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Abstract
In this thesis, we propose novel solutions to similarity learning problems on collaborative

networks. Similarity learning is essential for modeling and predicting the evolution of collabo-

rative networks. In addition, similarity learning is used to perform ranking, which is the main

component of recommender systems. Due to the the low cost of developing such collaborative

networks, they grow very quickly, and therefore, our objective is to develop models that scale

well to large networks.

The similarity measures proposed in this thesis make use of the global link structure of the

network and of the attributes of the nodes in a complementary way. We first define a random

walk model, named Visiting Probability (VP), to measure proximity between two nodes in a

graph. VP considers all the paths between two nodes collectively and thus reduces the effect

of potentially unreliable individual links. Moreover, using VP and the structural characteristics

of small-world networks (a frequent type of networks), we design scalable algorithms based on

VP similarity. We then model the link structure of a graph within a similarity learning frame-

work, in which the transformation of nodes to a latent space is trained using a discriminative

model. When trained over VP scores, the model is able to better predict the relations in a

graph in comparison to models learned directly from the network’s links.

Using the VP approach, we explain how to transfer knowledge from a hypertext encyclopedia

to text analysis tasks. We consider the graph of Wikipedia articles with two types of links

between them: hyperlinks and content similarity ones. To transfer the knowledge learned

from the Wikipedia network to text analysis tasks, we propose and test two shared repre-

sentation methods. In the first one, a given text is mapped to the corresponding concepts

in the network. Then, to compute similarity between two texts, VP similarity is applied to

compute the distance between the two sets of nodes. The second method uses the latent

space model for representation, by training a transformation from words to the latent space

over VP scores. We test our proposals on several benchmark tasks: word similarity, docu-

ment similarity / clustering / classification, information retrieval, and learning to rank. The

results are most often competitive compared to state-of-the-art task-specific methods, thus

demonstrating the generality of our proposal. These results also support the hypothesis that

both types of links over Wikipedia are useful, as the improvement is higher when both are used.

In many collaborative networks, different link types can be used in a complementary way.
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Therefore, we propose two joint similarity learning models over the nodes’ attributes, to be

used for link prediction in networks with multiple link types. The first model learns a similarity

metric that consists of two parts: the general part, which is shared between all link types, and

the specific part, which is trained specifically for each type of link. The second model consists

of two layers: the first layer, which is shared between all link types, embeds the objects of the

network into a new space, and then a similarity is learned specifically for each link type in this

new space. Our experiments show that the proposed joint modeling and training frameworks

improve link prediction performance significantly for each link type in comparison to multiple

baselines. The two-layer similarity model outperforms the first one, as expected, due to its

capability of modeling negative correlations among different link types.

Finally, we propose a learning to rank algorithm on network data, which uses both the at-

tributes of the nodes and the structure of the links for learning and inference. Link structure is

used in training through a neighbor-aware ranker which considers both node attributes and

scores of neighbor nodes. The global link structure of the network is used in inference through

an original propagation method called the Iterative Ranking Algorithm. This propagates the

predicted scores in the graph on condition that they are above a given threshold. Thresholding

improves performance, and makes a time-efficient implementation possible, for application

to large scale graphs. The observed improvements are explained considering the structural

properties of small-world networks.

Keywords: Distance Metric Learning, Similarity Learning, Social Network Analysis, Collabora-

tive Network Analysis, Learning to Rank, Link Prediction, Text Semantic Similarity, Random

Walk, Transfer Learning, Classification, Clustering.
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Résumé
Apprentissage de mesures similarité sur des graphes collaboratifs de grande taille

Dans cette thèse, nous proposons de nouvelles solutions au problème de l’apprentissage

automatique de mesures de similarité appliquées aux réseaux ou graphes collaboratifs. L’ap-

prentissage des mesures de similarité est essentiel pour modéliser et prédire l’évolution des

réseaux collaboratifs. De plus, ces mesures sont utilisées pour des tâches de classement qui

sont la composante principale des systèmes de recommandation. Le faible coût de création

de ces réseaux collaboratifs fait qu’ils croissent très vite. C’est pourquoi un de nos objectifs est

de proposer des modèles applicables à des réseaux de grande taille.

Les mesures de similarité proposées dans cette thèse utilisent la structure globale des liens

du graphe et les attributs des nœuds d’une façon complémentaire. Nous définissons d’abord

un modèle de marche aléatoire appelé Probabilité de Visite (VP en anglais) pour mesurer

la proximité de deux nœuds dans un graphe. Le modèle considère l’ensemble des chemins

entre deux nœuds, ce qui réduit l’effet des liens individuels, potentiellement peu fiables. De

plus, partant de la VP et des caractéristiques des réseaux de type “petit monde” (un type

relativement fréquent), nous proposons des algorithmes adaptés aux graphes de grande taille.

Nous modélisons ensuite la structure de liens dans un cadre permettant l’apprentissage discri-

minatif de la similarité, qui projette les nœuds dans un espace latent. Lorsqu’il est entraîné sur

les valeurs de VP, ce modèle fait de meilleurs prédictions sur les liens qu’un modèle entraîné

directement sur les liens du graphe.

Utilisant toujours l’approche VP, nous expliquons comment transférer les informations conte-

nues dans une encyclopédie hypertexte pour les appliquer à des tâches d’analyse de textes.

Nous utilisons le graphe de Wikipedia avec deux types de liens entre articles : les hyperliens

d’origine et des liens construits à partir de la similarité lexicale. Afin de transférer l’information

acquise à partir de Wikipedia vers les tâches d’analyse de texte, nous proposons deux modèles

de représentation. Dans le premier, un texte est mis en correspondance avec les concepts les

plus pertinents du graphe, puis, pour calculer la similarité entre deux textes, nous utilisons

la VP entre les ensembles de concepts. Dans le second modèle, un espace latent sert de re-

présentation commune, et une fonction de transformation entre les mots et l’espace latent

est entraînée avec la VP comme critère. Ces propositions sont testées sur plusieurs tâches :

similarité de mots, similarité de documents, partitionnement de documents, classification de
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documents, recherche d’information, et apprendre à classer. Les résultats sont le plus souvent

comparables aux meilleurs résultats des méthodes conçues spécifiquement pour chaque

tâche, ce qui démontre la généralité de notre modèle. De plus, les résultats montrent que les

deux types de liens sont utiles.

Les différents types de liens existant dans les graphes collaboratifs peuvent souvent être utili-

sés de manière complémentaire. Nous proposons deux modèles pour l’apprentissage de la

similarité sur les attributs des nœuds, à utiliser pour la prédiction de liens dans les graphes

avec plusieurs types de liens. Le premier modèle apprend une mesure de similarité avec deux

composants : la partie générale, partagée par tous les types de liens, et la partie spécifique,

entraînée de manière séparée sur chaque type. Le second modèle comprend deux couches :

la première (partagée par tous les types de liens) projette les nœuds dans un nouvel espace,

puis une fonction de similarité est entraînée pour chaque type de liens dans cet espace. Nos

expériences montrent que ces modèles améliorent la prédiction de liens pour chaque type.

Le modèle à deux couches est, comme prévu, meilleur que le premier, grâce à sa capacité à

utiliser aussi des corrélations négatives entre types de liens.

Nous proposons, en final, un algorithme pour apprendre à classer les nœuds, qui utilise à la

fois les attributs des nœuds et la structure des liens. Cette dernière est utilisée grâce à une

méthode de propagation originale appelée Algorithme Itératif de Classement. Cette méthode

propage les scores prédits à travers le graphe, à condition qu’ils dépassent un certain seuil.

L’utilisation d’un seul améliore les scores et aboutit à un algorithme rapide pouvant être

appliqué aux graphes de grande taille. Les améliorations observées sont analysées dans la

perspective des propriétés structurelles des graphes du type “petit monde”.

Mots-clés : Apprentissage de distances sur les graphes, Apprentissage de mesures de similarité,

Analyse des réseaux sociaux, Analyse de réseaux collaboratifs, Apprendre à classer, Prédic-

tion de liens, Similarité sémantique de textes, Marche aléatoire, Transfert de l’apprentissage,

Classification, Partitionnement.
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1 Introduction

Collaborative online systems make it easy to generate large public networks of data objects.

The cost of creating a new object or a new link between two objects is very small, and is

usually contributed by users. This low cost explains that such collaborative networks grow

very quickly, easily reaching networks of millions of objects based on the collaboration of as

many users. The Web, Wikipedia, social bookmarks, product preference networks, research

articles with citations, and online social networks are examples of such collaborative networks

which shape our daily life.

Moreover, new networks can be inferred from original collaborative ones. For example, con-

sider the network of product preferences in an online store, in which the preference of a

customer for a product is represented by a link, with its strength being coded by the links’

weight. We can infer from this network how much two products are co-preferred and therefore,

the network showing the co-preferred relations between the products in the store can be built

from the original network. Co-authorship is another network of this type. We call this type of

networks collaborative networks as well, because they are inferred directly from collaborative

networks and evolve similarly.

In such collaborative systems, there is usually no central editing authority. Every user acts

autonomously when creating new content. Therefore, not all content in these networks

is equally reliable. The content related to less popular objects is likely to be less reliable.

Conversely, content becomes more and more reliable as it is shaped by the collaboration of

more and more users.

Hence, designing robust methods to perform prediction and analysis of such networked

systems is a valuable focus of interest. Prediction of a system’s evolution can be used to make

recommendations, which can facilitate and also improve the formation of the network.

For example, consider a network with scientific papers and citations. A recommender system

can facilitate the identification of related articles by authors, which is known to be a difficult

and time-consuming task when writing research articles. Moreover, such a system can help
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authors to find articles that would have been missed otherwise. This can happen for various

reasons such as the low popularity of an article, recency, or lack of knowledge of the authors. In

the latter case, a recommender system would not only facilitate the formation of the network,

but also improve it.

The main component of a recommender system is its ranking functionality. Recommender

systems, given either an implicit or an explicit query, rank all objects, and almost always return

only the top ranked ones. For example, in an online store, a recommender system would

recommend top co-preferred items with respect to a specific item (an implicit query) and

thus help customers to find the most suitable item for their needs and preferences. Besides,

a different recommender system could return top ranked items for a keyword entered by a

customer (explicit query). In both cases, for explicit or implicit queries, the main task is to

rank objects from a network with respect to the query object.

Ranking objects based on a query can be performed by defining a distance measure between

objects and sorting them based on their distance to the query object. Similarly, link for-

mation in social networks is more likely if two nodes have similar social characteristics – a

phenomenon known as homophily in social networks [McPherson et al., 2001]. Therefore, the

problem of ranking, or even more generally the modeling of collaborative networks, can be

transformed into the problem of finding a distance or similarity measure over the networks.

Several sources of information should be considered when building a distance measure over a

collaborative network. The first important source of information is the global link structure of

the network. Collaborative networks typically contain many spurious links, or are incomplete,

making a proximity measure based on local link structure unreliable. Therefore, a robust

proximity measure based on global link structure needs to be designed, in particular so that

it can be applied to large networks. The link structure might consist of multiple link types.

Also, the links can be weighted: for example, in a network of product co-preference, weighted

links indicate how much two products are co-preferred. Therefore, similarity learning over

collaborative networks should be able to consider in a robust way these additional sources of

information.

Another source of information are the attributes of the objects. These can be used to model

the networks’ evolution and consequently the distance between objects. For example, in a

paper/citations network, the similarity of the articles can be modeled by their content words.

Content words can improve the accuracy of the model, especially when the link structure is

not very rich, for example in case of missing citations, low-popularity papers, or either very

new or very old papers.

In addition to the prediction task in collaborative networks, the analysis of the evolution

of a network with respect to node attributes, provides valuable insights that can be used in

designing methods which aim to maximize another utility function. For example, consider

the hypothetical situation in which an online store manager wants to choose a title for her

new product among some different candidate titles. A model that relates the keywords in the
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title to the likelihood of a sale can guide the manager to optimize the choice of keywords.

In general, the attributes of the nodes are not sufficient to model the network. For instance, let

us consider a product co-preference network in which the products’ attributes are derived

from the title of each product along with category information. The title is a short description

of the product that only makes sense when interpreted by humans and would likely not be

sufficient to model the network. Moreover, feature selection methods are not loss free. For

example in the case of a papers/citations network, if the content of a paper is represented by a

bag of keywords, these cannot grasp the entire content of the paper. Besides, usually some

attributes are missing. For example in the case of online social networks, people tend not to

fill in all the information fields in their profile. Hence, nodes’ attributes and global network

structure (relational attributes) should be used in a complementary way.

The overall contribution of this thesis is two-fold. First, we propose distance learning meth-

ods over large and collaborative networks with high-dimensional features, to be used for

prediction tasks which make use of the global structure of a network and the attributes of its

nodes. Second, we show how to leverage reliable content in these networks to perform text

analysis tasks, improving the state-of-the-art performance in situations when only a small

quantity of labeled data is available. The following sections of this introduction summarize

the achievements corresponding to the diffeent chapters of the thesis.

Symmetric Random Walk on Large Graphs: Approximation

Algorithms and Similarity Learning

This chapter consists of two main parts, in the first part we define a random walk model,

Visiting Probability (VP), to measure proximity between two nodes in a graph. VP considers

all the paths between two nodes collectively and thus reduces the effect of unreliable links. We

define symmetric VP similarity measure and show that using the symmetric VP improves the

prediction performance of the distance.

Moreover, we show how to make use of VP definition and design approximation algorithm

to perform ranking based on VP on large graphs. Besides, we define community of a node

according to VP and bring experimental evidences that the community definition is effective.

Fast algorithms are designed to solve K-nearest neighbors and community identification over

large graphs based on symmetric VP proximity.

A small-world network is a type of graph in which most nodes are not neighbors of one

another, but most nodes can be reached from every other by a small number of hops or

steps. It has been shown that many real-world complex systems can be modeled by small-

world networks including but not limited to neuronal networks, food webs, social networks,

scientific-collaboration networks and World Wide Web. We make use of this structural property

to design fast algorithms on collaborative networks, we use this structural property again in

Chapter 6.
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In the second part of this chapter, we show that any relation between two nodes in a graph

can be interpreted as the proximity between those two nodes in a latent space. Therefore,

the link structure of a graph can be modeled by a similarity learning framework in which the

transformation of nodes to the latent space is trained using a discriminative model. We show

how to apply this framework to learn the similarity between two nodes based on the node’s

attributes over large graphs. Moreover, we show that similarity learning on attributes from

random walk scores, specifically VP scores here, can model and predict better the relations in

the graph in comparison to learning on the network’s links directly. Therefore, we use both

global network structure (through using VP scores) and node attributes to learn a reliable

similarity measure. At the end we evaluate the effectiveness of the proposed models on link

prediction task on various networks. We show experimentally that if the node attributes are not

predictive enough, ignoring the global link structure for inference can reduce the prediction

performance, we address this issue in Chapter 6.

Transfer Learning from Hypertext Encyclopedia to Text Analysis Tasks

In this chapter, we explain how to transfer knowledge from a hypertext encyclopedia to text

analysis tasks. The VP proximity is used in this chapter to compute semantic relatedness

between words or texts (sets of words), by taking advantage of content-based and link-based

knowledge from hypertext encyclopedias such as Wikipedia.

A network of concepts is first constructed by filtering the encyclopedia’s articles, each concept

corresponding to an article. Two types of weighted links between concepts are considered:

one based on hyperlinks between articles, and another one based on the lexical similarity

between them. A given text is mapped to the corresponding concepts in this network and

then to compute similarity between two texts VP similarity is applied to compute the distance

between sets of nodes.

Moreover, we analyze the convergence of the approximation methods proposed in chapter 3,

over the English Wikipedia data set, and measure various characteristics of the network to

help understanding its usefulness for text analysis tasks.

Finally, to make the algorithm tractable and also make transfer learning possible to other

machine learning tasks and algorithms, we use the latent space model which we explained in

the chapter 3 to train a transformation from words to a latent space over VP scores. Therefore,

we can add one layer to other text analysis tasks which applies this transformation to the

words and insert Wikipedia knowledge to the task.

To evaluate the proposed distance, we apply our method to four important tasks in natural

language processing: word similarity, document similarity, document clustering, and docu-

ment classification, along with a ranking task for information retrieval. The performance of

our method is state-of-the-art or close to it for all the tasks, thus demonstrating the generality

of the method and the accompanying knowledge resource. Moreover, we show that using
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both hyperlinks and lexical similarity links improves the scores with respect to a method using

only one of them, because hyperlinks bring additional real-world knowledge not captured by

lexical similarity. In Chapter 5 we design algorithms to make use of different link types more

formally.

Additionally, the proposed method is applied to Idiap’s just-in-time information retrieval

system (ACLD), and brings improvement in terms of the relevance of results.

Joint Similarity Learning for Predicting Links in Multi Links Networks

This chapter addresses the problem of link prediction on large multi-link networks (i.e. with

links of multiple types) by proposing two joint similarity learning architectures over the

attributes of the nodes. The first model is a similarity metric that consists of two parts: a

general part, which is shared between all link types, and a specific part, which learns the

similarity for each link type specifically.

The second model consists of two layers: the first one, which is shared between all link types,

embeds the objects of the network into a new space, while the second one learns the similarity

between objects for each link type in this new space. The similarity metrics are optimized

using a large-margin optimization criterion in which connected objects should be closer than

non-connected ones by a certain margin. A stochastic training algorithm is proposed, which

makes the training applicable to large networks with high-dimensional feature spaces.

The models are tested on link prediction for two data sets with two types of links each: TED

talks and Amazon products. The experiments show that jointly modeling of the links given

our frameworks improve link prediction performance significantly for each link type. The

improvement is particularly higher when there are fewer links available from one link type in

the network. Moreover, we show that transfer learning from one link type to another one is

possible using the above frameworks.

At the end, we show how this model can be generalized to similar but different tasks, in-

cluding joint classification and link prediction, and transfer learning between networks with

(approximately) the same set of attributes.

Similarity Learning for Collective Ranking on Networks: Application

to Link Prediction

Traditionally in learning to rank approaches data points are assumed to be independent.

Although this assumption leads to acceptable results in many applications, it is quite ques-

tionable when dealing with network data. Moreover, methods based on the link structure

including methods based on common neighbors and random walk models are ignorant about

the nodes’ attributes in the networks.
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In this chapter, a method is proposed for learning to rank on network (relational) data, which

makes use of the features of the nodes as well as the existing links between them. First, a

neighbors-aware ranker is trained using a pairwise loss function. Then, collective inference is

performed using a sparse iterative ranking algorithm, which propagates the results of rankers

over the network.

The method is applied to three data sets with papers/citations and webpages/hyperlinks.

The results show that the proposed algorithm, using both link structure and node attributes,

outperforms several other methods: a content-only ranker, a link-only one, an unsupervised

random walk method, a relational topic model, and a method based on the weighted numbers

of common neighbors. In addition, the propagation algorithm improves results even when no

prior link structure is known, and scales efficiently to large networks.

Conclusion and Future Work

In the final chapter, we first summarize the achievements of the previous chapters, mainly in

designing distance learning methods over large collaborative networks with high-dimensional

features, and demonstrating their relevance on a significant number of prediction tasks.

Moreover, we summarize the achievement of leveraging reliable content from these networks

to text analysis tasks, which has improved the state-of-the-art performance in situations when

only a small quantity of labeled data is available.

The focus of this work was on learning a similarity function between two objects. But almost

always in recommender systems a set of top items are shown as a result and therefore, one

should rather aim at an objective function that assigns a score to sets of retrieved objects

as a whole. In preparation for future work, we define formally the concepts of consistency

and diversity, and relate them to the models we presented in this thesis. The main desirable

properties of such a global objective function are: first, it should give a higher score to a set of

items that are related to the query object, and second, it should emphasize either the diversity

or the consistency of the items. For large data sets, finding a set with a maximal score is not

tractable, but we have found that greedy algorithms may help to overcome this problem, and

we foresee further investigations on this topic.
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2 Related work

The overall focus of this thesis, as presented earlier in the introduction, is two-fold. The first

contribution consists of new distance learning methods over large and collaborative networks

with high-dimensional features, to be used for prediction tasks that use the global network

structure and the node attributes. As mentioned, distance metric learning usually happens in

a ranking framework. Traditionally, distance metric learning and learning to rank methods

were designed for non-relational data sets. In this thesis, we generalize these methods to be

applicable to large relational data sets. We also discuss in this chapter and the following ones,

previous methods which are using only the link structure of a network to infer the distance,

and thus ranking. We show how the methods in this manuscript evolved in comparison to

those methods.

Therefore, the related work corresponding to the first contribution of the thesis falls into

several categories: (1) learning to rank and distance metric learning; (2) link prediction; (3)

distance and ranking based on link structure in networks. In this chapter, we discuss each

category.

Moreover, we show how to leverage reliable content in hypertext encyclopedias (mainly

Wikipedia in this thesis) to achieve better text semantic similarity measures, which are an

essential part of many text analysis tasks. Therefore, related work for this part spans a large

number of domains and approaches, and can be divided mainly into: (1) previous methods for

computing semantic relatedness, including uses of Wikipedia or other networked resources,

for one or more tasks in common with the tasks discussed here; (2) state-of-the-art methods

and scores for each of the targeted tasks. In fact, many combinations of tasks, methods and

resources may share one or more elements with our work. In this chapter, we will focus

on the first type of previous work, while for the other one, performance comparisons with

state-of-the-art methods will be made in each of the application sections of the subsequent

chapters.
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2.1 Distance Metric Learning and Learning to Rank

Many methods for learning to rank have been proposed, with different leaning abilities. We

discuss here some of the main works in this field and show how the proposals in this thesis

relate to them.

