birth date,zipcode},PT =
QI

⋃
{medication}) that also appears in a publicly avail-

able table PAT . If the PAT table contains additional
columns that explicitly identify its sources (e.g., PAT =
Voters list = {name}

⋃
QI), then an attacker can use the

quasi-identifier values to join the two tables and learn pri-
vate information about a subject (e.g., the medication a
person receives). The attack is similar to executing an
SQL join operation on the PT and PAT tables that uses
the quasi-identifier as the join condition.



This attack relies on the value of the quasi-identifier
being unique for each subject in the PT and PAT tables.
To achieve k-anonymity, one must modify the PT table
to break this assumption [7]. This is not necessary if, in
the PT table, each quasi-identifier value already appears
k times. If not, one can suppress the entries that prevent
achieving k-anonymity, or repeatedly use generalization
strategies to make the values of the quasi-identifier less
precise (e.g., replace the birth date with the year of birth)
until k-anonymity is reached, or add new entries to the
table to make it satisfy k-anonymity (not covered in [7]).

We seek to prevent ill-intentioned developers and pro-
gram users from abusing interaction traces to learn the
identity of the user whose program recorded a trace.

A trace identifies its source through reactive events,
which may contain explicit PII (e.g., usernames), or
through proactive events, which detail user behavior. We
aim to provide users with k-anonymity, which in our case
represents the guarantee that a trace identifies its source
as the member of a set of k indistinguishable users.

We say an interaction trace is k-anonymous if it is
k-proactive-anonymous and k-reactive-anonymous. A
trace is k-reactive-anonymous if, for each reactive event
in the trace, there exist at least k alternatives (§3). A trace
is k-proactive-anonymous if at least k users observed it
(§4). Thus, a k-anonymous trace contains behavior ex-
hibited by k users, and there are k alternatives for each
program input contained in a reactive event.

We now describe the differences between the original
k-anonymity technique [6] and ours:

First, ReMoTe computes the maximal k it can achieve
for a trace’s anonymity, it does not enforce a particular k.

Second, ReMoTe cannot detect a minimum, complete
quasi-identifier, as is assumed in [6], because the struc-
ture of a trace is unconstrained and its length is un-
bounded. ReMoTe takes a conservative approach, by
choosing completeness over minimality, and defines the
quasi-identifier to span all the events in a trace.

Third, the equivalent of the PT table is distributed
among users. While the ReMoTe hive could store all the
observed, non-anonymized traces, doing so posses the
risk of an attacker subverting the hive, gaining access to
the raw traces, and thus being able to identify users.

Finally, the pods share a trace with the hive only once
it has achieved k-anonymity. K-anonymity increases, for
example, when adding a newly recorded trace to the set
causes existing ones to become k-proactive-anonymous.

2.3 Amount of Disclosed Information

We define the k-disclosure metric to quantify the amount
of PII in a trace T . We start from two observations:
First, its value should be inversely proportional to how
k-anonymous an observed trace T is, because the higher

the k, the less specific to a user the trace is. Second, the
amount of PII contained in a trace is emergent: while
each event in the trace may be encountered by multiple
users, the order of events in the trace may be unique.

We define the value of the k-disclosure metric for
an observed trace T , k-disclosure(T ), to be the sum of
the inverses of the values quantifying how k-anonymous
is each of T ’s subsequences, k(trace). That is,
k-disclosure(T ) = ∑1≤i≤ j≤|T |

1
k(Ti j=<ei,...,e j>) .

We expect k-disclosure(T ) to decrease over time be-
cause, once a program observes a trace, it is permanently
added to local storage; as more users encounter T or its
subsequences, the trace’s k-anonymity increases.

3 Anonymity of Reactive Events

Reactive events contain program inputs that can directly
identify users, such as usernames. A reactive event is
useful for replaying a trace T if it causes the program
to make the same decisions during replay as it did dur-
ing recording [3]. If one can replace a reactive event
e

orig
R with k− 1 reactive events esub

R without affecting the
trace’s ability to replay the program execution, then we
say the trace T is k-reactive-anonymous with respect to
event e

orig
R . More simply, we say e

orig
R is k-anonymous.