Perception Ranking [Crammer and Singer, 2001] is an online algorithm for ordinal classifica-

tion. The algorithm can be employed for ranking as a pointwise method. The main idea is to

learn several parallel perceptron models which make classification between the neighboring

grades. Following a pointwise approach, the ranker is trained based on the grade of each

object, whereas in a pairwise method the ranker is trained on the order (rank) of the pair of

objects. In our work, we always use a pairwise training method, which was shown to be more

effective than pointwise methods [Li, 2011].

IR SVM [Cao et al., 2006] is a pairwise method which formulates the ranking problem as an SVM

classification, and adapts this to the document retrieval problem. The feature selection that

transforms the ranking problem into a classification one – building features for classification

from the query and each target document – is not effective on all data sets. This is especially

problematic for a task such as link prediction, where we have many non-linked examples.

Similarly, SVMRank [Joachims, 2002] is a pairwise ranking algorithm which transforms the

pairwise ranking to SVM binary classification. For SVMRank, batch optimization on large

graphs is not possible considering the number of non-connected pairs. In comparison to

these approaches, we adapt the training algorithm to be applicable to large graphs with high-

dimensional features. Moreover, we generalize the methods in a way that can use the network’s

structural features, and can efficiently model multi edge networks.

Grangier and Bengio [2008] introduce a discriminative model for the retrieval of images from

text queries using a learning procedure optimizing a ranking criterion. The proposed model

addresses the retrieval problem directly and does not rely on an intermediate image annota-

tion, and the training procedure is based on the online learning of kernel-based classifiers,

and therefore is scalable to large data sets.

RankNet [Burges et al., 2005] is a feed forward neural network which is trained by back propa-

gation to learn the scores of each training example. In a similar vein, Bai et al. [2010] perform

supervised training of a nonlinear model over vectors of words, to preserve a pairwise ranking

between documents. Their approach scales well to large data sets with a large number of

words. Similarly, Shaw et al. [2011] train a distance metric by stochastic gradient descent over

a hinge loss function that preserves the network structure. Weston et al. [2011] propose a faster

training algorithm to learn a low-dimensional joint embedding space for both images and

annotations which optimizes precision at the top of the ranked list of annotations for a given

image. We will follow the same general line to build our ranking methods based on similarity

learning, by keeping in mind that the framework should be applicable to large graphs.

A large margin nearest neighbor classifier is built by training a Mahalanobis distance metric by
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Weinberger et al. [2006]. Similarly, in Section 4.9, we build a distance learning classifier which

learns, given a training set, a similarity measure in a latent space so that for each data point in

the training set, its similarity to data points with the same label (or class) is higher than the

similarity to data points with different labels. We show that prior knowledge leaned from the

Wikipedia network can be successfully transferred to this classifier.

In summary, in comparison to the conventional learning to rank approaches which assume

that data points are independent, we consider dependency between network’s objects by using

neighborhood information as well as object features in the ranker (Chapter 6 and Section 3.4).

In addition, we allow different link-type rankers sharing information among them and model

more accurately the networks’ structure (Chapter 5).

2.2 Supervised Link Prediction

Link prediction can be formulated as a supervised learning task in which the goal is to predict

new link formation. Backstrom and Leskovec [2011] describe the problem of link prediction as

a supervised learning task and illustrate how a method known as supervised random walks

can address the link prediction task. This overcomes one of the main shortcomings of the

link-based previous works by using attribute information to make predictions. However,

this method requires to compute the gradient iteratively in each iteration, which makes the

training inefficient. Supervised random walk (similarly to link-based methods) is not able

to perform ranking when the query object is not part of the network, whereas our pairwise

approaches, trained on the query and target nodes’ attributes, can perform ranking in this

situation.

Similarly, Agarwal et al. [2006] propose a supervised learning method for ranking the objects

in a graph. Their method uses a random walk model and learns the transition probabilities

from the ordered pairs of objects in the training data. A transition probability is learned for

each link, which makes overfitting likely and is not effective for large-scale graphs with many

edges, given that there are many parameters to learn. Similarly to supervised random walk,

this method is not applicable when the query object is not part of the network.

Miller et al. [2009] adopt a generative Bayesian nonparametric approach to simultaneously

infer the number of latent features and to learn which entities have each feature. The method is

difficult to train, and inference for large scale graphs is time-consuming, whereas we consider

designing methods applicable to large networks.

Relational Topic Models (RTM) [Chang, 2009] consider both the documents and the links

between them. For each pair of documents, an RTM models their link as a binary random

variable that is conditioned on their contents. The model can be used to predict links between

documents and is used as one of our baselines (see Section 6.4). The inference and learning

algorithms are based on variational methods. Our proposed method in Chapter 6 outperforms

RTM on the studied networks by a large margin. The neighborhood information is not modeled
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explicitly in RTM in comparison to our method.

Menon and Elkan [2011] propose a link prediction algorithm based on the matrix factorization.

The algorithm essentially is similar to the latent space model which we explain in Section 3.4.

We show in Section 3.4 that learning over random walk scores, instead of networks’ edges,

improve the predictability of the model.

In the case of multi-preference data, also called multiple link type or multi-link networks,

Paccanaro and Hinton [2000] proposed Linear Relational Embeddings in which entities are

embedded in a latent space and relations in this latent space are modeled by linear operations.

This idea has been further improved in the Structured Embeddings (SE) framework proposed

by Bordes et al. [2011]. We follow the same path and investigate further the modeling of multi

preference data in Chapter 5 of this thesis.

In summary, we transform link prediction problem to a ranking problem in which given the

query node, other nodes are ranked based on the likelihood of forming a link with the query.

We will propose methods using the objects’ attributes and the relations between objects in a

network in an effective way to perform ranking, applicable to large networks. In comparison

to supervised generalizations of random walk models [Backstrom and Leskovec, 2011, Agarwal

et al., 2006], our model can be applied even when the query object does not have any known

links in the network. In this case, the performance can be improved by modeling the links

between the rest of the objects in the network, as we propose with the model described in

Chapter 6.

2.3 Ranking and Distance Based on Link Structure

The link prediction task can be formulated as a ranking task of pairs of nodes, using link

structure similarity metrics, for example random walk metrics or metrics using the common

neighborhood. The Adamic and Adar [2001] similarity measure, which is based on com-

mon neighborhood, yields relatively high performance in link prediction [Liben-Nowell and

Kleinberg, 2003].

It is well-known that estimating proximity in networks as the length of shortest path does not

take into account the relative importance of these paths with respect to the overall properties

of the network, such as the number and length of all possible paths between two nodes.

The length of the shortest path is quite sensitive to spurious links. It has been shown that

aggregated measures based on random walks are more effective for link prediction than

individual links and paths [Brand, 2005, Sarkar and Moore, 2007, Liben-Nowell and Kleinberg,

2003].

Two popular random walk measures which are well studied in the previous works are hitting

time, a standard notion in graph theory, and Personalized PageRank (PPR) [Haveliwala, 2003],

surveyed by Berkhin [2005].
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Hitting time has been used in several studies as a distance measure in graphs, e.g. for di-

mensionality reduction [Saerens et al., 2004] or for collaborative filtering in a recommender

system [Brand, 2005]. Hitting time has also been used for link prediction in social networks

along with other graph-based distances [Liben-Nowell and Kleinberg, 2003], or for semantic

query suggestion using a query/URL bipartite graph [Mei et al., 2008]. A branch-and-bound

approximation algorithm has been proposed to compute a node neighborhood for hitting

time in large graphs [Sarkar and Moore, 2007, Sarkar et al., 2008].

We will develop a random walk model to measure the proximity between two nodes based

on the networks’ link structure in Chapter 3. We explain the relation between the popular

random walk models above and the proposed random walk in Section 3.1.5. Moreover, we

show how to use the definition of our measure to design fast algorithms applicable to large

networks in Sections 3.2, 3.3.1 and 3.3.2.

A shortcoming of the state-of-the-art methods cited above is that they are not trained on

node and edge attributes. Therefore, if the prior link structure around a query node is not

known, then these methods can not perform well in finding similar nodes, e.g. candidates

for linking. For example, in the case of paper citation, unless the paper contains already

many citations, these methods can not perform well. To overcome this problem, we make

a connection between random walk scores and a latent space model learned on the nodes’

attributes in Chapter 3. Moreover, in Chapter 6, our proposed model overcomes this issue by

using nodes’ attributes in addition to the link structure to learn and infer a similarity function.

2.4 Word Semantic Relatedness using Graphs: WordNet and Wikipedia

Many graph-based methods have been applied to NLP problems and were recently surveyed

by Navigli and Lapata [2010] with an application to word sense disambiguation. For instance,

Navigli [2008] defined a method for truncating a graph of WordNet senses built from input

text, while Navigli and Lapata [2010] focused on measures of connectivity and centrality of a

graph built on purpose from the sentences to disambiguate, and are therefore close in spirit to

the ones used to analyze our large Wikipedia-based network in Section 4.3.3.

PageRank has been used for word sense disambiguation over a graph derived from the candi-

date text by Navigli and Lapata [2010]. As for Personalized Page Rank (PPR), the measure has

been used for word sense disambiguation by Agirre and Soroa [2009] over a graph derived from

WordNet, with up to 120,000 nodes and 650,000 edges. PPR has also been used for measuring

lexical relatedness of words in a graph built from WordNet by Hughes and Ramage [2007].

Many other attempts have been made in the past to define word and text similarity distances,

for various applications to language technology. One approach is to construct – manually or

semi-automatically – a taxonomy of word senses or of concepts, with various types of relations,

and to map the text fragments to be compared onto the taxonomy. For instance, WordNet [Fell-

baum, 1998] and Cyc [Lenat, 1995] are two well-known knowledge bases, respectively of word
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senses and concepts, which can be used for overcoming the strong limitations of pure lexical

matching. A thesaurus such as Roget’s can also be used for similar purposes [Jarmasz, 2003,

Jarmasz and Szpakowicz, 2003]. This approach makes use of explicit senses or concepts that

humans can understand and reason about, but the granularity of knowledge representation is

limited by the taxonomy. Building and maintaining these knowledge bases requires a lot of

time and effort from experts. Moreover, they may cover only a fraction of the vocabulary of a

language, and usually include few proper names, conversational words, or technical terms.

Several methods for computing lexical semantic relatedness exploit the paths in semantic

networks or in WordNet, as surveyed by Budanitsky and Hirst [2006, Section 2]. Distance

in the network is one of the obvious criteria for similarity, which can be modulated by the

type of links [Rada et al., 1989] or by local context, when applied to word sense identification

[Leacock and Chodorow, 1998]. Resnik [1995, 1999] improved over distance-based similarity

by defining the information content of a concept as a measure of its specificity, and applied the

measure to word sense disambiguation in short phrases. An information-theoretic definition

of similarity, applicable to any entities that can be framed into a probabilistic model, was

proposed by Lin [1998] and was applied to word and concept similarity. This work and ours

share a similar concern – the quest for a generic similarity or relatedness measure – albeit in

different conceptual frameworks – probabilistic vs. hypertext encyclopedia.

Other approaches make use of unsupervised methods to construct a semantic representation

of words or of documents by analyzing mainly co-occurrence relationships between words

in a corpus (see e.g. Chappelier [2012] for a review). Latent Semantic Analysis [Deerwester

et al., 1990] offers a vector-space representation of words, which is grounded statistically and

is applied to document representation in terms of topics using Probabilistic LSA [Hofmann,

1999] or Latent Dirichlet Allocation [Blei et al., 2003]. These unsupervised methods construct

a low-dimensional feature representation, or concept space, in which words are no longer

supposed to be independent. The methods offer large vocabulary coverage, but the resulting

“concepts” are difficult for humans to interpret [Chang et al., 2009].

Mihalcea et al. [2006] compared several knowledge-based and corpus-based methods (in-

cluding for instance [Leacock and Chodorow, 1998]) and then used word similarity and word

specificity to define one general measure of text semantic similarity. Results of several methods

and combinations are reported in their paper. Because it computes word similarity values

between all word pairs, the proposed measure appears to be suitable mainly for computing

similarity between short fragments – otherwise, the computation becomes quickly intractable.

One of the first methods to use a graph-based approach to compute word relatedness was

proposed by Hughes and Ramage [2007], using Personalized PageRank (PPR) [Haveliwala,

2003] over a graph built from WordNet, with about 400,000 nodes and 5 million links. Their

goal (as ours) was to exploit all possible links between two words in the graph, and not only

the shortest path. They illustrated the merits of this approach on three frequently-used data

sets of word pairs – which will be also used in this thesis, see Section 4.6 – using several
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standard correlation metrics as well as an original one, and their scores were close to human

inter-annotator agreement values.

In recent years, Wikipedia has appeared as a promising conceptual network, in which the

relative noise and incompleteness due to its collaborative origin is compensated for by its

large size and a certain redundancy, along with availability and alignment in several languages.

Several large semantic resources were derived from it, such as a relational knowledge base

(DBpedia [Bizer et al., 2009]), two concept networks (BabelNet [Navigli and Ponzetto, 2010]

and WikiNet [Nastase et al., 2010]) and an ontology derived from both Wikipedia and WordNet

(Yago [Suchanek et al., 2008]).

WikiRelate! [Strube and Ponzetto, 2006] is a method for computing semantic relatedness

between two words by using Wikipedia. Each word is mapped to the corresponding Wikipedia

article by using the titles. To compute relatedness, several methods are proposed, namely,

using paths in the Wikipedia category structure, or using the contents of the articles. Our

method, by comparison, also uses the knowledge embedded in the hyperlinks between arti-

cles, along with the entire contents of articles. Recently, the category structure exploited by

WikiRelate! was also applied to computing semantic similarity between words [Ponzetto and

Strube, 2011]. Overall, however, WikiRelate! measures relatedness between two words and is

not applicable to similarity of longer fragments, unlike our method described in Chapter 4.

Another method to compute word similarity was proposed by Milne and Witten [2008a] using

similarity of hyperlinks between Wikipedia pages.

2.5 Text Semantic Relatedness

Several studies have measured relatedness of sentences or entire texts (a summary appears

in Table 2.1 on page 15). In a study by Syed et al. [2008], Wikipedia was used as an ontology

in three different ways to associate keywords or topic names to input documents: either

(1) by cosine similarity retrieval of Wikipedia pages, or (2) by spreading activation through

the Wikipedia categories of these pages, or (3) by spreading activation through the pages

hyperlinked with them. The evaluation was first performed on three articles for which related

Wikipedia pages could be validated by hand, and then on 100 Wikipedia pages, for which the

task was to restore links and categories (similarly to [Milne and Witten, 2008b]). The use of

a private test set makes comparisons with other work uneasy. In another text labeling task,

Coursey et al. [2009] have used the entire English Wikipedia as a graph (5.8 million nodes, 65

million edges) with a version of Personalized PageRank [Haveliwala, 2003] that was initialized

with the Wikipedia pages found to be related to the input text using Wikify! [Mihalcea and

Csomai, 2007]. The method was tested on a random selection of 150 Wikipedia pages, with

the goal of retrieving automatically their manually-assigned categories.

Ramage et al. [2009] have used Personalized PageRank over a WordNet-based graph to detect

paraphrases and textual entailment. They formulated a theoretical assumption similar to ours:

“the stationary distribution of the graph [random] walk forms a ‘semantic signature’ that can
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be compared to another such distribution to get a relatedness score for texts.”

Explicit Semantic Analysis (ESA), proposed by Gabrilovich and Markovitch [2007, 2009], in-

stead of mapping a text to a node or a small group of nodes in a taxonomy, maps the text to

the entire collection of available concepts, by computing the degree of affinity of each concept

to the input text. ESA uses Wikipedia articles as a collection of concepts, and maps texts to this

collection of concepts using a term/document affinity matrix. Similarity is measured in the

new concept space. Unlike our method, ESA does not use the link structure or other structured

knowledge from Wikipedia. Our method, by walking over a content similarity graph, benefits

in addition from a non-linear distance measure according to word co-occurrences.

ESA has been used as a semantic representation (sometimes with modifications) in other

studies of word similarity, such as a cross-lingual experiment with several Wikipedias by

Hassan and Mihalcea [2009], evaluated over translated versions of English data sets (see

Section 4.6 below). In a study by Zesch et al. [2008], concept vectors akin to ESA and path

length were evaluated for WordNet, Wikipedia and the Wiktionary, showing that the Wiktionary

improved over previous methods. ESA also provided semantic representations for a higher-

end application to cross-lingual question answering [Cimiano et al., 2009], and was used by

Yeh et al. [2009], to which we now turn.

Probably the closest antecedent to our study is the WikiWalk approach [Yeh et al., 2009]. A

graph of documents and hyperlinks was constructed from Wikipedia, then the Personalized

PageRank (PPR) [Haveliwala, 2003] was computed for each text fragment, with the teleport

vector being the one resulting from ESA. A dictionary-based initialization of the PPR algorithm

was studied as well. To compute semantic similarity between two texts, Yeh et al. simply

compared their PPR vectors. Their scores for word similarity were slightly higher than those

obtained by ESA [Gabrilovich and Markovitch, 2009], while the scores on document similarity

(Lee data set, see Section 4.7 below) were “well below state of the art, and show that initializing

the random walk with all words in the document does not characterize the documents well.”

By comparison, in our method, we also consider in addition to hyperlinks the effect of word

co-occurrence between article contents, and use a different random walk and initialization

methods.

Mihalcea and Csomai [2007] and Milne and Witten [2008b] discussed enriching a document

with Wikipedia articles. Their methods can be used to add explanatory links to news stories

or educational documents, and more generally to enrich any unstructured text fragment (or

bag-of-words) with structured knowledge from Wikipedia. Both perform disambiguation for

all n-grams, which requires a time-consuming computation of relatedness of all senses to the

context articles. The first method detects linkable phrases and then associates them to the

relevant article, using a probabilistic approach. The second one learns the associations and

then uses the results to search for linkable phrases.
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Article Resource Algorithm Task Data set

Jarmasz [2003], Jarmasz
and Szpakowicz [2003]

Roget Shortest path Word sim. M&C, R&G, Syn-
onyms

Mihalcea et al. [2006],
corpus-based

Web / BNC PMI-IR / LSA Paraphrase Microsoft

Mihalcea et al. [2006], six
knowledge-based

WordNet Shortest path,
IC, etc.

= =

Hughes and Ramage
[2007]

WordNet PPR Word sim. M&C, R&G, WS-
353

Gabrilovich and
Markovitch [2007]

Wikipedia ESA: TF-IDF +
Cosine sim.

Word sim., Doc.
sim.

WS-353, Lee

Agirre and Soroa [2009] ∼WordNet PPR WSD Senseval-2, 3
Zesch et al. [2008] WordNet,

Wikipedia,
Wiktionary

Path length,
concept vec-
tors

Word sim. M&C, R&G, WS-
353 + German

Strube and Ponzetto
[2006]

Wikipedia Shortest path,
categories, text
overlap

Word sim.,
coreference
resolution

M&C, R&G, WS-
353

Milne and Witten [2008a] Wikipedia Similarity of hy-
perlinks

Word sim. M&C, R&G, WS-
353

Hassan and Mihalcea
[2009]

Wikipedia Modified ESA Cross-lingual
word sim.

Translated M&C,
WS-353

Syed et al. [2008] Wikipedia Cosine sim.,
spreading
activation

Doc. classif. 3–100 handpicked
docs

Coursey et al. [2009] Wikipedia PPR Doc. classif. 150 WP articles
Ramage et al. [2009] WordNet PPR Paraphrase, en-

tailment
Microsoft, RTE

Gabrilovich and
Markovitch [2009]

Wikipedia ESA: TF-IDF +
Cosine sim.

Doc. clustering Reuters, 20NG,
OHSUMED, short
docs

Yeh et al. [2009] Wikipedia PPR Word sim., Doc.
sim.

M&C, WS-353, Lee

Present proposal Wikipedia Visiting Proba-
bility (VP)

Word sim.,
Doc. sim. and
clustering,
Classification,
IR

See Sections 4.6–
4.10.

Table 2.1: Comparison of the present proposal (last line) with previous work cited in this
section, in terms of resources, algorithms, NLP tasks, and data sets. The abbreviations for the
data sets in the rightmost column are explained in Section 4.6 . The methods are abbreviated
as follows: ESA for Explicit Semantic Analysis [Gabrilovich and Markovitch, 2007, 2009], LSA for
Latent Semantic Analysis [Deerwester et al., 1990], IC for Information Content [Resnik, 1995,
1999], PMI-IR pointwise mutual information using data collected by information retrieval [Tur-
ney, 2001, Mihalcea et al., 2006], and PPR for the Personalized PageRank algorithm [Haveliwala,
2003, Berkhin, 2005].
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3 Symmetric Random Walk on Large
Graphs: Approximation Algorithms
and Similarity Learning
In this chapter we define a random walk model, Visiting Probability (VP), to measure proximity

between two nodes in a graph. We show that using a symmetric proximity measure based

on the defined random walk improves the prediction performance of the proximity measure.

Moreover, we show how to apply the definition of VP within approximation algorithms in

order to perform ranking based on VP for large graphs. Besides, we define community of a

node according to VP similarity. Fast algorithms are designed to find the K-nearest neighbors

and identify communities over large graphs using symmetric VP proximity . We demonstrate

the effectiveness of the definitions and algorithms by evaluating them on a link prediction

task over various networks.

In the second part of this chapter, we show that any relation between two nodes in a graph

can be interpreted as the proximity between those two nodes in a latent space. Therefore, the

link structure of a graph can be modeled within a similarity learning framework, in which the

transformation of nodes to the latent space is trained using a discriminative model. We show

how to apply this framework to learn the similarity between two nodes based on the attributes

of the nodes, over large graphs. Moreover, we show that similarity learning on attributes

derived from random walk scores, specifically VP scores here, can model and predict better

the relations in the graph in comparison to learning on the network’s links directly. At the

end, we evaluate again the effectiveness of these models on link prediction task on various

networks.

3.1 Visiting Probability

In this section, we describe our method for computing proximity between two nodes in a

network. The goal is to estimate a distance between two nodes by taking into account the

global connectivity of the network, and without being biased by local properties.

Indeed, the use of individual links and paths, e.g. when estimating proximity as the length of

shortest path, does not take into account their relative importance with respect to the overall
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properties of the network, such as the number and length of all possible paths between two

nodes. Moreover, the length of the shortest path is quite sensitive to spurious links. Therefore,

a number of aggregated proximity measures based on random walk have been proposed in

the literature, such as PageRank (including Personalized PageRank) and hitting time. Previous

studied showed that these aggregated measures are more effective for link prediction rather

than individual links and paths [Brand, 2005, Sarkar and Moore, 2007, Liben-Nowell and

Kleinberg, 2003]. Following the same direction our proposal uses a random walk approach,

and defines the proximity of two nodes as the visiting probability (VP), in the long run, of a

random walker going from one node to the other one. We discuss in details the differences

with other popular random walk models and show how using VP enables us to design efficient

algorithm over large graphs.

3.1.1 Notations

Let S = {si |1 ≤ i ≤ n} be the set of n nodes in the network. Assuming that the graph is a directed

weighted multi-link graph, any two nodes si and s j can be connected by one or more directed

and weighted links, which can be of L different types. The structure of links of type l (1 ≤ l ≤ L)

is specified by the (sparse) matrix Al of size n ×n, where Al (i , j ) is the weight of the link of

type l between si and s j . The transition matrix Cl gives the probability of a direct (one step)

transition between nodes si and s j , using only links of type l . This matrix can be built from

the Al matrix as follows:

Cl (i , j ) = Al (i , j )∑n
k=1 Al (i ,k)

In the random walk process using all link types (1 ≤ l ≤ L), let the weight wl (
∑

l wl = 1) denote

the importance of link type l . Then, the overall transition matrix C which gives the transition

probability Ci , j between any nodes si and s j is C =∑L
l=1 wl Cl .

Moreover, let xi be the normalized real-valued vector of size 1×M representing the feature

vector of node si , where M is the number of possible attributes each node can have in the

graph.

Finally, let~r be the n-dimensional vector which indicates the probabilities of nodes in the

network, i.e. the probability that the random walker starts from each of the nodes, so that∑
i~ri = 1.

3.1.2 Definition of Visiting Probability (VP)

Given the nodes si and s j in the network, we compute the probability of visiting s j for the first

time when a random walker starts from si in the network. To compute VP, the following proce-

dure provides a model of the state (node) St of the random walker at step t . The probability of

terminating the procedure successfully, i.e. reaching s j , is the visiting probability of s j from si
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which is noted VPi j .

Step 0: Position the random walker on the node si . In other words, the initial probability

vector over nodes is: ~r 0
i = 1.

Step t : Assuming St−1 is determined, if St−1 = s j then return ‘success’ and finish the proce-

dure. Otherwise, with probability α, choose a value for the next node St according to

the transition matrix C , and with probability 1−α, return ‘fail’. The possibility of ‘failing’,

or absorption probability, introduces a penalty over long paths that makes them less

probable.

In the following we compute the probability of success in the above procedure which is equal

to the VP. We introduce C ′ as being equal to the transition matrix C , except that in row j ,

C ′( j ,k) = 0 for all k. This indicates the fact that when the random walker visits s j for the

first time, it can not exit from it and its probability mass drops to zero in the next step. This

modified transition matrix was defined to account for the definition of visiting probability

as the probability of first visit of s j (a similar idea has been proposed by Sarkar and Moore

[2007]).

To compute the probability of success in the above process, we introduce the probability of

success at step t , p t (success), which is p t (success) =αt (~r 0C ′t ) j . In this formula, (~r 0C ′t ) j is

the j th element of the vector ~r 0C ′t , and C ′t is the power t of matrix C ′. The vector ~r 0C ′t gives

the probability vector at time t , noted ~r t .

Then, the probability of success in the process, i.e. the probability of visiting s j starting from

si , is the sum over all probabilities of success with different lengths:

p(success) =
∞∑

t=0
p t (success) =

∞∑
t=0

αt (~r 0C ′t ) j .

In the following sections, we introduce some properties of VP and afterward according to

those properties we design fast algorithms to compute VP. But first in the following section we

discuss the importance of a symmetric measure for many tasks.

3.1.3 Importance of a Symmetric Measure: Visiting Probability ‘to’ vs. ‘from’

In both directed and undirected graphs VPi j is not symmetric, although proximity (or similar-

ity) should be symmetric. Moreover, we will show experimentally that a symmetric measure

can model and predict the graph structure more accurately.

To compute a symmetric proximity measure between two nodes si and s j , we average between

their visiting probabilities VPi j and VP j i . A larger value of the measure indicates closer

proximity. We can interpret the difference between the two scores VPi j and VP j i in the specific
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context of a given network. Let VP:i represent the vector of VP from all nodes to the node si

and VPi : represent the vector of VP from si to all nodes in the network. If sk is a top score node

in VP:i , then there are many high probability paths from sk to si , in comparison to other nodes

in the networks. Depending on the underlying meaning of each link (path) in the network, we

can interpret the difference between VP to and from a node in various ways. To illustrate the

difference between VP to and from, we consider an example from the network of Wikipedia

articles and the hyperlinks between them. Considering the article ‘Anarchism’ in Wikipedia,

the ten closest articles in terms of VP from the article, and respectively to it, were found to be

the following ones:

• Ten closest articles according to their VP to the article: ‘Social Revolutionary Anarchist

Federation’, ’James Koehnline’, ’Toma Bebic’, ’Social insertion’ ,’Robert Graham (his-

torian)’, ’Institute for Anarchist Studies’, ’Ernesto Bonomini’, ’Anarchy in the Age of

Dinosaurs’, ’Bruno Wille’.

• Ten closest articles according to their VP from the article: ’Anarchism’ , ’Situationist

International’, ’Anarchist schools of thought’, ’Issues in anarchism’, ’Individualist anar-

chism’, ’Anarchism and anarcho-capitalism’, ’Anarchism in Spain’, ’History of anarchism’,

’Anarchism and Marxism’, ’Anarchism in the United States’.

The closest articles according to VP from an article tend to be more general topics than closest

articles according to VP to the article. For instance, the first list above includes anarchists

and anarchism communities, while the second one includes more abstract topics related to

anarchism.

The behavior illustrated on this example is expected given the definition of VP. An article that

is close to a target article has more paths to the target article with respect to other articles in

the network, which means that the article is topically more specific with respect to the target

article, as in the above example. This is caused by the definition of hyperlinks in Wikipedia:

article A links to article B if B is needed to explain A, meaning typically that A is more specific

(more detailed). Conversely, an article that is close from an initial article is likely to be a general

and popular article around the topics of the initial article. If we consider the hierarchy between

articles from more general to more specific ones, then articles close to an article are generally

lower in the hierarchy, and article close from an article are higher. Therefore, by using the

average score between VP to and from we can make a more accurate proximity (similarity)

measure that can find articles at similar level in this hierarchy.

In the following section we prove some properties of VP that are used in the algorithms

afterward.
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3.1.4 Properties of VP

In this section, first we introduce some definitions and then we prove some propositions about

the properties of VP. We remind first that the VP from si to s j by using all paths with length at

most t is given by VPt
i j which is computed as follows:

VPt
i j =

t∑
p=0

αp (~r 0C ′p ) j where ~r 0
i = 1 , C ′(i , :) =

{
C (i , :) if i 6= j

0 otherwise

Let’s denote the probability of failing the procedure to compute VP by using at most t steps by

lostt
i j . In other words, if we consider the traveling of random walker starting from si to s j , the

value of lostt
i j is the total probability of absorption until step t .

Moreover, we define remt
i j = 1− (lostt

i j +VPt
i j ) , which is the probability of not having termi-

nated the procedure until step t . In other words, the probability of returning neither success

nor failure in the first t steps can be computed as:

remt
i j =

n∑
i 6= j

αt (~r 0C ′t )i

This is in fact the probability mass at time t at all nodes except s j , the targeted node. Given

these definitions we formulate the following propositions (to simplify the notations we omit

the indices i j ):

1. VPt+1 ≥ VPt , lostt+1 ≥ lostt , remt+1 ≤ remt

2. remt+1 = remt ×α− (VPt+1 −VPt )

3. VP ≤ VPt + remt ×α︸ ︷︷ ︸
uppert

and uppert+1 ≤ uppert

Proofs (given here in condensed form) are derived from the definition of VP:

1. VPt+1 = VPt +αt+1(~r 0C ′t+1) j︸ ︷︷ ︸
≥0

⇒ VPt+1 ≥ VPt

lostt+1 = lostt︸︷︷︸
probability of failing until t

+ (1−α)
∑
i 6= j

αt (~r 0C ′t )i︸ ︷︷ ︸
probability of failing at t +1

⇒ lostt+1 ≥ lostt

remt+1 = 1− (lostt+1 +VPt+1)≤ 1− (lostt +VPt )︸ ︷︷ ︸
according to the above

= remt ⇒ remt+1 ≤ remt

2. remt+1 = P (’not terminated until t ’∧’not failed at (t +1)’)−P (’visiting j at (t +1)’) = remt×
α− (VPt+1 −VPt )
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3. for any T > t , VPT = VPT−1+α×remT−1−remT = VPT−2+α×remT−2+(α−1)×remT−1−
remT = . . . = VPt + remt ×α+ . . .+ (α−1)× remT−2 + (α−1)× remT−1 − remT︸ ︷︷ ︸

≤0

≤

VPt +α× remt︸ ︷︷ ︸
upper bound for the value of VP

In summary, we showed that at each step t we can find the upper bound for the final value

of the VP. Moreover, the upper bound and the value of VPt are getting closer as t increases.

We will use these propositions to design fast algorithm to perform ranking and k-nearest

neighbors.

3.1.5 Relation to other Random Walk Models

In this section we discuss the relation between VP and two popular random walk measures

which have been studied extensively and used in many applications: Hitting Time [Aldous

and Fill, 2002, Liben-Nowell and Kleinberg, 2003, Sarkar and Moore, 2007, Sarkar et al., 2008]

and Personalized Page Rank (PPR) or also known as random walk with restart [Haveliwala,

2003, 2002, Tong et al., 2006, Fogaras et al., 2005].

First we define with our own notations the Personalized Page Rank process started from node

si . If~r t represents the probability distribution on all nodes in the graph at step t and~r 0
i = 1,

then its value in personalized page rank process is given by:

~r t = (1−α)×~r 0 +α×~r t−1 ×C

and consequently we define PPRt
i j =~r t

j where~r 0
i = 1. In this context~r 0 is also called teleport

vector because at each step with probability 1−α the random walker jumps to this starting

distribution,~r 0.

In cyclic graphs, in the computation of VP, the loops starting from s j and ending to s j do not

have any effect on the final score, unlike the computation of PPR, for which such loops boost

the probability of s j . If some nodes have this type of loops (typically “popular” nodes), then

after using PPR they will have high probability although they might not perceived as being

very close to the initial node si . But if the graph is acyclic, then we can show that the ranking

resulting from VP is equal to the ranking from PPR. More specifically, we can show that in

acyclic graphs, for every nodes si , s j and sk :

VPi j > VPi k ⇔ PPRi j > PPRi k

To prove the above equivalence, we expand PPRt
i j , and for simplicity we denote PPRi j as PPR j :

PPRt
j = (1−α)×~r 0

j +α(1−α)×(~r 0C ) j +α2(1−α)×(~r 0C 2) j +·· ·+αt−1(1−α)(~r 0C t−1) j +αt (~r 0C t ) j

If we consider again the definition of C ′ given earlier, we have (~r 0C ′t ) j ≤ (~r 0C t ) j , because row

22



3.1. Visiting Probability

j of C ′ is zero. But if the graph is acyclic there is no loop on j , therefore, (~r 0C ′t ) j = (~r 0C t ) j .

PPRt
j = (1−α)× ( ~r 0

j︸︷︷︸
0

+α(~r 0C ′) j +α2(~r 0C ′2) j +·· ·+αt−1(~r 0C ′t−1) j︸ ︷︷ ︸
VPt−1

j

)+αt (~r 0C ′t ) j

= VPt−1
j +αt (~r 0C ′t ) j︸ ︷︷ ︸

VPt
j

−α×VPt−1
j = VPt

j −α×VPt−1
j

(3.1)

We use the fact that both VP and PPR converge when t increases, therefore:

PPR j = (1−α)×VP j ⇒ VPi j > VPi k ⇔ PPRi j > PPRi k

If the graph is cyclic, then the PPR score of nodes with self loops is boosted more than the value

they really deserve. Usually popular nodes have these kinds of self loops and may inaccurately

appear between top score nodes.

Moreover, as we explained earlier, for many applications a symmetric measure can represent

more accurately the proximity between nodes. The definition of VP – as the probability of

visiting the target node for the first time – allows us to define a symmetric proximity measure

straightforwardly, and more importantly to design fast algorithms to apply this symmetric

measure to large networks, as we discuss in the next section (3.2).

To emphasize again the importance of a symmetric measure for many applications, we il-

lustrate our position with the results of the following experiment. Given a query node in

a network, we exclude one of its neighbors and use random walk measures to rank other

nodes by their proximity, in order to find the missing neighbor. Table 3.1 shows the recall

at 50 averaged over 1000 randomly chosen nodes as query nodes on two networks, Amazon

products networks (nodes: 548,551, edges: 1,231,439) and Wikipedia articles network (nodes:

1,264,611, edges: 35,214,537). Amazon products networks is described in Leskovec et al. [2007],

consisting of products in Amazon online shop and the links between them comes directly

from the Amazon website: for each product, some of the co-purchased products are shown

by Amazon. Each product in the network is connected to the products which are claimed to

be mostly co-purchased by the Amazon website. Wikipedia network is consisting of English

Wikipedia articles and the hyperlinks between them.

Random Walk Model R@50 Amazon Products R@50 Wikipedia Articles

PPR 66.10 39.40
Symmetric VP 79.80 42.80

Table 3.1: Average recall at 50 (in percentage) for 1000 randomly chosen nodes on two networks:
Amazon Products and Wikipedia articles

The experimental results on these two large networks show that the symmetric VP can repre-
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sent a more accurate proximity measure for link formation in comparison to PPR.

A second popular measure is hitting time. The hitting time from si to s j is defined as the

average number of steps a random walker would take to visit s j for the first time in the graph.

If we use the same notations, the hitting time from si to s j is Hi j =∑∞
t=0 t (~r 0C ′t ) j . Hitting time

is more sensitive to long paths in comparison to VP (t in comparison with αt in the formula),

which might introduce more noise, while VP reduces the effect of long paths sooner in the

walk.

Moreover, because of the linear nature of the penalty for long paths (t in the above formula),

it is not possible to determine an upper bound (or lower bound) on H scores and therefore,

designing fast algorithms to perform various tasks is not simple. On the contrary, in the

definition of VP, the penalty for long paths is increasing exponentially (αt in the above formula)

and therefore, we can determine upper bounds on VP scores and use them for designing fast

algorithms, as we describe in the next section.

In previous studies, truncated hitting time was used to overcome these problems [Sarkar

and Moore, 2007, Sarkar et al., 2008], i.e. only paths of length at most T were used in the

computation, and any path with length more than T was assumed to have the length T .

Although this hard threshold approach solves the above problems heuristically, it still leaves

open a difficult design choice of T – with performance being very sensitive to its value. On the

contrary, αt represents a soft threshold which leads to higher performance and is less sensitive

to the choice of parameter. Table 3.2 shows the average recall at 10 for 1000 query nodes

on two networks: Facebook of Carnegie Mellon University (nodes: 6637, edges: 249967) and

Wikipedia articles (nodes: 1,264,611, edges:35,214,537). The Facebook data set is described

in Traud et al. [2011], and is consisting of students and faculty members of Carnegie Mellon

University and the friendship between them. The parameters of the algorithms are tuned on a

validation set (T = 3, α= 0.4, ε= 0.1).

Random Walk Model R@10 Facebook R@10 Wikipedia Articles

Hitting Time 24.70 20.80
VP 25.80 22.60

Table 3.2: Average recall at 10 (in percentage) for 1000 randomly chosen nodes on two networks:
Facebook and Wikipedia articles

3.2 Approximations: ε-Truncated Visiting Probability

The above definition of the random walk procedure has one direct consequence: computation

can be done iteratively and can be truncated after T steps when needed, while the error

upper bound remains guaranteed. This helps especially to maintain computation time within

acceptable limits. Truncation makes sense as higher order terms (for longer paths) get smaller

with larger values of t because of the αt factor. Moreover, besides making computation

tractable, truncation reduces the effect of longer (hence less reliable) paths on the computed
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value of p(success). Indeed, VP to popular vertices (i.e. to which many links point) might be

quite high even when they are not perceived as being close to the starting node, due to the

high number of long paths toward them, and truncation conveniently reduces the importance

of such vertices. We propose in this section two methods for truncating VP.

3.2.1 Path Insensitive ε-Truncated Visiting Probability

The simplest method, called path insensitive ε-truncated VP, truncates the computation for

all the paths when the error is known to be smaller than ε. To compute the upper bound

on the number of iterations needed before truncation, we make use of the propositions we

introduced in the last section: εt = VPi j −VPt
i j ≤ remt

i j ×α=∑n
i 6= j α

t+1(~rC ′t )i .

So, if VPt is used as an approximation for VP, then an upper bound for this approximation

error εt is the right term of the above inequality. This term decreases over time because αt+1

and
∑n

i 6= j (rC ′t )i are both decreasing over time, therefore εt decreases when t increases and its

computation is truncated when the error is acceptable. In the rest of this document we refer

to this method as truncated visiting probability.

3.2.2 Path Sensitive ε-Truncated Visiting Probability

A second approach, referred to as path sensitive ε-truncated VP, truncates paths with lower

probabilities in earlier steps and lets paths with higher probabilities continue more steps.

Given that the probability of being at si at time step t is αt (rC ′t )i , if this is neglected and set to

zero, then the error caused by this approximation is at mostαt (rC ′t )i . Setting this term to zero

means exactly that paths that are at si at time step t are no longer followed afterwards. So, in

ε-truncation, paths with a probability smaller than ε are not followed, i.e. when αt (rC ′t )i ≤ ε.

This approach is faster to compute than the previous one, but no upper bound of the error

could be established. We use the path sensitive ε-truncated VP in some of our experiments in

the next chapter, leading to competitive results in an acceptable computation time.

3.2.3 Truncated Visiting Probability Between all Vertices and a Query

In many applications – including clustering, information retrieval and recommendation

systems – given a query node the rest of nodes should be sorted based on a proximity measure.

In this section we design algorithms to compute truncated VP between a query node (vertex)

and the rest of the nodes (vertices) in a large graph within an acceptable time limit. We

explained earlier that there is a difference between VP from and to a vertex. In the following

we design algorithms for both VP from a query node to the rest of nodes, and the reverse, i.e.

from all nodes to a query node.
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Truncated Visiting Probability from all Vertices to a Vertex

It is possible to compute VP from all nodes towards s j at the same time, using the following

recursive procedure to compute truncated VP. This procedure follows from the recursive

definition of VP given in Section 3.1.2, which states that VPi j =α×∑
k C ′(i ,k)VPk j . Therefore,

using dynamic programming, it is possible to compute truncated VP from all nodes to s j in

O(ET ) steps, where E is the number of edges of the network and T is the maximum number

of iterations that will be performed, which is at most logα ε. Algorithm 1 shows the pseudo

code for the described method.

Algorithm 1 Truncated VP from all nodes to s j : VPto(α,C′,ε, j)

VP0
i = 0 ∀i 6= j , VP0

j = 1

rem0
i = 1 ∀i 6= j , rem0

j = 0
errori = 1 ∀i 6= j , error j = 0
Ti = 1
while ∃i , errori ≥ ε do

for ∀i , errori ≥ ε do
VPTi

i =α×∑
k C ′(i ,k)VPTi−1

k

remTi

i =α× remTi−1
i − (VPTi

i −VPTi−1
i )

errori =α× remTi

i
Ti = Ti +1

end for
end while

Truncated Visiting Probability from a Vertex to all Vertices

To compute truncated VP from si to all nodes in the network, we should distinguish two cases,

cyclic and acyclic graphs. If the graph is acyclic we can design a dynamic programing algorithm,

similar to the algorithm above, that compute VP to all nodes efficiently. VP considers the

first visit of the target node, therefore, when the graph is cyclic we should keep track of all

nodes that have been visited to avoid the effect of loops. In this case, the algorithm has more

complexity as it stores all the paths expanded from the node si . In the following we first

introduce the algorithm for acyclic graphs, then we design the algorithm for cyclic graphs, and

eventually we introduce a sampling approximation algorithm to approximate truncated VP

from a node to all nodes in dense large cyclic graphs.

Truncated Visiting Probability from a Vertex to all Vertices: Acyclic

If the graph is acyclic we do not need to worry about loops and, therefore, it is possible to

compute VP to all nodes from si at the same time, using again a recursive procedure. It is

possible to define VP with the following recursive definition: VPi j = α×∑
k VPi k ×C ′(k, j ).

Therefore, using dynamic programming, it is possible to compute truncated VP to all nodes

from si in O(ET ) steps, where E is the number of edges of the network and T is the maximum
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number of iterations that will be performed, which is at most logα ε. Algorithm 2 shows the

pseudo code for the described method.