Consider the example of an Android application for
sending SMS messages. The user fills in the destination
phone number (reactive event eR) and the message body.
When the user presses the “Send” button, the application
converts the phone number to a long. Say that the user
entered a number starting with a ’+’ character, and the
program crashes, but any string that does not start with a
digit can reproduce this crash—ReMoTe can replace eR

with k alternatives, where k is the number of such strings.
To compute the number k of alternatives for a reactive

event eR, ReMoTe must know how the program makes
decisions based on the program input associated with eR.
ReMoTe uses concolic execution [8] to collect the con-
ditions, called path constraints, corresponding to the ex-
ecuted branch statements that depend on reactive events.
The technique uses “symbolic” variables that encode con-
straints on values, instead of concrete values.

Next, for each reactive event, ReMoTe uses a con-
straint solver to compute the solutions that satisfy the
path constraints referring to it. The number of solutions
determines how anonymous trace T is w.r.t. that event.

ReMoTe uses the following algorithm. It replays each
event ei in a trace T . When replaying a reactive event, the
algorithm copies ei.input (the program input contained
in ei) to ei.concrete, marks ei.input symbolic, and adds
an entry for ei in the map tracking path constraints (PC).
When the program branches on a condition involving the
symbolic variable ej.input, and both branch targets may



be followed, the algorithm forces the program to take the
target that ej.concrete satisfies. The algorithm uses static
analysis to decide whether to add the path constraint cor-
responding to the taken branch to the PC map and main-
tain e j.input symbolic, or to replace it with e j.concrete.
When replay finishes, the algorithm computes the num-
ber of solutions for each reactive event eR.

ReMoTe iteratively computes the number of solutions
for a set of path constraints PC by generating a solu-
tion, adding its negation to PC, and asking the solver
for another solution. This process is time consuming, so
ReMoTe bounds the number of solutions, establishing a
lower bound for how k-reactive-anonymous is a trace.

ReMoTe modifies the trace to replace each program in-
put contained in a reactive event with one of its computed
alternatives, thus removing the PII from the trace.

The algorithm is similar to the one described in [9].
The difference is our use of static analysis to make con-
colic execution more efficient by avoiding the concolic
execution of runtime-system code. This code affects only
the execution of the runtime system, not the execution of
the program and, thus, needlessly slows down concolic
execution. The static analysis examines the stack trace
of a program when it branches on a symbolic variable,
and checks if the branch is in the program’s code or if its
result is used by the program—only in these two cases is
the associated path constraint added to the PC map.

A technical report [10] presents a detailed description
of the algorithm, the benefits of using the generated alter-
natives, their drawbacks, and mitigation solutions.

4 Anonymity of Proactive Events

Proactive events reveal a program’s usage, and this usage
could uniquely identify the user. For example, an em-
ployee may access a company application’s features that
are only accessible to executive management, and then
a feature only accessible to financial department employ-
ees. By analyzing the corresponding proactive events,
one could infer that the user is the company’s CFO.

A related example is one where the two features are
accessed in different traces, and each trace contains the
same sequence of events that acts as a quasi-identifier
and allows identifying the user.

To prevent user behavior details contained in a trace
from identifying users, ReMoTe ensures that the en-
tire trace (including reactive events) is k-proactive-
anonymous before it is passed to the hive. Therefore, ev-
ery trace seen by the hive corresponds to the executions
of ≥ k distinct users, and it does not contain behavior spe-
cific to any one of them, so the trace’s source cannot be
identified more narrowly than that set of ≥ k users.

To check if a trace T is k-proactive-anonymous, Re-
MoTe can just query every program instance whether it

experienced execution trace T in the past, and tally up
the results. Alas, providing trace T to other program in-
stances could compromise the user’s anonymity.

The challenge is to design an algorithm that counts
how many users observed the trace T without explicitly
revealing T to them. Our solution is to hide T among a
set S of traces, ask program instances whether they ob-
served any of the traces in S, and probabilistically com-
pute the number k of instances that indeed observed T .

The algorithm runs as follows: Program instance A,
run by user U who wishes to share the trace T , constructs
the query set S. The set S contains the hashes of trace T

and of other traces that act as noise. Next, instance A

sends the set S to the ReMoTe hive, which forwards the
set S to each program instance Ai run by users Ui.

After the Record pod records an interaction trace, it
saves the hashes of the trace and of its sub-traces to a his-
tory set H. When receiving a query set S, each instance
Ai replies positively if its history set Hi contains any of
the hashes in the set S, i.e, if Hi

⋂
S 6= /0.

The ReMoTe hive counts the number K of positive
replies and sends it to instance A, which computes the
probability that k of the K instances recorded T —this de-
termines how k-proactive-anonymous trace T is.

This algorithm protects the anonymity of the U and Ui

users, because instances Ai cannot learn T , and instance
A cannot learn the trace that caused Ai to reply positively.

ReMoTe runs the same algorithm for each of trace
T ’s sub-traces and computes the amount of person-
ally identifiable information contained in trace T , i.e.,
k-disclosure(T ). Finally, instance A reports the k and
k-disclosure(T ) values to the user U . If the user agrees,
instance A shares the trace T with the ReMoTe hive.

There are four challenges associated with this algo-
rithm. First, instance A may be tricked into revealing the
trace T by a sequence of carefully crafted queries. Sec-
ond, instance A needs to generate feasible traces as noise
for the set S. Third, to compute the number k of instances
that recorded T , instance A must approximate the likeli-
hood of instances Ai recording each trace from the set S.
Finally, instance A may be tricked into revealing T by an
attacker compromising the result of the voting process.
[10] details these challenges and presents their solutions.

5 Empirical Evaluation

We built a ReMoTe prototype that can be used by An-
droid applications. In this section, we evaluate it on Pock-
etCampus [11], a client-server Android application that
we modified to use ReMoTe.

We evaluate the anonymity ReMoTe can provide for
reactive events by quantifying how k-anonymous each
field of a server response is after PocketCampus pro-
cesses it. We focus on two functionalities provided by



the application: check the balance of a student card ac-
count, and display the time of the next departure from
a public transport station. In both cases, PocketCampus
makes a request to a server, processes the response, and
displays some information. Each server response con-
tains multiple fields, and we computed how many alter-
natives ReMoTe can generate for each field.

Figure 2 contains the results, and shows that Pocket-
Campus places few constraints on server responses, en-
abling ReMoTe to provide high k-anonymity for users.

Figure 2a shows that the server’s response to inquires
about the account balance contains seven fields: one is
not processed by PocketCampus (the white box), three
for which ReMoTe generates more than 100 alternatives
(the gray boxes), and three for which ReMoTe cannot
generate alternatives (the black boxes), because they con-
tain floating point values (not supported by our con-
straint solver) or because PocketCampus checks their
value against constant values (e.g., the server’s status).

Figure 2b shows the server’s response when queried
about the name of a public transport station.

Figures 2c and 2d show the same server response, but
in different interaction traces. Figure 2c corresponds to
PocketCampus showing the departure time, while Fig-
ure 2d corresponds to additionally displaying trip details,
which causes PocketCampus to further process the re-
sponse and place additional constraints.

(a) Account overview (b) Train station name

(c) Next departure time (d) Details of next departure

Figure 2: k-anonymity for server response fields. White
boxes show unprocessed fields, gray boxes show fields
with k ≥ 100, black boxes show fields with k = 1.

We report the percentage of bits identical in the orig-
inal server response fields and the ones ReMoTe gener-
ated, considering only those processed by PocketCam-
pus. Figure 3 shows that the alternative responses reveal,
on average, 72% of the original bits, thus being more sim-
ilar to the original ones than randomly-generated ones.

We evaluate the speedup in the concolic execution
completion time brought by using the static analysis de-
scribed in Section 3. Figure 4 shows that, when using
the analysis’ results, PocketCampus finishes processing
a server response within 10 minutes, as opposed to more
than one hour when the analysis is not used.

The technical report [10] evaluates additional aspects
of ReMoTe, such as how k-proactive-anonymous is a
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Figure 4: Concolic execution speedup obtained by using
the static analysis described in Section 3. The figure can
be read as a comparison, in terms of efficiency, between
our algorithm and the one described in [9].

trace and what is its storage space overhead.

6 Related Work

Our work on generating alternatives for reactive events is
most similar to [9], which also relies on collecting path
constraints that describe decisions made by a program.
The differences are that we use static analysis to discard
path constraints that do not affect a program’s execution,
and we consider the anonymity threats related to a user
interacting with a program. Camouflage [12] builds on
[9] and introduces two techniques to enlarge the set of
bug-triggering inputs, which ReMoTe can leverage.

Our crowdsourced k-anonymity technique is similar to
the query restriction techniques pertaining to statistical
databases [13], since one can view the crowd of program
instances as a distributed database.

7 Conclusions

This paper describes two techniques to transform pro-
gram execution traces to maximize users’ anonymity, yet
maintain the traces’ utility for testing and debugging.
One technique uses dynamic program analysis to ex-
punge explicit personally identifiable information from
traces, while the other leverages the crowd of users to
verify that the user behavior encoded in a trace is not
unique. We prototyped the techniques, and preliminary
results suggest that they are effective and efficient.
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