Algorithm 2 Truncated VP to all nodes from si : VPfromAcyc(α,C′,ε, i)

VP0
j = 0 ∀ j 6= i , VP0

i = 1

rem0
j = 1 ∀ j 6= i , rem0

i = 0
error j = 1 ∀ j 6= i , errori = 0
T j = 1
while ∃ j , error j ≥ ε do

for ∀ j , error j ≥ ε do

VP
T j

j =α×∑
k VP

T j−1
k ×C ′(k, j )

rem
T j

j =α× remT j−1 − (VP
T j

j −VP
T j−1
j )

error j =α× rem
T j

j
T j = T j +1

end for
end while

Truncated Visiting Probability from a Vertex to all Vertices: Cyclic

If the graph is cyclic we cannot use the previous algorithm as it is ignorant about the loops. To

compute VP to all nodes from si we start from si , and expand paths originating from si until

the error of VP to all nodes is smaller than the ε.

In a nutshell, the main idea of the algorithm is the following one. At iteration t we expand the

path with maximum probability one step forward to find all paths generated from this path.

Consequently we compute the probability of each new path based on the probability of the

originating path and the transition probability from C . If the last vertex of a new path has not

been previously visited in that path, then the VP to that vertex is increased by the probability

of this path. The iterations go on until the error becomes smaller than ε. Algorithm 3 shows

the pseudo code for this algorithm.

If we consider that the average number of edges per node is b, then there are bT paths of length

T in average. The worst time complexity of the algorithm is linear with the number of paths at

t . Therefore, if the graph is large and dense the above algorithm is not applicable because it is

too time-consuming. We will thus propose an approximation algorithm for truncated VP to all

nodes based on sampling.

Approximated Truncated Visiting Probability from a Vertex to all Vertices: Sampling

As stated above, if the graph is large and dense, then the previous algorithm to compute VP

from si to the other nodes is too time-consuming. To obtain an error bound of ε, only paths

of length at most T = dlogα εe should be considered. We design a sampling algorithm which

samples paths of length at most T , originating from si , to approximate the value of truncated
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Algorithm 3 Truncated VP to all nodes from si : VPfrom(α,C′,ε, i)
VP j = 0 ∀ j 6= i , VPi = 1
rem j = 1 ∀ j 6= i , remi = 0
error j = 1 ∀ j 6= i , errori = 0
Paths.add(i )
Pr.add(1)
while ∃ j , error j ≥ ε do

p = Paths.maxProb()
j = lastNode(p)
C hi ldr en = getChildren( j )
rem = rem− (1−α)×Pr (p)
for ∀c ∈C hi ldr en do

Paths.add(p->c)
Prob =α×Pr (p)×C ′( j ,c)
Pr.add(Prob)
if c ∉ p then

VPc = VPc +Prob
remc = remc −Prob

end if
end for
Paths.remove(p) , Pr.remove(p)
error =α× rem

end while

VP from si to all other nodes.

The sampling involves running M independent T -length random walks from si . To approxi-

mate VPT to node s j from si , if s j has been visited for the first time at {tk1 , · · · , tkm } time steps in

the M samples, then the T -truncated VP to s j can be approximated by the following average:
ˆVPT

i j = (
∑

l α
tkl )/M . The algorithm 4 shows the pseudo code for this sampling algorithm.

According to the proposed method, it is possible to approximate truncated VP from si to all

nodes in the network in O(MT) time, where M is number of samples. It remains to find out

how many samples should be used to obtain the desired approximation level, a question that

is answered by the following theorem.

Theorem 1. For any vertex, the estimated truncated VP approximates the exact truncated VPT

to that vertex within ε with a probability larger than 1−δ if the number of samples M is larger

than α2 ln(2n/δ)
2ε2 .

Proof. The proof of this theorem, inspired by the proof in Sarkar et al. [2008], is given below.

Let us note the estimation of a variable X by X̂ , and suppose that node s j has been visited

for the first time at {tk1 , · · · , tkM } time steps in the M samples. We define the random variable

X l by αtkl /M , where tkl indicates the time step at which s j was visited for the first time in l th
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Algorithm 4 Truncated VP to all nodes from si : VPfromSample(α,C′,T,M,i)
VP j = 0 ∀ j 6= i , VPi = 1
for s = 1 : M do

samples.add(i )
for t = 1 : T do

CurrentNode = samples.getLast
c = choose randomly one children of CurrentNode according to C ′

if c ∉ samples then
VPc+=αt

end if
end for
samples.clear

end for
VP j = VP j

M ∀ j 6= i

sampling. If s j was not visited at all, then X l = 0 by convention. The l random variables X l

(k1 ≤ l ≤ kM ) are independent and bounded by 0 and 1 (0 ≤ X l ≤ 1). We have ˆVPT
i j =∑

l X l =
(
∑

l α
tkl )/M and E( ˆVPT

i j ) = VPT
i j . So, by applying Hoeffding’s inequality, we have:

P (| ˆVPT
i j −E( ˆVPT

i j )| ≥ ε) ≤ 2exp(−2Mε2

α2 )

If the probability of error must be at most δ, then setting the right side to a value smaller than

δ gives the bound for M that is stated in our theorem.

As a consequence, we have the following lower bound for M if we look for an ε-approximation

for all possible s j with probability at least 1−δ. We use the union bound and Hoeffding’s

inequality to prove that:

P (∃ j ∈ {1 · · ·n}, | ˆVPT
i j −E( ˆVPT

i j )| ≥ ε) ≤ 2n ×exp(−2Mε2

α2 )

which gives the desired lower bound M ≥ α2 ln(2n/δ)
2ε2 .

3.3 Fast Computing of Nearest Neighbors of a Query Node

In many applications including recommendation, retrieval and KNN classification, given a

query node only the few closest nodes to the query are important. It is theoretically possible to

directly use the algorithms proposed in the previous section to find the truncated VP between

a given (query) node and all other nodes, and then simply return the K closest nodes after

sorting all nodes. However, in most graphs, it is possible to design even faster algorithm to

find the closest nodes to a given query node in terms of VP similarity.
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3.3.1 Fast K -Nearest Neighbors of a Query Node

We can make use of the propositions we know about VP scores to design a fast K -nearest

neighbors algorithm. We showed that for each t we can determine an upper bound for the

value of VP, and moreover, we showed that the upper bound is converging towards VPt when

t increases. Using these facts, the fast algorithm is intuitively as follows.

Given a query node, at the beginning we have no information about VP between the query

node and any other node in the network. In the next step, we consider all paths of length 1

from and to the query node. After that, we have the VP1 and upper bound for the value of VP

for all nodes in the graph. Still, the difference between the upper bound and VP1 might be

large for many nodes at this step. We sort the nodes by their decreasing VP1 values and pick

the node at position K .

Two scenarios might happen at this stage. First, it may happen that there is no node at any

position after K that has an upper bound larger than the VP1 of the node at position K . In this

case we return the first K nodes and terminate the algorithm, because no node at position

after K can have a larger VP than any node at any position below K , even if we develop paths

of all lengths.

Figure 3.1: Fast KNN algorithm: schematic representation of the situation in which the VPt

of the node at the position K is larger than the upper bound of all the nodes after it. The
notations are those from Algorithm 5.

Second, there might be nodes at positions after K that have upper bounds larger than VP1

of the node at position K . In this case, we compute the VP2 for these nodes and the node at

position K and sort again the nodes based on these new values. Again, we consider the node at

position K (which might have of course changed after sorting) and repeat the same algorithm,

which will either terminate and return the first K nodes, or will consider again longer paths. In
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the long run, the recursion will certainly terminate because the upper bounds converge to VPt

eventually. Figure 3.1 shows schematically the situation in which the VPt of the node at the

position K is bigger than the upper bound of the nodes ranked after it.

In the algorithm 5 we give the pseudo code of the algorithm. We will analyze the efficiency of

this algorithm experimentally later in this chapter.

Algorithm 5 KNN for si : KNN(α,C′,ε, i,K)

VP0
j = 0 ∀ j 6= i , VP0

i = 1

rem0
j = 1 ∀ j 6= i , rem0

i = 0
error j = 1 ∀ j 6= i , errori = 0
upper j = VP0

j +α× rem0
j

T j = 1
sorted = sort(VPT )
while (∃ j ∈ sorted(K +1 : N ) ,VPT

sorted(K ) ≤ upper
T j

j ) ∧ (error j ≥ ε) do

for ∀ j ∈ sorted(K : N ) ,VPT
sorted(K ) ≤ upper

T j

j ) ∧ (error j ≥ ε) do

VP
T j

j = compute based on VPT j−1

rem
T j

j =α× remT j−1 − (VP
T j

j −VP
T j−1
j )

error j =α× rem
T j

j

upper j = VP
T j

j +α× rem
T j

j
T j = T j +1

end for
sorted = resort(VPT )

end while

3.3.2 Community of the Query Node

In this section, we consider small-world networks and briefly survey the fact that many

networks have been shown to be small-world networks in previous studies. Then, we show

that there is a well-defined community for a query node in a small-world network, and design

a fast algorithm based on VP to perform community identification for a given query node.

A small-world network is a type of graph in which most nodes are not neighbors of one another,

but most nodes can be reached from any other node by a small number of transitions [Watts

and Strogatz, 1998]. In other words, nodes form “local” communities and these communities

are connected together by short paths.

It has been shown that many real-world complex systems can be modeled by small-world net-

works, such as for instance metabolite processing networks [Wagner and Fell, 2001], chemical-

reaction networks [Alon et al., 1999], neural networks [Watts, 2003], food webs [Pimm et al.,

1991], social networks [Carrington et al., 2005], scientific-collaboration networks [Vanraan,

1990] and the entire World Wide Web [Adamic and Huberman, 2000, Barabási and Albert,

1999].
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Therefore, if we consider a random walker starting from a query node in a small-world net-

work, only few nodes are likely to be visited in this process, though not necessarily the direct

neighbors of the query node. To justify experimentally this statement, let us consider the

following process. Given a network and a query node, we sort all the nodes in the network

according to their symmetric VP scores. To increase the robustness of our experiment, we

repeat this process for a large number of query nodes and average for each query node the

scores of the nodes in the VP ranking list. Moreover, before averaging, we remove the direct

neighbors of the query node from this ranked list. The final descending ranked list gives us

the average VP scores of each position considering only the nodes that are not directly linked.

For example, the first number is the average VP score of the closest (in terms of VP) not-linked

node to the query node.

Figure 3.2 shows the average VP scores at the top 50 nodes in the ranked list explained

above for the five following networks: Cora (average on all nodes), CiteSeer (average on all

nodes), WebKB (average on all nodes), Amazon Products co-purchased network (average on

1000 nodes chosen randomly), English Wikipedia network (average on 1000 nodes chosen

randomly). The detailed description of the data sets WebKB, CiteSeer and Cora can be found

in Section 3.3.3. It appears that for any query node, there are only very few nodes (3–5) with

high VP, as the curves decrease rapidly. The remaining of nodes are not likely to be visited by a

random walker starting from the query node. Intuitively, by looking at the figures, we can find

the size of the community of a query node, and we formalize below this intuitive concept of

community.

If the nodes are sorted according to their VP as in Figure 3.2, then we can intuitively conclude

that the community boundary is where the VP scores of nodes become negligible. If we

note the ranked list of VP values between si and the rest of (not directly connected) nodes as

VPa1 ,VPa2 , . . . ,VPaN , then the community of the node si , noted Si , can be defined as:

Si = {sa1 , sa2 , . . . sa j } so that

∑ j
h=1 VPah∑N
h=1 VPah

≥ Tr, where Tr is a fixed threshold.

Fast Community Identification

We propose now a fast algorithm to identify the community of a given query node. Similar to

the fast K -nearest neighbors algorithm we proposed in Section 3.3.1, we design an algorithm

that finds the community of a node without expanding all paths from and to the query node.

Using the previous propositions about VP, we can show that
∑ j

h=1 VPt
ah∑N

h=1 uppert
ah

≤
∑ j

h=1 VPah∑N
h=1 VPah

for any

given t , because always uppert
j is bigger than VP j . Therefore, if at any position j in the ranked

list we have
∑ j

h=1 VPt
ah∑N

h=1 uppert
ah

≥ Tr, then we know the community of si is until j .
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(a) Cora Network (b) CiteSeer Network

(c) WebKB Network (d) Amazon Network

(e) Wikipedia Network

Figure 3.2: Average VP for the top 50 not-linked closest nodes on Cora, CiteSeer, WebKB,
Amazon Products and Wikipedia networks. The VP values decrease rapidly after the first few
nodes.
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The algorithm in summary is the following. At the first step we consider only paths of length

one to and from the query node. All the nodes are sorted according to their VP1. If there exist a

position j ≤ K that satisfies the conditions above, the community is until j (note that K is the

maximum size of the community that must be given by the user). If there is no such a position

j , then we expand all paths by one and consider all paths of length at most 2, and sort again

the nodes according to their new VP scores. Again, if there exists a position that satisfies the

condition, the algorithm is terminated; otherwise, we expand all the paths by one more node.

Algorithm 6 gives the pseudo code of the explained algorithm.

Algorithm 6 Community Identification for si : Comm(α,C′,ε, i,K)

VP0
j = 0 ∀ j 6= i , VP0

i = 1

rem0
j = 1 ∀ j 6= i , rem0

i = 0
error j = 1 ∀ j 6= i , errori = 0
upper j = VP0

j +α× rem0
j

T = 1
sorted = sort(VPT )
while (∃ j ,error j ≥ ε) do

for j = 2 : K do

if
∑ j

h=1 sortedh∑K
h=1 upperh

≥ Tr then

return sorted(1 : j )
end if

end for
T = T +1
for ∀ j 6= i do

VPT
j = compute based on VPT−1

remT
j =α× remT−1

j − (VPT
j −VPT−1

j )

error j =α× remT
j

upper j = VPT
j +α× remT

j
end for
sorted = resort(VPT )

end while
for j = 2 : K do

if
∑ j

h=1 sortedh∑K
h=1 sortedh

≥ Tr then

return sorted(1 : j )
end if

end for

3.3.3 Experimental Results on Link Prediction

In this section, we perform experiments on various networks to validates the above assump-

tions empirically. We use three data sets which have been frequently used for the collective

classification problem (more details about them can be found in Sen et al. [2008]):
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• The Cora dataset consists of papers in the field of machine learning. The papers were

selected so that in the final corpus every paper cites or is cited by at least one other

paper.

• The CiteSeer dataset contains a selection of papers in the field of computer science.

Again, the papers were selected so that in the final corpus every paper cites or is cited by

at least one other paper.

• The WebKB dataset contains webpages and hyperlinks between them, gathered from

four different universities.

A set of binary features or attributes is defined for each object (in all data sets), which are the

presence or absence of a given word. All data sets are in the form of directed graphs. Statistics

for the data sets are given in Table 3.3.

Data Set Edges Attributes
Cora 5429 1440

CiteSeer 4715 3709
WebKB 1608 1709

Table 3.3: Number of edges and attributes of the data sets.

We test our proximity measures over a link prediction task by using a ranking framework, as

follows. Link prediction can be formulated as a ranking problem: given a query node, all

other nodes must be sorted according to the likelihood of creating a link between them and

the query node. In our proposal, the nodes are ranked using the VP proximity measure, in

comparison to other measures proposed in the literature. We perform ten-fold cross validation

on links and report the average precision and recall. In other words, we divide the set of edges

to ten random sets and test the link prediction performance of one set when all other sets are

available. The experiments are done with α= 0.6.

Tables 3.4, 3.5 and 3.6 show the performance of different methods on the networks. The

Adamic & Adar proximity measure, which is based on common neighborhood, showed very

high performance in previous studies [Adamic and Adar, 2001, Liben-Nowell and Kleinberg,

2003] and therefore, we used it here as a competitive baseline. We can observe that, over all

data sets, exploring more than the direct neighbors by using random walk models improves

the performance in comparison to Adamic & Adar proximity.

Moreover, in all tested networks, the symmetric measure gives us the highest performance at

5 in comparison to other random walk models, which confirms again the effectiveness of the

proposed symmetric measure. Tables 3.4, 3.5 and 3.6 also report the average of the longest

paths that are needed to be explored by VP in order to find the closest 5 nodes to each query

node: the longest path we need to expand is less than 9 steps in all three networks.
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Finally, we observe that the highest precision and recall are reached by the method that

identifies the community of each query node presented in Section 3.3.2 above. The community

identification algorithm can successfully find the nodes which are likely to form a link with

the query node and outperforms the methods based on ranking of the nodes.

Model Precision Recall Avg. longest path Community size

Adamic & Adar @5 3.18 12.40 - -
PPR @5 4.06 15.84 - -
VP @5 4.25 16.32 8.8 -
VP Sym. @5 5.17 20.66 8.86 -
VP + Comm. Identification 8.03 19.66 8.96 6.26
VP Sym.+ Comm. Identification 8.29 23.97 8.89 6.72

Table 3.4: Average precision and recall on the Cora network for the link prediction task de-
scribed in Section 3.3.3

Model Precision Recall Avg. longest path Community size

Adamic & Adar @5 2.13 8.93 - -
PPR @5 2.65 10.89 - -
VP @5 2.83 11.46 8.93 -
VP Sym. @5 3.10 12.96 8.89 -
VP + Comm. Identification 6.54 13.06 8.97 3.24
VP Sym.+ Comm. Identification 6.33 14.73 8.92 3.70

Table 3.5: Average precision and recall on the CiteSeer network for the link prediction task
described in Section 3.3.3

Model Precision Recall Avg. longest path Community size

Adamic & Adar @5 2.41 10.14 - -
PPR @5 3.78 15.41 - -
VP @5 3.80 14.88 8.85 -
VP Sym. @5 7.26 31.56 8.68 -
VP + Comm. Identification 5.50 17.19 8.92 3.87
VP Sym.+ Comm. Identification 10.94 33.75 8.63 4.88

Table 3.6: Average precision and recall on the WEBKB network for the link prediction task
described in Section 3.3.3

3.4 Learning Embeddings for Latent Space Model of Networks

Homophily – the fact that two nodes having similar ”social characteristics” have a higher

probability to be linked – is an important and widely accepted assumption in the study of

social networks. The homophily principle applies to network relations of many types, such

as marriage, friendship, work, advice, support, information transfer and co-membership
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[McPherson et al., 2001]. The “social characteristics” of nodes are derived from various

attributes of a node, for example, age, sex, geographic location, college/university, work place,

hobbies/interests. Homophily, though, might not hold in the space of the attributes: for

example, marriage only occurs between different genders (in most countries).

The space that is formed by the “social characteristics” or “latent features” is called social

space or latent space. It is assumed that homophily holds in this latent space. Statistical

models have been previously designed to associate every node with locations in this latent

space. Links are more likely if the entities are close in the latent space. In other words, all

the pairwise links are independent, conditioned on their latent positions, i.e. distances in the

latent space [Hoff et al., 2001].

We introduce here a large-margin discriminative latent space learning algorithm to model

(social) networks by using the nodes’ attributes. Intuitively, we will learn how to transform

and place the nodes in the latent space according to their attributes – learning a linear trans-

formation from the attribute’s space to the latent space. In the following, we first explain the

model, and then we show how we can apply it so that we can project random walk scores into

the latent space.

3.4.1 Learning Embeddings

We remind from Section 3.1.1 that xi is the normalized real-valued vector of size 1×M repre-

senting the feature vector of node si , where M is the number of possible attributes each node

can have. We note AM×D the matrix that defines the linear transformation of each node si

to the latent space of dimension D. Therefore, xi A is the point representing si in the latent

space.

To train the parameters of the model (i.e. A), we assume that the homophily principle holds in

the latent space. Therefore, the objects that are connected in the network should be closer

together, in the latent space, than non-connected ones. To enforce this principle, we design

and optimize two different objective functions, which both consist of a hinge loss function. In

the following, we briefly explain both objective functions.

Model 1: Margin between connected and non-connected objects

To apply the homophily principle, we define an objective function so that connected objects

are closer than the non-connected ones with a margin d . Figure 3.3(a) shows this objective

function schematically. The corresponding node for node si in the latent space is xi A, there-

fore, the similarity between si and s j in the latent space is xi A A′x ′
j , the dot product between

the transformed nodes. In directed networks, we need an asymmetric similarity function,

which we can build by using two transformations A and B , so that similarity from si to s j is
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xi AB ′x ′
j . Putting all together the objective function we minimize is the following:

Min L = ∑
(i , j )∈E , (i ,z)∉E

max(0,d −xi AB ′x ′
j +xi AB ′x ′

z ) (3.2)

(a) Distance between connected objects and non-
connected objects should be larger than a mar-
gin d

(b) Connected objects should be closer than r1
and non-connected objects should not be closer
than r2

Figure 3.3: Two latent space models

Model 2: Connected objects closer than r1 and non-connected objects not closer than r2

According to this second objective function connected nodes should be closer than r1 and non-

connected objects should not be closer than r2. Figure 3.3(b) shows this objective function

schematically. The second objective function is more general and encompasses the first one,

and therefore, it is harder to optimize.

Min L = ∑
(i , j )∈E

max(0,r1 −xi AB ′x ′
j )+ ∑

(i , j )∉E
max(0, xi AB ′x ′

z − r2) (3.3)

The summations in the above objective functions are not tractable to optimize if the graph is

large, which is the case in our work. To overcome this problem, we make use of a stochastic

gradient descent algorithm in which we optimize the objective function iteratively. For the

first model, at each iteration we choose randomly one triple of nodes (i , j , z) and optimize by

gradient descent on this triple only. For the second model, we choose randomly one (i , j ) ∈ E

and optimize the objective function by gradient descent on (i , j ), then we choose randomly

the pair (i , z) ∉ E and optimize the objective function accordingly.
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The gradients of the objective functions at step t are shown below, for the first model:

5Lt (A) = {
x ′

i (xz B −x j B) if xi AB ′x ′
j −xi AB ′x ′

z < d

0 otherwise

5Lt (B) = {
(xz −x j )′xi A if xi AB ′x ′

j −xi AB ′x ′
z < d

0 otherwise

and the second model:

5Lt (A) = {

−x ′
i (x j B) if (i , j ) ∈ E , xi AB ′x ′

j < r1

x ′
i (x j B) if (i , j ) ∉ E , xi AB ′x ′

j > r2

0 otherwise

5Lt (B) = {

−x ′
j (xi A) if (i , j ) ∈ E , xi AB ′x ′

j < r1

x ′
j (xi A) if (i , j ) ∉ E , xi AB ′x ′

j > r2

0 otherwise

The update of the parameters is done consequently as follows:

At+1 = At −ηt 5Lt (A)

B t+1 = B t −ηt 5Lt (B)

where ηt is the learning rate at the iteration t .

There are many applications for an approach based on latent spaces. First, they speed up

similarity computation, make it independent of graph size, which is useful when a quick result

is needed at query time. Moreover, they can be used for link prediction for new nodes which

are not yet rich in link structure features. Besides, modeling the graph structure based on the

nodes’ attributes gives us valuable insights about how attributes relate to the graph formation

and evolution.

Transfer learning between networks or from a network to another task is challenging. Learning

the latent space on nodes’ attributes makes transfer learning between tasks with (approxi-

mately) same attributes possible, and this is discussed in more detail in Chapter 4.
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3.4.2 Learning From Random Walk Scores

We showed how to learn the transformation from features to the latent space on the network’s

connections. There is one implicit assumption in the method we explained above, namely

that all edges in the network are complete and correct. This assumption is almost always

inaccurate, as real-world networks often have spurious and missing links. This assumption is

weaker specially when the network is bigger. Moreover, not all links have the same importance

and, in weighted networks, links may have different weights. Considering the difference

between weights of the links in the process of learning a latent space as explained above is not

straightforward.

To solve these problems, we can use the random walk scores and represent them in a latent

space. These scores consider all paths between two nodes to score their proximity. In this

case we can recognize the missing links, and also the links for which we have less evidence.

Moreover, the weights of the links are reflected in the final random walk scores.

For a given network, let the matrix VP =

 VP11 . . . VP1N

· · ·
VPN 1 . . . VPN N

 gather the symmetric VP

scores between all nodes in the network. The first attempt to learn the latent space from these

scores might be learning all values of VPi j in this matrix by using a transformation to the

latent space. This matrix is very huge, N ×N , and learning on all values is not applicable. We

remember however from Section 3.3.2 that in each row only a few elements are not close to

zero, therefore, not all values in this matrix are valuable for learning.

Hence, we use the same learning algorithm that we explained above, but with one difference:

instead of training on all the network’s edges, we train only on high VP score pairs. The high

score pairs can be found efficiently by the algorithms also explained above, in Sections 3.3.2

and 3.3.1.

3.4.3 Experimental Results using Latent Space Model

In this section, similarly to Section 3.3.3 above, we study the effectiveness of the latent space

model for the link prediction task. As above, we perform ten-fold cross validation on all links

in three different networks. To measure the performance of each method, for a given query we

sort the rest of the nodes based on their similarity in the latent space, and report precision

and recall at 5. The latent space dimension is set to 50.

Table 3.7 shows the average precision and recall for the two latent space models we explained

in the previous section, trained on the networks’ edges and VP scores.

The first important observation is that learning from VP scores improves the performance in

comparison to learning from networks’ edges directly. We discussed the possible reasons in

the previous section, including the fact that the training set is improved because the networks’
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Learning method Cora CiteSeer WebKB
Precision/Recall Precision/Recall Precision/Recall

On Edges model one 2.51/9.61 4.43/18.08 4.62/17.80
On Edges model two 3.65/14.15 5.97/24.44 4.75/20.08

On VP 2-NN model one 4.06/16.76 4.97/21.82 5.33/23.69
On VP 2-NN model two 5.04/20.6 5.46/24.03 5.66/24.70

On VP comm. model one 4.78/19.54 6.16/26.12 6.27/27.67
On VP comm. model two 5.98/24.37 6.34/26.96 6.48/28.13

VP (Without Learning) 5.17/ 20.66 3.10/12.96 7.26/31.56

Table 3.7: Precision and recall for the two latent space models trained on networks’ edges:
VP-based community and VP-based K -Nearest Neighbors; the highest scores are in bold

edges set is neither complete nor completely correct.

Learning on the community of nodes according to the VP scores (Section 3.3.2) has the highest

performance. Intuitively we can understand this result: the nodes outside the community are

not visible at all, and therefore, it is the best possible configuration to learn a discriminative

model.

By learning on VP scores we make use of two sources of information, first the networks’

structure and then consequently the node’s attributes. We showed learning on VP scores im-

proves the performance in comparison to the learning directly on networks’ edges. Therefore,

considering global networks’ structure is more effective than local properties.

Moreover, learning on attributes from VP scores improves the performance in comparison

to using VP scores themselves, over the Cora and CiteSeer networks. Therefore, using both

sources of information by learning on attributes from VP scores is an effective way to model

the network.

We observe that in case of WEBKB network, VP itself has clearly the highest performance.

In other words, the entire networks’ structure cannot be learned (explained) by the node’s

attributes. Nodes’ attributes in WEBKB network are derived from the words in each webpage

which are not enough alone to predict link formation. In other networks similar situation

might happen due to the incomplete set of node’s attributes. For example, in most online

social networks, people’s profiles are not complete and therefore the network’s structure can

not be fully explained using the node’s attributes. In Chapter 6 we design an algorithm to

answer this problem.
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4 Transfer Learning from Hypertext
Encyclopedia to Text Analysis Tasks

In this chapter, we apply the techniques we developed in the previous chapter to transfer

knowledge from hypertext encyclopedia towards text analysis tasks. We propose methods for

computing semantic relatedness between words or texts by using knowledge from hypertext

encyclopedias such as Wikipedia. A network of concepts is built by filtering the encyclopedia’s

articles, each concept corresponding to an article. Two types of weighted links between

concepts are considered: one based on the hyperlinks between the texts of the articles, and

another one based on the lexical similarity between them.

To transfer learning from the network of concepts to text analysis tasks we develop two

common representation methods: first, a given text is mapped to the corresponding concepts

in this network and then to compute similarity between two texts VP similarity is applied to

compute the distance between sets of nodes. In other words, the shared representation space

is the set of concepts in the network and every text is represented in this space.

The second method uses the latent space model explained in Chapter 3, Section 3.4, as the

shared representation, and a transformation from words to a latent space is trained over VP

scores. Therefore, to transfer knowledge from the network to any machine learning algorithm,

the given text is transformed using the learned transformation to the latent space.

To evaluate the proposed distance, we apply our method to four important tasks in natural

language processing: word similarity, document similarity, document clustering, and docu-

ment classification, along with a ranking task for information retrieval. The performance of

our method is state-of-the-art or close to it for all the tasks, thus demonstrating the generality

of the method and the accompanying knowledge resource. Moreover, we show that using both

hyperlinks and lexical similarity links improves the scores with respect to a method using only

one of them, because hyperlinks bring additional real-world knowledge not captured by lexical

similarity. Additionally, the proposed method is applied to Idiap’s just-in-time information

retrieval system (ACLD), and brings improvement in terms of the relevance of results.
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4.1 Introduction to Text Similarity

Estimating the semantic relatedness of two text fragments – such as words, sentences, or entire

documents – is important for many natural language processing or information retrieval

applications. For instance, semantic relatedness has been used for spelling correction [Budan-

itsky and Hirst, 2006], word sense disambiguation [Patwardhan et al., 2003, Kohomban and

Lee, 2005], or coreference resolution [Ponzetto and Strube, 2007]. It has also been shown to

help inducing information extraction patterns [Stevenson and Greenwood, 2005], performing

semantic indexing for information retrieval [Baziz et al., 2005], or assessing topic coherence

[Newman et al., 2010].

Existing measures of semantic relatedness based on lexical overlap, though widely used, are of

little help when text similarity is not based on identical words. Moreover, they assume that

words are independent, which is generally not the case. Other measures, such as PLSA or LDA,

attempt to model in a probabilistic way the relations between words and topics as they occur

in texts, but do not make use of structured knowledge, now available on a large scale, to go

beyond word distribution properties. Therefore, computing text semantic relatedness based

on concepts and their relations, which have linguistic as well as extra-linguistic dimensions,

remains a challenge especially in the general domain and/or over noisy texts.

We propose to compute semantic relatedness between sets of words using the knowledge

enclosed in a large hypertext encyclopedia, with specific reference to the English version of

Wikipedia used in the experimental part. We propose a method to exploit this knowledge for

estimating conceptual relatedness following a statistical approach, by making use of the large-

scale, weakly structured knowledge embodied in the links between concepts. The method

starts by building a network of concepts under the assumption that every encyclopedia

article corresponds to a concept node in the network. Two types of links between nodes are

constructed: one by using the original hyperlinks between articles, and the other one by using

lexical similarity between the articles’ content (Section 4.3).

4.2 Semantic Relatedness: Definitions and Issues

Two samples of language are said to be semantically related if they are about things that are

associated in the world, i.e. bearing some influence one upon the other, or being evoked

together, in speech or thought, more often than other things. Semantic relatedness is a multi-

faceted notion, as it depends on the scale of the language samples (words vs. texts) and on

what exactly counts as a relation. In any case, the adjective ‘semantic’ indicates that we are

concerned with relation between the senses or denotations, and not, e.g., surface forms or

etymology.
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4.2.1 Nature of Semantic Relations for Words and Texts

Semantic relations between words, or rather between their senses, have been well studied

and categorized in linguistics. They include classical relations such as synonymy (identity

of senses, e.g. ‘freedom’ and ‘liberty’), antonymy (opposition of senses such as ‘increase’ vs.

‘decrease’), hypernymy or hyponymy (e.g. ‘vehicle’ and ‘car’ ), and meronymy or holonymy

(part-whole relation such as ‘wheel’ and ‘car’). From this point of view, semantic similarity

is more specific than semantic relatedness. For instance, antonyms are related, but not

similar. Or, following Resnik [1995], ‘car’ and ‘bicycle’ are more similar (as hyponyms of

‘vehicle’) than ‘car’ and ‘gasoline’, though the latter pair may seem more related in the world.

Classical semantic relations are listed in hand-crafted lexical or ontological resources, such as

WordNet [Fellbaum, 1998] or Cyc [Lenat, 1995], or implicitly in Roget’s Thesaurus (as used by

Jarmasz [2003]), or they can be inferred from distributional data as discussed below.

Additional types of lexical relations have been described as ‘non-classical’ by Morris and Hirst

[2004], for instance based on membership in similar classes (e.g. positive qualities), or on

association by location, or due to stereotypes – but these relations do not qualify as similarity

ones, and are generally not listed in lexical resources. Budanitsky and Hirst [2006] point out

that semantic ‘distance’ can be seen as the contrary of either similarity or relatedness. In this

chapter, our use of ‘distance’ will refer to our measure of semantic relatedness as defined

below.

At the sentence level, semantic relatedness can subsume notions such as paraphrase or logical

relations (e.g., entailment or contradiction). More generally, two sentences can be related by a

similarity of topic, a notion that applies to multi-sentence texts as well, even though the notion

of ‘topic’ is difficult to define. Topicality is often expressed in terms of the continuity of themes,

i.e. referents or entities about which something is predicated, which ensures the coherence of

texts. Linguists have analyzed coherence as being maintained by cohesive devices [Hobbs,

1983], which include identity-of-reference, lexical cohesion, and similarity chains based on

classical lexical relations [Halliday and Hasan, 1989].

A key relation between the semantic relatedness of words and their occurrence in texts has

long been exploited by researchers in natural language processing (NLP) under the form of

distributional measures [Mohammad and Hirst, 2005], despite certain limitations pointed out

by Budanitsky and Hirst [2006, Section 6.2]. The assumption that sentences and texts form

coherent units makes it indeed possible to infer word meanings and lexical relations from

distributional similarity [Weeds, 2003], using vector-based models such as Latent Semantic

Analysis [Deerwester et al., 1990], possibly enhanced with syntactic information [Padó and

Lapata, 2007]. In return, the hidden topical parameters that govern the occurrences of words

can be modeled probabilistically (e.g. using PLSA [Hofmann, 1999] or LDA [Blei et al., 2003]),

thus providing measures of text similarity.
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4.2.2 Use of Encyclopedic Knowledge for Semantic Relatedness

Semantic relatedness has been mainly considered from the perspective of repertoires of

semantic relations (often hand-crafted), or from the perspective of relations inferred from the

distributional properties of words in collections of texts. However, the computation and use

of relations founded on real-world knowledge has been considerably less explored, as it was

made possible only recently by the emergence of large-scale hypertext encyclopedias such as

Wikipedia. We believe that the use of encyclopedic knowledge may significantly complement

semantic relatedness measures based on word distributions only: in the remainder of this

section we briefly frame encyclopedic knowledge, outline our proposal, and discuss its task-

based validation.

Encyclopedias are lists of general concepts and named entities, accompanied by descriptions

in natural language. They differ from dictionaries as they describe concepts or entities, rather

than define words, and provide significant factual knowledge for grounding them in the

real world, rather than linguistic information only. While printed encyclopedias already

include certain references from one entry to another, the linking mechanism is used much

more extensively within hypertext encyclopedias such as Wikipedia. As a result, hypertext

encyclopedias seem quite adept at capturing semantic relations between concepts, which

range from culture-specific to universal ones, including classical and non-classical relations

mentioned above.

4.3 Wikipedia as a Network of Concepts

4.3.1 Concepts = Nodes = Vertices

We built our concept network from Wikipedia by using the Freebase Wikipedia Extraction

(WEX) dataset Metaweb Technologies [2010] (version dated 2009-06-16). Not all Wikipedia

articles were considered appropriate to include in the network of concepts, for reasons related

to their nature and reliability, but also to the tractability of the overall method, given the very

large number of pages in the English Wikipedia. Therefore, we removed all Wikipedia articles

that belonged to the following name spaces: Talk, File, Image, Template, Category, Portal,

and List, because these articles do not describe concepts, but contain auxiliary media and

information that do not belong into the concept network. Also, disambiguation pages were

removed as well, as they only point to different meanings of the title or of its variants.

As noted by Yeh et al. [2009], short articles are often not appropriate candidates to include in

the concept network, for several reasons: they often describe very specific concepts which

have little chances to occur in texts; they might correspond to incomplete articles (stubs);

they contain an unreliable selection of hyperlinks; and their number considerably slows down

computation in the network. In previous work, Yeh et al. [2009] set a size limit of 2,000 non-

stop words below which entries were pruned, and this limit decreased considerably the size of

their network. As our goal is to minimize the risk of removing potentially useful concepts, and
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to respect as much as possible the original contents of Wikipedia, we set a cut-off limit of 100

non-stop words, thus pruning only very minor articles. This value is thus much lower than the

value used by Yeh et al. [2009], and is similar to the one used by Gabrilovich and Markovitch

[2009]. Out of an initial set of 4,327,482 articles in WEX, filtering removed about 70% of all

articles based on namespaces and length cut-off, yielding a resulting set of 1,264,611 concepts.

Each concept has a main Wikipedia name, which is the title of the main page describing the

concept. However, in many cases, other words or phrases can be used as well to refer to the

concept. One such type of words can be determined by examining Wikipedia redirects, i.e.

articles that have no content but point the user to a proper article with an alternative title. The

titles of redirect pages were added as secondary titles to the titles of the articles they redirect to.

In addition, for every hyperlink from one article to another, we extracted the corresponding

anchor text and considered it as another possible secondary title for the linked article, thus

capturing a significant part of the terminological variation of concept names (with some noise

due to variability in linking practice). Therefore, each concept has three types of titles (see

summary of data structure in Table 4.1): the original one, the anchor texts of the hyperlinks

targeting it, and the variants provided by redirect pages, each specific title being listed only

once.

4.3.2 Relations = Links = Edges

Relations between concepts can be determined in several ways. In a previous study [Yazdani

and Popescu-Belis, 2010], we considered four types of links between concepts: hyperlinks and

links computed from similarity of content, of category, and of template. While each type of

links captures some form of relatedness, we focus in the present chapter (based on [Yazdani

and Popescu-Belis, 2013]) on the first two types, which are the most complementary. However,

the proposed computational framework is general enough to accommodate more than two

types of links, in particular if an optimal combination can be learned from training data.

The use of hyperlinks between Wikipedia articles embodies the somewhat evident observation

that every hyperlink from the content of an article towards another one indicates a certain

relation between the two articles. These are encyclopedic or pragmatic relations, i.e. between

concepts in the world, and subsume semantic relatedness. In other words, if article A contains

a hyperlink towards article B , then B helps to understand A, and B is considered to be related

to A. Such links represent a substantial amount of human knowledge that is embodied in

the Wikipedia structure. It must be noted that these links are essentially asymmetric, and

we decided to keep them as such, i.e. to list for a given page only its outgoing links and not

the incoming ones. Indeed, observations showed that while the target page of a link helps

understanding the source one, the contrary is not always true or the relation is not specific

enough. For each article, the XML text from WEX was parsed to extract hyperlinks, resulting in

a total of 35,214,537 hyperlinks – a time-consuming operation that required also the ability to

handle instances of ill-formed XML input.
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The second type of links is based on similarity of lexical content between articles of Wikipedia,

computed from word co-occurrence. If two articles have many words in common, then a

topic-similarity relation holds between them. To capture content similarity, we computed the

lexical similarity between articles as the cosine similarity between the vectors derived from

the articles’ texts, after stopword removal and stemming using Snowball.1 We then linked

every article to its k most similar articles, with a weight according to the normalized lexical

similarity score (for non-zero weights). In the experiments described below, k was set to 10, so

that each node has ten outgoing links to other nodes, based on lexical similarity.2 The value of

k = 10 was chosen to ensure computational tractability, and is slightly lower than the average

number of hyperlinks per concept, which is about 28. As the Wikipedia articles are scattered

in the space of words, tuning k does not seem to bring crucial changes. If k is very small

then the neighborhood contains little information, whereas a large k makes computation

time-consuming.

Concept ID Integer
Names of the concept Name of article in the encyclopedia

Alternative names redirecting to the article
Anchor texts of incoming hyperlinks

Description of the concept Text
Relations to other concepts
(outgoing links)

Hyperlinks from the description towards other
concepts (no weights)
Lexical similarity links to the ten closest con-
cepts (weights from cosine similarity)

Table 4.1: Logical structure of each node in the network resulting from the English Wikipedia.

4.3.3 Properties of the Resulting Network

The processing of the English Wikipedia resulted in a very large network of concepts, each

of them having the logical structure represented in Table 4.1. The network has more than

1.2 million nodes (i.e. vertices), with an average of 28 outgoing hyperlinks per node and 10

outgoing content links per node.

A natural question arising at this point is: how can the structure of the network be character-

ized, apart from putting it to work? It is not possible to visualize the entire network due to its

size, and displaying only a small part, as done for instance by Coursey et al. [2009, Figure 1],

might not be representative of the entire network.3. A number of quantitative parameters

have been proposed in graph theory and social network analysis, and some have for instance

been used to analyze WordNet (and an enhanced version of it) by Navigli and Lapata [2010].

1From the Apache Lucene indexing system available at http://lucene.apache.org/.
2Therefore, the outdegree of all nodes is 10, but as the indegree may vary (the number of incoming links), the

graph is not strictly speaking a 10-regular graph.
3An example of neighborhood according to our relatedness measure is however shown in Section 4.4.1
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We compute below some well-known parameters for our network, and add a new, more

informative characterization.

A first characteristic of graphs is their degree distribution, i.e. the distribution of the number

of direct neighbors per node. For the original Wikipedia with hyperlinks, a representation [Gr-

ishchenko, 2008] suggests that the distribution follows a power law. A more relevant property

here is the network clustering coefficient, which is the average of clustering coefficients per

node, defined as the size of the immediate neighborhood of the node divided by the maximum

number of links that could connect all pairs of neighbors [Watts and Strogatz, 1998]. For

our hyperlink graph, the value of this coefficient is 0.16, while for the content link graph it is

0.26.4 This shows that the hyperlink graph is less clustered than the content link one, i.e. the

distribution of nodes and links is more homogeneous, and that overall the two graphs have

rather low clustering.5

We propose an ad-hoc measure offering a better illustration of the network’s topology, aimed

at finding out whether the graph is clustered or not – i.e., whether the communities of nodes

based on neighborhoods have a preferred size, or are uniformly distributed. We consider a sam-

ple of 1000 nodes. For each node of the graph, the Personalized PageRank algorithm [Haveli-

wala, 2003] is initialized from that node and run, thus resulting into a proximity coefficient

for each node in the graph to the initial node. This is first done using hyperlinks, and then

using the content links. The community size for the node is computed by sorting all nodes

with respect to their proximity and counting how many nodes contribute to 99% of the mass.

(a) Hyperlink graph (b) Content link graph

Figure 4.1: Distribution of community sizes for a sample of 1000 nodes (see text for the
definition of a community). For each community size (x-axis) the graphs show the number of
nodes (y-axis) having a community of that size, for each of the two graphs built from Wikipedia.
Both graphs have a tendency towards clustering, i.e. a non-uniform distribution of links, with
an average cluster size of 150–400 for hyperlinks and 7–14 for content links.

4For the content links, the coefficient was computed regardless of their weights. A recent proposal for computing
it for weighted graphs could be applied too [Opsahl and Panzarasa, 2009].

5The observed values, together with the power law degree distribution, suggest that our graph is a scale-free
network – characterized by the presence of “hub” nodes – or a small-world network [Watts and Strogatz, 1998].
However, it is not clear what impact these properties defined mainly for social networks would have here.
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The results shown in Figure 4.1 show that the distribution is neither flat nor uniformly de-

creasing, but has a peak, which provides an indication of the average size of clusters. This size

is around 150–400 nodes for the hyperlink graph, without a sharp maximum, showing less

clustering than for content links, for which this average is around 7–14 nodes. The latter value

is partly related to the 10-link limit set for content links, but is not entirely due to it, as the limit

concerns only outgoing links. The use of hyperlinks thus avoids local clusters and extends

considerably the connectivity of the network in comparison to content similarity ones.

4.4 Common Representation Space for Transfer Learning

In order to transfer human knowledge embodied in the Wikipedia network of concepts to-

wards a measure of text similarity in various text analysis tasks, we need to build a shared

representation for text fragments. We propose two shared representation models (i.e. spaces),

which we explain in Sections 4.4.1 and 4.4.2 below.

The network of concepts built from Wikipedia consists of many concepts from human knowl-

edge. Therefore, the set of concepts in the network is rich enough so that it can represent

the content of any text fragment. The first shared representation we develop is the set of

concepts in the network: a given text is simply mapped to the corresponding concepts in this

network. Then, to compute similarity between two texts, VP similarity is applied to compute

the distance between the two sets of nodes (concepts).

The second method uses the latent space model that we explained in Section 3.4 as the shared

representation. In this approach, we assume that there is a latent space in which semantically

similar texts are placed in close positions and semantically unrelated texts are placed farther

away from each other. We showed that each concept in the network (corresponding to a

Wikipedia article) has a text body which explains the concept. We learn a transformation from

words in the title and body to the latent space so that two similar concepts in terms of VP

are in close distance. Therefore, to transfer knowledge from the network to any processing

method that uses feature vectors, texts are transformed using the learned transformation into

the latent space. We now explain each approach in more detail.

4.4.1 Mapping Text Fragments to Concepts in the Network

For mapping, two cases must be considered, according to whether the text matches exactly

the title of a Wikipedia page or not. Exact matching is likely to occur with individual words or

short phrases, but not with entire sentences or longer texts.

If a text fragment consists of a single word or a phrase that matches exactly the title of a

Wikipedia page, then it is simply mapped to that concept. In the case of words or phrases that

may refer to several concepts in Wikipedia, we simply assign to them the same page as the one

assigned by the Wikipedia contributors as the most salient or preferred sense or denotation.
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For instance, ‘mouse’ directs to the page about the animal, which contains an indication that

the ‘mouse_(computing)’ page describes the pointing device, and that other senses are listed

on the ‘mouse_(disambiguation)’ page. So, here, we simply map ‘mouse’ to the animal concept.

However, for other words, no sense or denotation is preferred by the Wikipedia contributors,

e.g. for the word ‘plate’. In such cases, a disambiguation page is associated to that word or

phrase. We chose not to include such pages in our network, as they do not correspond to

individual concepts. So, in order to select the referent page for such words, we simply use the

lexical similarity approach we will now describe.

When a fragment (a word, phrase, sentence, or text) does not match exactly the Wikipedia title

of a vertex in our network, it is mapped to the network by computing its lexical similarity with

the text content of the vertices in the network, using cosine distance over stemmed words,

stopwords being removed. Concept names (principal and secondary ones) are given twice

as much weight as the words found in the description of the concept. The text fragment is

mapped to the k most similar articles according to this similarity score, resulting in a set of at

most k weighted concepts. The weights are normalized, summing up to one, therefore the

text representation in the network is a probability distribution over at most k concepts. Finding

the k closest articles according to lexical similarity can be done efficiently using the Apache

Lucene search engine (see note 1).

For example, consider the following text fragment to be mapped to our network: “Facebook:

you have some serious privacy and security problems.” When this fragment is mapped to the

k = 10 most similar Wikipedia articles, the resulting probability distribution is the following

one: ‘Facebook’ (0.180), ‘Facebook Beacon’ (0.119), ‘Facebook history’ (0.116), ‘Criticism of

Facebook’ (0.116), ‘Facebook features’ (0.116), ‘Privacy’ (0.084), ‘Privacy International’ (0.080),

‘Internet privacy’ (0.080), ‘Privacy policy’ (0.054), ‘Privacy Lost’ (0.054).

This mapping algorithm has an important role in the performance of the final system, in

combination with the network distance (VP). It must however be noted that the effects of

wrong mappings at this stage are countered later on. For instance, when large sets of concepts

related to two text fragments are compared, a few individual mistakes are not likely to alter the

overall relatedness scores. Alternatively, when comparing individual words, wrong mappings

are less likely to occur because the test sets for word similarity described in Section 4.6,

page 60, also consider implicitly the most salient sense of each word, just as described above

for Wikipedia.

VP Between Two Sets of Nodes

After mapping to one or more Wikipedia articles, as just explained, each text is thus represented

by a weighted set of nodes. In order to measure the similarity between two texts after mapping,

we will generalize the definition of VP so that it measures the similarity between two weighted

set of nodes.
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We first generalize the definition of VP between two nodes given in Section 3.1 to a measure

from a distribution to a node. Given a probability distribution~r over concepts (i.e. a weighted

set of concepts), and a concept s j in the network, we first compute the probability of visiting

s j for the first time when a random walker starts from~r in the network, i.e. from any of the

concepts in~r that have a non-zero probability. To compute visiting probability, the following

procedure provides a model of the state St of the random walker, i.e. the concept in which

the random walker is positioned. Executing the procedure until termination gives the visiting

probability VP.

Step 0: Choose the initial state of the walker with probability P (S0 = si |~r ) = ri . In other

words, position the random walker on any of the concepts of ~r with the probability

stated in~r .

Step t : Assuming St−1 is determined, if St−1 = s j then return ‘success’ and finish the proce-

dure. Otherwise, with probability α, choose a value for the next concept St according to

the transition matrix C , and with probability 1−α, return ‘fail’. The possibility of ‘failing’,

or absorption probability, introduces a penalty over long paths that makes them less

probable.

Similarly we introduce C ′ as being equal to the transition matrix C , except that in row j ,

C ′( j ,k) = 0 for all k. We remind that the transition matrix C , is the linear combination of the

transition matrices of hyperlinks and content links, which they are built from the weights of

links in the network. The possible weights are 0 or 1 for the hyperlink matrix, and actual lexical

similarity scores (or 0) for the content similarity matrix.

The probability of success in the process, i.e. the probability of visiting s j starting from~r , is

the sum over all probabilities of success with different lengths:

p(success) =
∞∑

t=0
p t (success) =

∞∑
t=0

αt (~rC ′t ) j .

Therefore, the computation is the same as before, the only difference here is that~r is resulting

from the mapping algorithm and shows a set of initial concepts instead of one node.

To compute the VP from a weighted set of concepts to another set, i.e. from distribution~r1

to distribution~r2, we construct a virtual node representing~r2 in the network, noted sR (~r2).

We then connect all concepts si to sR (~r2) according to the weights in~r2. We now create the

transition matrix C ′ by adding a new row (numbered nR ) to the transition matrix C with all

elements zero to indicate sR (~r2), then adding a new column with the weights in sR (~r2), and

updating all the other rows of C as follows (Ci j is an element of C ):
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C ′
i j =Ci j (1− (~r2)i ) for i , j 6= nR

C ′
i nR

= (~r2)i for all i

C ′
nR j = 0 for all j .

These modifications to the graph are local and can be done at run time, with the possibility to

undo them for subsequent text fragments to be compared. The algorithm to compute VP is

identical to the section 3.1 and therefore, the same algorithms and properties we explained

there hold for this application here as well.

To compute relatedness between two texts, we average between the visiting probability of~r1

given~r2 (noted VP(~r2,~r1)) and the visiting probability of~r2 given~r1 (noted VP(~r1,~r2)). A larger

value of the measure indicates closer relatedness.

Illustration of Visiting Probability ‘to’ vs. ‘from’ a Text

We showed earlier in Section 3.1.3 the importance of the symmetric VP. Here we illustrate in a

similar way the difference between VP from and to and justify the choice of symmetric VP. To

illustrate the difference between VP to and from a text fragment, we consider the following

example. Though any text fragment could be used, we took the definition of ‘jaguar’ (animal)

from the corresponding Wikipedia article. Although the word ‘jaguar’ is polysemous, the

topic of this particular text fragment is not ambiguous to a human reader. The text was first

mapped to Wikipedia as described above. Then, using VP with equal weights on hyperlinks

and content links, the ten closest concepts (i.e. Wikipedia pages) in terms of VP from the text,

and respectively to it, were found to be the following ones:

• Original text: “The jaguar is a big cat, a feline in the Panthera genus, and is the only

Panthera species found in the Americas. The jaguar is the third-largest feline after the

tiger and the lion, and the largest in the Western Hemisphere.”

• Ten closest concepts according to their VP to the text: ‘John Varty’, ‘European Jaguar’,

‘Congolese Spotted Lion’, ‘Lionhead rabbit’, ‘Panthera leo fossilis’, ‘Tigon’, ‘Panthera

hybrid’, ‘Parc des Félins’, ‘Marozi’, ‘Craig Busch’.

• Ten closest concepts according to their VP from the text: ‘Felidae’, ‘Kodkod’, ‘North

Africa’, ‘Jaguar’, ‘Panthera’, ‘Algeria’, ‘Tiger’, ‘Lion’, ‘Panthera hybrid’, ‘Djémila’.

The closest concepts according to VP from a text tend to be more general than closest concepts

according to VP to the text. For instance, the second list above includes the genus and family

of the jaguar species (Panthera and Felidae), while the first one includes six hybrid or extinct

species related to the jaguar. Concepts close to a text thus bring detailed information related

to the topics of the text, while concepts close from a text are more popular and more general

53



Chapter 4. Transfer Learning from Hypertext Encyclopedia to Text Analysis Tasks

Wikipedia articles. Note also that none of the closest concepts above is related to the Jaguar

car brand, as found by examining each page, including the lesser-known ones (both persons

cited are wildlife film makers and park founders). However, not all concepts are related in an

obvious way (e.g. ‘Algeria’ is likely retrieved through ‘Western Hemisphere’).

The behavior illustrated on this example is expected given the definition of VP. A concept that

is close to a text has more paths in the network towards the text with respect to other concepts

in the network, which means that the concept is quite specific in relation to the topics in the

text, as in the above example. Conversely, a concept that is close from a text (in terms of VP

from a text) is typically related by many paths from the text to the concept, in comparison to

other concepts. This generally means that it is likely that the article is a general and popular

article around the topics of the text. If we consider the hierarchy between concepts from more

general to more specific ones, then concepts close to a text are generally lower in the hierarchy

with respect to the text, and concepts close from a text are generally higher.

4.4.2 Learning Embeddings to Latent Space

The second method we propose to measure text similarity using VP is to learn an embed-

ding (transformation) from words to a latent space using as a criterion the VP scores on the

Wikipedia concept network, following the general approach introduced in Section 3.4 above.

At training time, given a series of samples – that is, pairs of texts with VP values from the first

text to the second one – the goal is to learn a transformation from the space of words to a

latent space, so that the similarity between the latent representation of the texts is as close as

possible to the VP similarity. In other words, the goal is to approximate VP between two texts i

and j by the matrix product xi AB ′x ′
j , where xi and x j are the TF-IDF vectors of the two texts

constructed from their words using a fixed dictionary. The size of matrices A and B is n ×m,

with n being the size of the dictionary (number of words) and m the size of the latent space

(akin to the number of topics in topic models). Two different matrices A and B are needed

because VP values are not symmetric in i and j .

In principle, all pairs of Wikipedia articles (i.e., texts) corresponding to nodes in our network

can be used for training, but this set is extremely large (ca. 1.4×1012) and moreover, we showed

that the most values are close to zero and are not valuable for training. Therefore, similar

to the section 3.4 we formulate the following constraints for training: (1) training should

focus on neighboring articles (articles with high VP values), and (2) the exact values of VP are

replaced with the ranking of pairs of articles by decreasing VP. We show here that under these

constraints valuable embeddings can be learned.

Let VPtok (i ) be the set of the k closest articles to the article i according to VP similarity. We

define a hinge loss function L as follows, so that the similarity between i and its k closest
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articles is larger than the similarity to all other articles by a fixed margin M .

L = ∑
i∈WP

∑
j∈VPtok (i )

∑
z∉VPtok (i )

max(0, M −xi AB ′x ′
j +xi AB ′x ′

z )

We optimize L with stochastic gradient descent: in each iteration we randomly choose one

article i , then randomly choose one of the k closest articles to i (noted j ) and one other article

from the rest of documents (noted z).

In our experiments, we set k = 10 and M = 0.2. We computed the VPtok (i ) values for all i using

the algorithms in chapter 3. We built the dictionary by using the Snowball tokenizer from

Lucene and removing the highest and lowest frequency words, keeping around 60,000 words.

We set the number of topics to m = 50, because a larger m offers a higher learning capability,

but also increases linearly the number of parameters to learn. Given the size of the training

set, we chose a rather small number m to make the training possible in a reasonable time, and

found a satisfactory prediction error.

Moreover, to perform regularization over matrices A and B when optimizing L, we impose

the constraint that A and B are orthonormal. In order to apply this constraint, we project at

every 1000 iterations both A and B to their nearest orthogonal matrix found by using SVD

decomposition. The rationale for the constraint is the following: if we assume that each latent

dimension corresponds to a possible topic or theme, then these should be as orthogonal as

possible.

Figures 4.2(a) and 4.2(b) show the average training error at every 1000 iterations, with and

without regularization, respectively for the hyperlink graph and for the content link one. The

training error is computed as the number of text triples (i , j , z) for which the test in the hinge

loss function is false, i.e. xi AB ′x ′
j −xi AB ′x ′

z < M .

(a) Hyperlink graph (b) Content link graph

Figure 4.2: Average training error for learning embeddings, measured every 1000 iterations,
with and without using regularization.

To test the predictive power of the embeddings as a replacement for the computation of VP
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at runtime, we excluded 50,000 articles from the training set, and then built 50,000 triples of

articles by choosing randomly, for each of the excluded articles, one article from the k closest

ones and one randomly from the rest of the articles. The test set error, which is the number of

triples from this set that do not respect the order given by VP similarities, is shown in Table 4.2.

Training set for embedding Error (%)
Hyperlinks 9.8
Hyperlinks with Regularization 13.5
Content Links 5.4
Content Links with Regularization 5.9

Table 4.2: Accuracy of embeddings learned over four different training sets. The error (per-
centage) is computed for 50,000 triples of articles from a separate test set, as the number of
triples that do not respect the ordering of VP similarities.

The two main findings are the following. First, VP over the hyperlinks graph is harder to

learn, which may be due to the fact that hyperlinks are defined by users in a manner that

is not totally predictable. Second, regularization decreases the prediction ability. However,

if regularization traded prediction power for more generality, in other words if it reduced

overfitting to this problem and made the distance more general, then it would still constitute

a useful operation. This will be checked in the experiments in Sections 4.8, 4.9 and 4.11.

Moreover, these experiments will show that the embeddings can be plugged into state-of-the-

art learning algorithms as prior knowledge, improving their performance.

Learning embeddings in comparison to mapping to the concept network has some advantages.

The main one is that it can be applied with a much lower cost at run time. The embedding

approach does not require a fixed number of nodes to project a document on. Moreover, it

can be more easily integrated as prior knowledge to other learning algorithms for NLP, and it

can be applied to very large scale problems.

4.5 Empirical Analyses of VP and Approximations

We now analyze the convergence of the two approximation methods proposed in section 3.2. In

the case of path insensitive ε-truncated approximation lets T shows the maximum path length

that is expanded, when T increases to infinity, the path insensitive ε-truncated approximated

VP converges towards the exact value, but computation time increases linearly with T . In the

case of path sensitive ε-truncation, when ε tends to zero the approximated value converges

towards the real one, but again computation time increases. Therefore, we need to find the

proper values for T and ε as a compromise between the estimated error and the computing

time.
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4.5.1 Convergence of the path insensitive ε-Truncated VP over Wikipedia

The value of T required for a certain level of convergence (upper bound on the approximation

error) depends on the transition matrix of the graph. It was not possible to find a convenient

theoretical upper bound, so we analyzed the relation between T and the approximation error

empirically, by a sampling method. We chose randomly a set S of 1000 nodes in the graph,

and computed the truncated VP from all nodes in the graph to each of the nodes in S using

different T . Then we computed the average of the values of truncated VP from all nodes to the

nodes in S: VPsum(T ) =∑
j∈S

∑
i 6= j VPT (i , j )/|S|.

Given that S is a large random sample, we consider that the evolution of VPsum(T ) with T is

representative of the evolution of an “average” VPT with T . Figure 4.3(a) shows the values of

VPsum(T ) depending on T for the Wikipedia graph with the lexical similarity (content) links,

for various values of α. Figure 4.3(b) shows the same curves for the Wikipedia graph with

hyperlinks. Both analyses show, as expected, that larger values of α correspond to a slower

convergence in terms of T , because a larger α requires the random walker to explore longer

paths for the same level of approximation. (The exact value toward which VPsum(T ) converges

is not important here.) The figures give some indication, for each given α, of the extent to

which the paths should be explored for an acceptable approximation of the non-truncated VP

value. In our experiments, we choseα= 0.8 and T = 10 as a compromise between computation

time and accuracy – the corresponding approximation error is less than 10% in Figures 4.3(a)

and 4.3(b).

(a) Content link graph (b) Hyperlink graph

Figure 4.3: VPsum(T ) as an “average VP” for content links (a) and hyperlinks (b) over the
Wikipedia graph, depending on T , for α varying from 0.4 to 0.9 (by 0.1, bottom to top). The
shape of the curves indicates the values of T leading to an acceptable approximation of the
exact, non-truncated value: α= 0.8 and T = 10 were chosen in the subsequent experiments.

4.5.2 Convergence of path sensitive ε-Truncated VP over Wikipedia

To analyze the error induced by the path sensitive ε-truncation when computing VP over

the Wikipedia graph, we proceeded in a similar way. We chose 5000 random pairs of nodes
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and computed the sum of path sensitive ε-truncated VP between each pair. Figure 4.4(a)

shows the values of the sum depending on 1/ε for the Wikipedia graph with content links, and

Figure 4.4(b) for the Wikipedia graph with the hyperlinks. Again, it appears from the curves

that for a larger α, smaller values of ε are needed to reach the same level of approximation

error, because for a larger α longer paths must be explored to reach the same approximation

level. The ε-truncation is used for word similarity and document similarity below, with a value

of ε= 10−5, and a value of α= 0.8 as above.

(a) Content link graph (b) Hyperlink graph

Figure 4.4: Sum of ε-Truncated VP depending on 1/ε for the Wikipedia graph with content
links (a) or hyperlinks (b), for α from 0.6 to 0.9 (bottom to top). The shape of the curves
indicates the values of ε leading to an acceptable approximation of the non-truncated value:
ε= 10−5 and α= 0.8 were chosen for subsequent experiments.

4.5.3 Differences between the Random Walk Model over Content Links and Direct
Lexical Similarity between Articles

Performing a random walk over the Wikipedia graph leads to a relatedness measure that

is different from direct lexical similarity (i.e. cosine similarity in the space of words), as we

empirically show here through the following experiment. We randomly chose 1000 nodes and

sorted all other nodes (Wikipedia articles) based on the cosine similarity with the randomly

selected nodes, measured using TF-IDF vectors. In parallel, for each of the randomly selected

nodes, all other nodes were also sorted based on the average VP using paths of length at most

T = 10.

The comparison of the two resulting sorted lists for each node shows the difference between

the two measures. To perform this comparison, for each node we look at the intersection

of the heads of the two sorted lists (neighborhoods of the node), varying the size of these

subsets. Figure 4.5 shows the percentage of nodes in common depending on neighborhood

sizes, for different values ofα (which changes little to the results). It appears that for the closest

neighbors, and in particular for the closest one, both lexical similarity and VP over content

links return the same nodes. However, when expanding the size of the neighborhood, the size

of the intersection decreases rapidly. For example, when looking at the ten closest nodes, only

about 50% of the nodes on average are the same in the two lists. This is an empirical argument
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showing that walking over content links leads to a different relatedness measure than simply

using lexical similarity between articles.

Figure 4.5: Average proportion of identical nodes among K closest neighbors using cosine
similarity vs. average T -truncated VP, for varying sizes K of the neighborhood and various
values of α (which have little influence on the result). The proportion decreases for larger
neighborhoods, i.e. the two metrics give quite different results for smaller relatedness values.

4.6 Word Similarity

In the following sections, we assess the effectiveness of visiting probability by applying it to

four language processing tasks. In particular, for each task, we examine each type of link

separately and then compare the results with those obtained for combinations of links, in the

attempt to single out the optimal combinations.

The word similarity task has been heavily researched using a variety of methods and resources

– such as WordNet, Roget’s Thesaurus, the English Wikipedia or Wiktionary – starting for

instance with Resnik’s seminal paper [Resnik, 1995] and even earlier. We have reviewed

in Chapter 2 some of the recent work on word similarity, focusing mainly on graph-based

methods over Wikipedia but also WordNet. Recent studies, including also references to

previous scores and several baselines, have been made by Bollegala et al. [2007], Gabrilovich

and Markovitch [2007] (see also [Gabrilovich and Markovitch, 2009, Tables 2 and 3]), Zesch

et al. [2008], Agirre et al. [2009], and Ramage et al. [2009], among others.

Three test sets for the English word similarity task have been extensively used in the past. They

consist of pairs of words accompanied by average similarity scores assigned by human subjects

to each pair. Depending on the instructions given to the subjects, the notion of ‘similarity’ was

sometimes rather interpreted as ‘relatedness’, as discussed for instance by Hughes and Ramage
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[2007, Section 5]. The three sets, all of them reproduced in Jarmasz’s thesis [Jarmasz, 2003]

for instance, were designed respectively by Rubenstein and Goodenough [1965] (henceforth,

R&G, 65 pairs, 51 judges), by Miller and Charles [1991] (M&C, 30 pairs), and by Finkelstein

et al. [2002] (WordSimilarity-353, with 353 pairs).

We estimate the relatedness between words by mapping them to concepts and computing the

path sensitive ε-truncated VP distance between them with ε= 10−5. We set the value ofα= 0.8

as explained in Section 4.5.2 above. The correlation with human judgments of relatedness is

measured using the Spearman rank correlation coefficient ρ as well as the Pearson correlation

coefficient r between the VP values for each pair and the human judgments.

Figure 4.6: Spearman rank correlation ρ between automatic and human judgments of word
similarity on the WordSimilarity-353 data set, depending on the weight of content links in the
random walk (the weight of hyperlinks is the complement to 1). The best scores, ρ = 0.70, are
reached when content links have more weight than hyperlinks (0.7–0.8 vs. 0.3–0.2). The result
of LSA, ρ = 0.56, is quoted from Gabrilovich and Markovitch [2007], and is outperformed by
other scores in the literature.

The values of the Spearman rank correlation coefficient ρ on the WordSimilarity-353 data set,

for varying relative weights of content links vs. hyperlinks in the random walk, are shown in

Figure 4.6. The best scores reach ρ = 0.70 for a combination of hyperlinks and content links,

weighted between 0.3/0.7 and 0.2/0.8. As shown in the figure, results improve by combining

links in comparison with using a single type. Results improve rapidly when hyperlinks are

added to content ones (right end of the curve), even with a small weight, which shows that

adding encyclopedic knowledge represented by hyperlinks to word co-occurrence information

can improve significantly the performance. Conversely, adding content links to hyperlinks

also improves the results, likely because the effect of spurious hyperlinks is reduced after

adding content links.
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To find out whether the two types of links encode similar relations or not, we examined to

what extent results using VP with hyperlinks only are correlated with results using content

links only. The Spearman rank correlation coefficient between these scores is ρ = 0.71, which

shows that there is some independence between scores.

We also tested our method on the R&G and M&C data sets. The values of the Pearson correla-

tion coefficient r for previous algorithms using lexical resources are given by Jarmasz [2003,

Section 4.3.2], by Gabrilovich and Markovitch [2009, Table 3] and by Agirre et al. [2009, Table 7],

showing again that for word similarity, using lexical resources is very successful, reaching a

correlation of 0.70–0.85 with human judgments. For our own algorithm, correlation r with

human judgments on R&G and M&C is, respectively, 0.38–0.42 and 0.46–0.50, depending on

the combination of links that is used. Lexically-based techniques are thus more successful on

these data sets, for which only the lexical similarity relation is important, while our method,

which considers linguistic as well as extra-linguistic relations, is less efficient.

However, if we examine the Spearman rank correlation ρ on the R&G and M&C data sets,

considering therefore only the ranking between pairs of words and not the exact values of the

relatedness scores, then our method reaches 0.67–0.69. Our scores are thus still lower than

the best lexically-based techniques, which have a ρ between 0.74–0.81 and 0.69–0.86 on R&G

and M&C, but the difference is now smaller. Our method is thus more suitable for capturing

the ranking of the pairs instead of their exact scores, an observation that was also made by

Gabrilovich and Markovitch [2009].

Gabrilovich and Markovitch [2007, Table 4] (see also [Gabrilovich and Markovitch, 2009, Ta-

ble 3]) and Agirre et al. [2009, Table 9] provide the values of the Spearman rank correlation

coefficient ρ of previous methods on the WordSimilarity-353 data set. The best results is

obtained by Explicit Semantic Analysis with ρ = 0.75 and by a system combination of distri-

butional and WordNet-based methods (Agirre et al. [2009]) with ρ = 0.78. Apart from these

methods, the best reported scores on this data are the ones reached by LSA with ρ = 0.56

oly. Our method outperforms this score by a margin that is similar to that of ESA or system

combination [Agirre et al., 2009], though our method does not quite reach their scores.

Some authors have attempted to reproduce the ESA scores: Zesch et al. [2008] reached only

ρ = 0.46, while Ramage et al. [2009] and Hassan and Mihalcea [2009] reported results close

to the original ones [Gabrilovich and Markovitch, 2007, 2009]. A key factor that ensures high

performance seems to be the cleaning procedure applied to concept vectors [Gabrilovich and

Markovitch, 2009, 3.2.3]. Overall, to facilitate comparison of our scores to important scores in

the literature, Table 4.3 provides a synthetic view.

To improve our understanding of the types of links, Figure 4.7 shows the average frequency

of the path lengths traveled for computing path sensitive ε-truncated VP on the word pairs

from WordSimilarity-353, for three different combinations of links. The results show that using

hyperlinks shortens the length of the average path that is used for the computation of VP.

Conversely, by using hyperlinks, the number of paths between words is increasing dramatically
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WordSimilarity-353 M&C data set
Study ρ Study ρ r
Finkelstein et al. [2002] 0.56 Wu and Palmer [1994] 0.78 0.78
Jarmasz [2003] 0.55 Resnik [1995] 0.81 0.80
Strube and Ponzetto [2006] 0.48 Leacock and Chodorow [1998] 0.79 0.82
Hughes and Ramage [2007] 0.55 Lin [1998] 0.82 0.83
Gabrilovich and Markovitch [2007] 0.75 Jarmasz [2003] 0.87 0.87
Agirre et al. [2009] 0.78 Patwardhan and Pedersen [2006] N/A 0.91

Bollegala et al. [2007] 0.82 0.83
Alvarez and Lim [2007] N/A 0.91
Hughes and Ramage [2007] 0.90 N/A
Agirre et al. [2009] 0.92 0.93

VP 0.70 VP 0.69 0.50

Table 4.3: A comparison of several word similarity scores, in terms of Spearman rank corre-
lation ρ and Pearson correlation r , on two data sets: WordSimilarity-353 [Finkelstein et al.,
2002] and M&C [Miller and Charles, 1991]. Our scores for VP appear in the last line, and are
for WordSimilarity-353 in the upper range, though not above state-of-the-art ones.

in comparison to using content links only, a fact that explains why adding hyperlinks, even

with a small weight, to content links improves the results so rapidly in Figure 4.6.

4.7 Document Similarity

The estimation of document similarity is another task on which our proposal was assessed.

The document similarity data set used in this experiment was gathered by Lee et al. [2005],

and contains average human similarity scores for all pairs of a set of 50 documents.

As in the experiment with word similarity (using the same parameters α= 0.8 and ε= 10−5),

we tested our method using various combinations of weights for the two types of links, with

results shown in Figure 4.8. Following Gabrilovich and Markovitch [2007] – and because the

averaged human judgments cover only a small range of possible values – we use the Pearson

correlation coefficient r to evaluate how close our method approaches the human judgments.

For these experiments, each document from the set was mapped to the 1,000 closest concepts

in the network. Otherwise, the same random walk parameters as for the word similarity task

were used.

Our findings are that the behavior of the system and its best results are similar to the previous

experiment on word similarity. Adding hyperlinks to content links improves the correlation

sharply, but adding content links to hyperlinks also improves the results (after an initial

decrease), so that the best performance (r = 0.676) is reached with a combination of links,

which appears to be very similar to the word similarity experiment.

The authors of the data set (Lee et al. [2005]) report the results of several other methods on the

document similarity task, the best one reaching r = 0.60 using LSA. However, in this case (also

mentioned by Gabrilovich and Markovitch [2007]), LSA was trained only a small document
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Figure 4.7: Average frequency of the path lengths contributing to VP on the WordSimilarity-353
data set, in three configurations (left to right for each integer value): hyperlinks only, equal
weights, content links only.

corpus of 314 news articles. When trained over a much larger corpus, the performance of LSA

increases to r = 0.69, a value reported by Hassan and Mihalcea [2011] after training LSA over

the entire Wikipedia corpus. ESA Gabrilovich and Markovitch [2007] reaches a score of r = 0.72

on this task, which outperforms all other methods (as in the case of word similarity) including

ours, although by a small margin. Indeed, with our method, the best observed combination

reached r = 0.676. Therefore, although our method is below some of the best results in the

literature, it reaches nevertheless high scores with a general semantic relatedness measure.

As we did for word similarity, we show in Figure 4.9 the frequency of the path lengths traveled

for computing VP, averaged on the document similarity data set, for three different combina-

tion of links. The figure shows that using mostly hyperlinks shortens the average path length

that is used for the computation, while using more content links lengthens the path lengths.
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Figure 4.8: Pearson correlation coefficient r between VP results and human judgments on
document similarity, depending on the weight of the hyperlinks in the combination (the
weight of the content links is the complement to 1). The best score of r = 0.676 is reached when
hyperlinks have less weight than content links, but are still used. The result of LSA, r = 0.60, is
quoted from Lee et al. [2005].

4.8 Document Clustering

This section describes the experimental setting and the results of applying the text related-

ness measure defined above to the problem of document clustering over the 20 Newsgroups

dataset.6 The dataset contains about 20,000 postings to 20 news groups, hence 20 document

classes with about 1,000 documents per class. We aim here at finding these classes automat-

ically, using for testing the entire data set without using any part of it as a training set. The

knowledge of our system comes entirely from the Wikipedia network and the techniques

described in Sections 4.3–4.4.1 for computing distances between two texts projected onto the

network. We also experimented with the embeddings trained over VP similarities described in

Section 4.4.2.

4.8.1 Setup of Experiment on 20 Newsgroups

We first compute a similarity matrix for the entire 20 Newsgroups data set, with the relatedness

score between any two documents being VPT . For tractability, we fixed T = 10, a value that

gives sufficient precision, as studied empirically in Section 4.5 above. Similarly, we empirically

set the absorption probability of the random walk at 1−α= 0.2. Based on α and T , the results

in Section 3.2 allowed us to compute the error bound of the truncation. So, the choice ofα and

T was also guided by the fact that for a smaller α, fewer steps (T ) are needed to achieve the

6The dataset is distributed at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/news20.html, see also [Mitchell, 1997, Chapter 6].
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Figure 4.9: Frequencies of the path lengths contributing to VP, averaged over the document
similarity data set, in three configurations of the system (left to right for each integer value):
hyperlinks only, content links only, and equal weights for both types.

same approximation precision because of the penalty set to longer paths. In this application,

instead of computing VPT between all possible pairs separately, we filled one row of the matrix

at a time using the approximations we proposed. To use the embeddings we simply transform

all the documents by the embeddings matrices and then run the clustering algorithm over the

transformed documents in the projection space. We trained two matrices, A and B , for each

Wikipedia graph. The qualitative behavior of the results by using A and B is very similar. Here

we report only the results of the transformation by A to help readability of the results.

Clustering is performed using a k-means algorithm over each of the similarity matrices and

feature representations. The similarity metric between two representation vectors is cosine

similarity. Given the randomized initialization of the algorithm, the final clusterings are

different in each run of the algorithm.

The quality of the clustering is measured using the Rand Index (RI), which counts the propor-

tion of pairs of documents that are similarly grouped, i.e. either in the same, or in different

clusters, in the reference vs. candidate clusterings. RI tends to penalize the smaller clusters, for

example if the algorithm clusters together two classes and splits another class, it will receive a
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high penalty from RI. This happens often in 20 Newsgroups data set, given that some classes

are very similar and some other classes are more general and potentially suitable for splitting.

As a consequence, the RI values vary largely from one run to another run, making signifi-

cance testing quite difficult. To gain more information about the quality of the clustering, we

consider precision, recall and F-score.

Distance Metric Precision Recall F-score RI
Cosine similarity of TF-IDF vectors 9.29 19.04 12.49 86.67
LSA 19.10 20.64 19.84 91.67
VP on content links 24.13 37.15 29.13 90.94
VP on hyperlinks 18.36 39.22 24.72 87.78
VPComb (0.6 content links) 24.26 36.91 29.23 91.03
Embedding from content links (ECL) 21.30 26.13 23.47 91.48
Embedding from hyperlinks (EHL) 22.63 28.40 25.17 91.56
ECL with regularization 22.74 27.67 24.95 91.68
EHL with regularization 24.08 29.64 26.56 91.80
LDA Blei et al. [2003] 31.00 44.00 36.00 92.00

Table 4.4: Rand Index (RI), precision, recall and F-score of different clustering methods. VPComb

stands for VP over a combination of content links (weighted 0.6) and hyperlinks (0.4). Scores in
bold are significantly higher than LSA, the one in italics significantly lower (t-test, p < 0.001).

Table 4.4 shows average results (over ten runs) of the clustering algorithm using various

relatedness measures. The random walk model significantly outperforms the baseline cosine

similarity between TF-IDF vectors for document clustering, and it also outperforms LSA in

terms of F-score, with most of the relatedness measures. The RI scores do not allow conclusions

as their variation does not allow significance judgments.

We observe that the results are lower than those obtained using LDA topic models [Blei et al.,

2003]7, but direct comparison between the scores is not wholly informative. LDA was trained

on the data set whereas VP similarities are ignorant about the data set, so considering this fact,

the difference in results appears to be more acceptable. Moreover, the embeddings can be

used in other machine learning algorithms to adapt for a specific data set.

The comparison with previously published work is uneasy, as no systematic comparison of

clustering methods on the 20 Newsgroups datasets is known to us. In a recent paper, Hu et al.

[2009] found an F-score of 14.8% for a baseline word vector method, improved to 19.6% by

their use of Wikipedia, for agglomerative clustering. However, for partitional clustering with

K-means, both scores increased more than twice (to 38.2% for the baseline and 41.8% for their

best method), a result that could not be confirmed independently.

For our approach, the combination of hyperlinks and content links improves the results

over using either of them alone. Using the embeddings of the content links reduces the

7The results are obtained using the DCA implementation available at http://www.nicta.com.au/people/
buntinew/discrete_component_analysis as part of Kei Xing semester project’s work.
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performance in comparison to the computation of the VP values over the graph. On the

contrary, using embeddings of the hyperlinks improves the results in comparison to using the

VP values over the hyperlinks graph.

The embedding learned on VP similarities over the hyperlinks appears to provide a more

general similarity measure, with does not overfit to the Hyperlinks graph of Wikipedia. The

high recall it obtains is related to the larger extension of paths computed with hyperlinks,

which can connect many documents together and attach them to the same class, while the

high precision obtained using content links is due to their tendency to cluster into smaller

neighborhoods.

Although the regularization imposed on the embeddings reduced their predictive power for

the VP similarities, but it improves the performance on this task.

Computation time using embeddings is (as expected) greatly reduced, as computations are

performed in the low-dimensional latent space. Moreover, other unsupervised clustering

algorithms can be applied to the documents transformed by the embeddings, e.g. the state-of-

the-art clustering algorithm proposed by Bordogna and Pasi [2009].

4.8.2 Comparison of VP and Cosine Similarity

To find out in which cases the proposed method improves over a simple cosine similarity

measure, we considered a linear combination of the cosine similarity and VPComb (VP over

content links weighed 0.6 and hyperlinks weighed 0.4), namely w ×VPComb + (1−w)×LS,

and varied the weight w from 0 to 1. Considering the k-nearest neighbors of every document

according to this combined similarity, we define k-purity as the number of documents with

the correct label over the total number of documents k in the computed neighborhood. The

variation of k-purity with w , for several sample values of k, is shown in Figure 4.10.

The best purity appears to be obtained for a combination of the two methods, for all values of k

that were tested. This shows that VPComb brings valuable additional information about docu-

ment relatedness that cannot be found in LS only. Furthermore, when the size of the examined

neighborhood k increases (lower curves in Figure 4.10), the effect of VPComb becomes more

important, i.e. its weight in the optimal combination increases. For very small neighborhoods,

LS is almost sufficient to ensure optimal purity, but for larger ones (k = 10 or 15), VPComb used

alone (w = 1) outperforms LS used alone (w = 0). Their optimal combination leads to scores

that are higher than those obtained for each of them used separately, and, as noted, the weight

of VPComb in the optimal combination increases for larger neighborhoods.

These results can be explained as follows. For very small neighborhoods, the cosine lexical

similarity score with the nearest 1–5 documents is very high, as they have many words in

common, so LS is a good measure of text relatedness. However, when looking at larger

neighborhoods, for which relatedness is less based on identical words, then VPComb becomes

more effective, and LS performs poorly. Therefore, we can predict that VPComb will be most
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Figure 4.10: Values of k-purity (vertical axis) averaged over all documents, for neighborhoods
of different sizes k. The horizontal axis indicates the weight w of visiting probability vs. cosine
lexical similarity in the formula: w ×VPComb + (1−w)×LS.

relevant when looking for larger neighborhoods, or in order to increase recall. VPComb should

also be relevant when there is low diversity among document words, for instance when all

documents are very short.

4.9 Text Classification

We showed in the previous section that using the VP similarities over Wikipedia hyperlinks

and content links graphs improved text clustering. Although text clustering is an important

application, there have been more studies on text classification, i.e. when labeled examples

are available for learning. In this section, we investigate this problem by using the embeddings

that were learned over VP similarities in Section 4.4.2 above. Embeddings can easily be

integrated with any distance learning algorithm as prior knowledge or as an initial state. We

thus designed a distance learning algorithm for this purpose, which we compared (using

various embeddings) to an SVM text classifier, outperforming its score when few training

examples are available.

4.9.1 Distance Learning Classifier

We built a distance learning classifier which learns, given a training set, a similarity measure so

that for each data point in the training set, its similarity to data points with the same label (or

class) is higher than data points with different labels. This classifier is essentially very similar

to a large margin nearest neighbor classifier Weinberger et al. [2006], with some changes that
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make it applicable to large scale text classification problems with a large number of features

(here, words).

We define the similarity between two documents i and j represented by TF-IDF vectors xi

and x j as xi A A′x ′
j , where A is a matrix n ×m, n being the size of the feature dictionary and

m size of the latent space. If C (i ) denotes the class (label) of document i , then we define the

following loss function L over the training set:

L =∑
i

∑
C ( j )=C (i )

∑
C (z) 6=C (i )

max(0, M −xi A A′x ′
j +xi A A′x ′

z )

M is a margin which is set to 0.2 in our experiments. We performed the optimization of L by

stochastic gradient descent. At testing time, we proceeded similarly to the k-nearest neighbors

algorithm: we chose the k closest documents from the training set according to the learned

distance and then returned the class (label) resulting from the majority vote.

Our goal here is to show that starting from the prior knowledge obtained from VP similarities

over Wikipedia graphs in the forms of the embeddings can improve the performance of the

classification, especially when a small number of training samples is available.

4.9.2 20 Newsgroups Classification

We applied the above method to classify texts from the 20 Newsgroups data set. We compared

the results of the distance learning algorithm, with various initial points, to a linear SVM

method (LIBSVM implementation [Chang and Lin, 2011]), which is a state-of-the-art text

classifier. The classification accuracy is given in Table 4.5 for various sizes of the training

set. We have trained two matrices over VP similarities, A and B , because VP similarity is not

symmetric. We have experimented with initialization by either A or B , which gives similar

results, therefore we show only the results using matrix A. The distance learning classifier with

random initialization of the parameters performed poorly, so it is not reported here.

Method Size of the training set
40 100 200 500 800 1000 1500

DL + CL embedding 21.13 32.93 42.79 56.57 62.54 65.90 70.57
DL + CL emb. + REG 22.54 34.14 44.32 57.12 63.82 66.43 71.10
DL + HL embedding 21.40 34.31 44.09 57.18 63.09 66.31 70.65
DL + HL emb. + REG 22.50 35.29 46.17 58.64 64.08 66.84 71.14
SVM 7.90 15.93 28.48 52.40 61.76 65.67 70.83

Table 4.5: Classification accuracy for different sizes of the training set over the 20 Newsgroups
data set. The accuracy is the average of 10 times run on a randomly divided data set. ‘DL’ is
distance learning classifier, ‘CL’ is the embedding learned over the content links graph and
‘HL’ the embedding learned over hyperlinks, ‘REG’ stands for regularization of the matrix. The
numbers in italics are significantly better than the accuracy of the SVM (t-test, p < 0.001)

.
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The first important observation is that, when the training set is small, the distance learning

classifier initialized with the embeddings from VP similarities over Wikipedia graphs out-

performs the baseline SVM classifier significantly. By adding more and more labeled data,

the importance of prior knowledge appears to decrease, presumably because the distance

learning algorithm can infer reliable decisions based only on the training data. A similar effect

was shown for a method based on deep learning by Ranzato and Szummer [2008], with their

method and a TF-IDF/SVM method both reaching 65% accuracy for more than 50 samples

per class (corresponding to 1000 total samples) in the training data.

The second observation is that the orthonormality regularization that we imposed on the

embeddings again improved the performance. The generalization ability was improved at

the price of decreasing slightly the precision in the approximation of the VP values. A third

observation is that the accuracy using hyperlinks was slightly higher than using content links.

4.10 Information Retrieval

In this section, we apply the proposed distance to information retrieval data from TREC-7 and

TREC-8 [Voorhees and Harman, 1999]. The application of our method to a large scale informa-

tion retrieval task requires the computation of VP between a query and the representation of

all the documents in the repository. By using the approximations proposed in Section 3.2, we

can compute T -truncated VP between every query and documents in an acceptable amount

of time. Firstly, we map all documents in the data set to the Wikipedia graph; then, at query

time, each query is mapped to the graph; finally, for each query, VPT is computed to and from

all documents in the data set by using the proposed approximations. In this section, we use

α = 0.8 , T = 10 and a combination of hyperlinks and content links in VP weighted 0.2/0.8,

following observations from previous sections. The time-consuming operation is the first one

– viz., mapping a large collection of documents to the Wikipedia graph – but this is done only

once, before query time.

We used the TREC-7 and TREC-8 Ad-hoc Test Collections.8 The data set includes a repository

of 530,000 documents and two sets of 50 queries. For each query, the data set also provides

relevance judgments for a subset of documents considered to be related to the query, as they

were retrieved by a pool of search methods, a method that is intended to maximize recall.

To study the effect of VP in comparison to lexical similarity and TF-IDF scoring in a single

retrieval operation, we compute for each document and query a linear combination of VPT

with weight w and of lexical similarity with weight 1−w . The weight w thus sets the relative

importance of conceptual relatedness vs. lexical similarity, and will serve to illustrate their

respective contributions. We will refer to this as the Combined similarity. We measure the

IR performance through the average precision of the first 10 returned documents (10 is the

8These are available at http://trec.nist.gov, and we used more specifically the test queries (topics) numbers
351–400 and 401–450, with the associated relevance judgments. The documents are available from the Linguistic
Data Consortium.
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typical size of the first result page of Web search engines).

We computed all the scores for w = 0 to w = 1 with increments of 0.1, and found out that the

highest score was reached for w = 0.1 for the TREC-7 data set. This optimized value was then

tested over the TREC-8 query set (50 topics), leading to an average precision for Combined of

0.515 , which improves (+15.4 %) over the precision of lexical similarity alone (w = 0), which is

0.446. Egozi et al. [2011] reported precision at 10 on TREC-8 data for various bag-of-words

information retrieval systems (Xapian, Okapi, LM-KL-DIR) along with improved results (up

to 14%) obtained by using a new retrieval algorithm, which integrates ESA [Gabrilovich and

Markovitch, 2009] semantic similarity to the previous systems.9 Here, we reported the mean

average precision at 10, which is the lower bound of precision at 10, but is more informative

than it. Direct comparison between our scores and the scores reported in [Egozi et al., 2011] is

not possible, as they used different base retrieval systems.

We also examined the precision score for every query separately. In particular, we counted the

proportion of queries for which the Combined similarity returned more relevant documents

than lexical similarity alone. Combined similarity outperformed the lexical one on 14 queries,

while the reverse was true for 5 queries only, and the scores were identical on the remaining

31 queries. The average score difference between Combined and lexical similarity is 0.018

(maximum is 1). This value is not significantly above 0 at the usual levels (e.g. p < 0.01), but we

found using a normal distribution that the probability of the true difference being zero, given

the observations, is only p = 0.11. While this does not ensure that the Combined similarity is

“significantly” better than the lexical one, it still provide encouraging evidence for the utility of

VP on the TREC-8 test set.

The precision scores of both methods vary considerably across queries. We therefore examined

separately the “difficult” queries, defined here as the queries on which lexical similarity had

a score of 0.3 or less (meaning it returned between 0 and 3 relevant documents). There are

21 such queries out of 50 on the TREC-8 test set. Over these queries, the Combined similarity

outperforms the lexical one on 7, while the reverse is true for only one, and 13 queries are a

tie. Of course, it might seem unsurprising to see this difference as these queries are “difficult”

for the lexical similarity by definition. However, when examining the 20 queries that are

“difficult” for the Combined similarity, this measure still outperforms the lexical one on 5,

while the reverse is true for only two, and 13 are a tie. These results show that VP provides

complementary information that can improve the results of lexical similarity for IR, especially

for queries on which lexical similarity performs less well.

4.11 Learning to Rank by Using VP Similarities

We have seen in the previous section that the linear combination of the VP and lexical similari-

ties improved only slightly the retrieval results, although VP provides additional information.

9Precision at 10 was improved as follows: for Xapian from 0.472 to 0.478 (+1.3%), for Okapi from 0.488 to 0.522
(+7.0%), and for LM-KL-DIR from 0.442 to 0.506 (+14.4%).
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This motivated us to integrate the VP similarity to a learning to rank system [Li, 2011], instead

of a linear combination with lexical similarity. We have chosen an approach similar to the

discriminative projection learning algorithm introduced by Yih et al. [2011] which exhibits

good performance. We have reimplemented the algorithm for the experiments in this section,

and we first describe it briefly, then discuss the results.

Assume that for a query q , a document dr is relevant and dnr is not relevant. The algorithm

learns a projection A from TF-IDF vectors of the articles to a latent space such that the

similarity between the projections of q and dr is higher than the similarity between those of q

and dr . Given a training set consisting of (qi ,dri ,dnri ), the algorithm minimizes the following

loss function L over the training set:

L =∑
i

max(0, M −qi A A′d ′
ri
+qi A A′d ′

nri
)

We will show that using the embeddings learned from VP as a starting point for minimizing L

can help to improve the ranking performance.

To build the training and test sets, we used the 50 queries from TREC-8 and considered for each

query the documents labeled as relevant (4728 documents), while unlabeled documents were

considered as irrelevant. We divided evenly and randomly the pairs of queries and relevant

documents into a training and a test set. The possible number of triples in the training set is

very large due to the large number of irrelevant documents. We perform stochastic gradient

descent over the training set by choosing at each iteration a query and a relevant document,

with an irrelevant document chosen randomly from the rest of the documents. We stop when

the training error is lower than a fixed threshold. To test the performance, we report average

precision at 10. This is computed over the number of relevant documents that are not used for

training. Therefore, when using a larger training set, fewer documents are left for testing and

the precision at 10 scores necessarily decrease; however, our interest is in comparing scores

for different methods on the same training set.

Method Size of the training set
500 1000 1500 2000 3000

RL + CL embeddings 13.62 14.40 12.62 11.24 5.54
RL + CL emb. + REG 17.48 17.84 14.02 12.08 5.56

RL + HL embeddings 15.74 15.98 13.10 11.28 5.36
RL + HL emb. + REG 19.44 18.60 14.34 12.46 5.70

RL + random start 16.3 15.16 13.56 12.48 5.34
Cosine between TF-IDF vectors 21.16 14.74 9.62 7.98 2.70

Table 4.6: Precision at 10 for different ranking algorithms when training size varies. As in
Table 4.5, ‘RL’ is the ranking learner, ‘CL’ is the embedding learned over the content links graph
and ‘HL’ the embedding learned over hyperlinks, and ‘REG’ stands for regularization of the
matrix.

Table 4.6 shows the precision at 10 of various algorithms by using different initial states and
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different number of training samples. The first observation is that only when the training size

is very small, 10 documents on average for each query, the cosine similarity outperforms the

learning to rank algorithms. Otherwise, the performance of the learning to rank algorithms is

always better than the cosine similarity.

The second result is that when the number of training examples is small, the learning algorithm

initialized with the regularized embeddings outperforms the random initialization. Gradually,

when adding more training examples, it becomes less useful to leverage the prior knowledge,

as the learning algorithm can solve the problem better simply by looking at training samples.

Similarly to the classification experiments, the embeddings learned over the hyperlinks are

more useful than the ones learned over the content links.

4.12 Application to Just-in-Time Retrieval

The Automatic Content Linking Device (ACLD) is a just-in-time document retrieval system

which monitors an ongoing conversation or a monologue and enriches it with potentially

related documents, including multimedia ones, from local repositories or from the Internet

[Popescu-Belis et al., 2008, 2011]. The documents are found using a similarity measure

between documents and the words obtained from automatic speech recognition (ASR). Results

are displayed in real time to meeting participants, or to users watching a recorded lecture or

conversation.

ACLD can be performed over live or recorded lectures, for instance in a computer-assisted

learning environment for individual students. The ACLD enriches the lectures with related

material drawn from various repositories, through a search process that can be guided in real

time by its user.

The goal of our method is to use the proposed semantic similarity to improve the relevance

of the retrieved documents, and to make the mechanism more robust to noise from the

ASR. The goal is to enrich the the conversation with the most related articles from Wikipedia.

Query object is built by using the words obtained from ASR in a given timeframe, stop words

removed. We map the query to the corresponding articles in Wikipedia network using the

method explained in Section 4.4.1. The set of K closest articles based on the symmetric VP

similarity is returned using the algorithms explained in Chapter 3.

We compared the output of semantic similarity search with that of keyword-based search

(see also [Habibi and Popescu-Belis, 2012] for an additional comparison). The ASR transcript

of one AMI meeting (ES2008d) was passed to both search methods, and “evaluation snip-

pets” containing the manual transcript for one-minute excerpts, accompanied by the 8-best

Wikipedia articles found by each method were produced. Overall, 36 snippets were generated.

The manual transcript shown to subjects was enriched with punctuation and speakers’ names,

and the names of the Wikipedia pages were placed on each side of the transcript frame.
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Subjects were then asked to read each snippet, and decide which of the two document sets

was the most relevant to the discussion taking place, i.e. the most useful as a suggestion to the

participants. They could also answer ‘none’, and could consult the result if necessary. Results

were obtained from 8 subjects, each seeing 9 snippets out of 36. Every snippet was thus seen

by two subjects. The subjects agreed on 23 (64%) snippets and disagreed on 13 (36%).

In fact, the number of true disagreements not including the answer ‘none’ was only 7 out of

36. Over the 23 snippets on which subjects agreed, the result of semantic search was judged

more relevant than that of keyword search for 19 snippets (53% of the total), and the reverse

for 4 snippets only (11%). Alternatively, if one counts the votes cast by subjects in favor of

each system, regardless of agreement, then semantic search received 72% of the votes and

keyword-based only 28%. These numbers show that semantic search quite clearly improves

relevance in comparison to keyword-based one.

The query objects built on words obtained from ASR of a meeting fragment are noisy. This noise

comes mainly from two sources, first noises entered by ASR error and second, the unfocused

nature of the discussions. For example, if a meeting fragment is about reinforcement learning,

we might have words like “enforcement” in the query object which results from ASR error.

Also there might be words about “game design” as it was mentioned as an application of

reinforcement learning. Moreover, the query objects might be consisting of ambiguous words.

In all these cases, when the query is mapped to the corresponding concepts, the effect of noise

– which is less consistent with the majority of the query – reduces. In our hypothetical example

the majority of the mapped concepts are related to reinforcement learning with high weights

(probability) and there are few unrelated concepts with low probabilities. When the random

walk starts the related pages, which have high initial weights or connected through either

type of links to the high weighted pages, get to the top of the list, and unrelated pages drop to

the bottom of the list. Therefore, the second round of denoising of the recommended set is

done by the random walk and therefore, the relevance of the recommended set is improved in

comparison to the keyword based approach.

4.13 Perspectives: Two-Stage Random Walks

In addition to the above experiments, we examined two-stage random walks, in which at

the first stage, the network is built using one set of weights on the links, and in the second

stage using a different set. The hypothesis here is that some links might be more useful when

explored first, while some others might be more useful when explored later, as discussed by

Collins-Thompson and Callan [2005].

For the word similarity task, we focused on ε-truncated two-stage walks in which one combina-

tion of links is used for the first three steps of the random walker, and a different combination

from the fourth to the last steps. The choice of three steps was empirical, by looking at the

average length of single-stage ε-truncated walks. We report the ρ scores of three significant
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combinations of weights for this scenario in Table 4.7, including the best we found, which

reached ρ = 0.714, higher than the one-stage walks (see Section 4.6). As the optimization took

place on the test data, this is not a competitive score, but intends to show that two-stage walks

are a promising approach, in particular exploring the hyperlinks first and then the content

links.

A similar analysis to the one shown in Figure 4.7 explains why scores improve in the two-

stage random walk in Table 4.7, which travels hyperlinks first (thus expanding the possible

paths), and then content links (following precise neighborhoods). In the case of exploring

hyperlinks first and content links second, there are longer paths in comparison to using only

hyperlinks. In the case of exploring hyperlinks in the second stage, there are many long paths

in comparison to other scenarios.

(Hyperlink weight, Content link weight) ρ

(1.0, 0.0) for 3 steps, then (0.0, 1.0) .684
(0.0, 1.0) for 3 steps, then (1.0, 0.0) .652
(0.7, 0.3) for 3 steps, then (0.0, 1.0) .714

Table 4.7: Spearman rank correlation coefficient ρ between automatic and human word
similarity when two-stage random walk is used for VP. In parentheses the respective weights
of hyperlinks and content links. The best result, ρ = 0.714 is found when both hyperlinks and
content links are used for the first three stages (with weights 0.7 vs. 0.3), but only content links
are used for latter stages.

The results of VP following two-stage random walks with several meaningful combinations of

links are given in Table 4.8 for document similarity data set. The scores on document similarity

can be slightly improved to r = 0.680 if hyperlinks are mostly explored in the first steps, and

then only content links are followed which is congruent with our finding about two stage

random walk for word similarities.

(Hyperlink weight, Content link weight) r
(1.0, 0.0) for 3 steps, then (0.0, 1.0) .667
(0.0, 1.0) for 3 steps, then (1.0, 0.0) .635
(0.8, 0.2) for 3 steps, then (0.0, 1.0) .680

Table 4.8: Pearson correlation coefficient r between two-stage VP results and human judg-
ments on document similarity. The best result (0.680) is found when for the first three stages
both hyperlinks (0.8) and content links (0.2) are used, but only content links are used for latter
stages.
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5 Joint Similarity Learning for Predict-
ing Links in Multi-Link Networks

In this chapter, we address the problem of link prediction on large networks with links of

multiple types (or in short multi-link networks) by proposing two joint similarity learning

architectures over the nodes’ attributes. The first model is a similarity metric that consists of

two parts: a general part, which is shared between all link types, and a specific part, which

learns the similarity for each link type specifically.

The second model consists of two layers: the first one, which is shared between all link types,

embeds the objects of the network into a new space, while the second one learns the similarity

between objects for each link type in this new space. The similarity metrics are optimized

using a large-margin optimization criterion in which connected objects should be closer than

non-connected ones by a certain margin.

A stochastic training algorithm is proposed, which makes the training applicable to large

networks with high-dimensional feature spaces. The models are tested on link prediction for

two data sets with two types of links each: TED talks (1150 items) and Amazon products (10,000

items). The experiments show that jointly modeling the links in our framework improves link

prediction performance significantly for each link type. The improvement is particularly high

when there are fewer links available from one link type in the network. Moreover, we show that

transfer learning from one link type to another one is possible using the above frameworks.

The chapter is organized as follows. Following an outline of the motivations, we introduce

in Section 5.2 the joint models for multiple-type links, first by defining the shared similarity

model, and then by defining the -layer similarity model. We then describe the large-margin

method for training the similarity functions (5.2.4). We also show how to generalize the

proposed framework to jointly model link prediction and classification in a network (5.2.5).

The experiments described in Section 5.3 on the above-mentioned networks demonstrate the

predictive power of the joint model, in comparison with separate models, as well as with SVM

Rank and cosine similarity.
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5.1 Motivations

The problem of new link prediction in networks is particularly relevant to networks that are

collaboratively built over time, whether they are document-based (such as Wikipedia, or

databases of products or multimedia records) or person-based (social networks such as Face-

book or LinkedIn) or both. In such situations, some nodes become connected over time due to

similarities or affinities that are noticed and validated by users. Predicting such connections is

a functionality which is valuable to speed up network construction, for instance by presenting

these connections as recommendations to users, as discussed in the introduction to this thesis.

However, this is particularly challenging when links are of multiple types. Moreover, accurate

modeling of the connections in the network can be useful to predict the evolution of the

network or even to perform marketing via the network.

We introduce in this chapter two joint link prediction models for networks with multiple link

types. Link prediction is formulated as a learning to rank problem: given a query node, all

other nodes must be sorted according to a score that is related to the likelihood of creating a

link between them and the query node. The proposed link prediction models learn a similarity

metric according to which connected nodes are closer than non-connected nodes.

Two different joint models will be proposed. The shared similarity model consists of two

parts: the general part, which is a shared similarity function between all types of links, and the

specific part, which learns similarity specifically for each type of links. The two-layer similarity

model consists of two layers: in the first layer, objects in the network are embedded into a

new space, while the second layer learns the similarity between objects for each link type

specifically in this new space. The first layer is shared between all link types and can also be

considered as a representation of objects which is common across all link types.

5.2 Joint Similarity for Multiple-Type Link Prediction

Link prediction can be viewed as a ranking problem in which all objects in the network are

ranked based on their similarity score with respect to a query object. A “better” ranking is

one that places objects that are actually linked to the query object at the top of the ranked list.

The score between the two objects in the network can be considered as a similarity metric (or,

conversely, a distance one), and link prediction can be interpreted as a task in which linked

objects should be closer to the query object, in comparison to the non-linked objects.

We model the link structure of a network by learning a similarity measure which, for each

object in the network, assigns larger scores to the objects that are linked to it than to those that

are not. To model N different types of links, we train N different similarity functions, so that

we model the link structure of each type separately. However, in many real-world networks,

links of a certain type are not entirely independent from links of other types. To consider this

dependency, each link-type similarity model shares information with the other models. We

will show in Section 5.3 that the joint modeling increases generalization abilities, hence link
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prediction performance, especially when there are few links from one specific link type.

5.2.1 Similarity Learning Framework

In this section, we build a similarity based ranker to model links in the network. The ranker

returns a score for a given query object q and a target object t by using a similarity function

over their features. If fi (q, t ) represents the ranker for link type i , and xo is the feature vector

of an object o from the network, then we have:

fi (q, t ) = similarityi (xq , xt )

The similarityi function computes a similarity for link type i between objects q and t using

their attributes, following a classical approach for learning to rank methods. Many similarity

functions (or, equivalently, distance metrics) with various learning abilities have been studied

in the literature, for instance RankNet Burges et al. [2005], polynomial semantic indexing Bai

et al. [2009] or structure preserving metric learning Shaw et al. [2011] (see also Chapter 2

above). In this study, we use inspiration from these previous studies and define the similarity

function as follows:

similarityi (xq , xt ) = xq ×Mi ×x ′
t

where matrix Mi is a Z × Z matrix, Z being the size of the features, and x ′
t is the transpose

of xt . The similarityi function is not necessarily symmetric, which makes it compatible with

networks with directed links. In practice, to make training and storage possible, particularly

when dealing with high-dimensional data such as text in a word vector representation, a

low-rank factorization of M is considered for training Bai et al. [2009], Shaw et al. [2011]. Each

ranker in the above formulation is ignorant about the other link types, therefore we call this

model separate model and it is used in the experiments section as a baseline. We introduce

two models by extending this approach to share information among rankers.

5.2.2 Shared Similarity Model

To introduce joint modeling among rankers, and share information between them, we assume

that each matrix Mi consists of two parts: a general matrix noted G , which is shared between

all rankers, and a specific matrix noted Si , which is learned separately for each link type i .

Hence, Mi =G +Si . The similarity function can thus be formulated as:

si mi l ar i t yi (xq , xt ) = xq × (G +Si )×x ′
t = xq ×G ×x ′

t︸ ︷︷ ︸
General Similarity

+ xq ×Si ×x ′
t︸ ︷︷ ︸

Specific similarity for the type i

The similarity function thus in its turn consists of two parts: first, a general similarity measure

which is shared (and identical) across link types and second, the specific similarity measure

which is adapted to each link type. Matrices G and Si s are the parameters of the similarity
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function which are going to be trained.

Matrix G would represent the correlation between link types. To better explain the role of G

let us consider a network with two link types and extreme hypothetical cases: when the two

link types are independent, and when they are identical. If the two link types are independent,

then the matrix G will be the 0 matrix and the model would be equivalent to the separate

model introduced in the previous section. On the other hand, if the two link types are identical,

then matrix G is identical to the link specific matrices Si . For the other situations between

these two extreme cases, matrix G would be trained to represent the correlation between the

two link types.

However, this model is able to handle dependencies between the link types only if they are

positively correlated. In cases where two link types in the network are negatively correlated,

this correlation would not be modeled by G since having a link of the first type between two

objects prevents us from having the other type of link between them and G would be simply

0. For example consider a network consisting of researchers and two types of collaboration

between them: first intra-institute collaboration and second, inter-institute collaboration.

If there is a link of the first type between two researchers in the network, then the second

link type can not exist between them. This model can not represent this negative correlation

between link types and is equivalent to the separate model on this network.

The above-mentioned problem is the main drawback of our first model. In the following

section we introduce a two-layer similarity model to overcomes this problem.

5.2.3 Two-layer Similarity

The two-layer similarity model consists of two layers: the first layer embeds objects in the

network to a new space, and then the similarity for each link type is learned specifically in this

new space. The first layer which embeds the objects to a new space is the same for all link

types. The first layer can be viewed as a shared representation for objects among all link types.

Figure 5.1 shows schematically the two-layer similarity model.

The matrix AZ×K transforms the objects to a new space with dimension K where Z is the

dimension of objects’ features and matrix Mi is the matrix representing the similarity for the

link type i in the new space. The similarity function can thus be formulated as:

si mi l ar i t yi (xq , xt ) = (xq × A)︸ ︷︷ ︸
Shared representation

×(Mi )× (xt × A)′︸ ︷︷ ︸
Shared representation

Matrices A and Mi are the parameters of the model which are going to be trained. This

two-layer model overcomes the main problem of the previous model, since it can also model
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Figure 5.1: A schematic representation of the two-layer similarity model. Matrix A embeds the
objects in the network to a K -dimensional space. Matrix M i computes the similarity between
objects for link type i .

negatively correlated link types through the shared representation. To explain intuitively how

this can be done assume again the hypothetical network of researchers and the two types of

relations between them. If we assume there are two institutes in our network, the first layer

could potentially embed objects into the two clusters in the latent space corresponding to

the two institutes. Then the similarity matrices Mi in the latent spaces would learn that first

type similarity is higher between the objects in the same cluster, and second type similarity

between objects in different clusters. If there exist a first link type between two researchers,

then they are embedded in the same cluster and the score of the second link type drops,

therefore the shared representation enables joint modeling of even negatively correlated link

types.

5.2.4 Training the Joint Models

We can formulate the learning criterion for a specific link type as a pairwise ranking problem,

in which given an object, other objects that are linked in the training data should be ranked

higher than non-linked ones. Below, we formalize the learning-to-rank problem and then

place the joint rankers introduced in the previous section in this framework.

We make use of a loss function noted L(·, ·) to evaluate the prediction result of ranking upon

training. The feature vectors are ranked according to their scores, and the resulting ranking is

evaluated against the corresponding expected links (known in the training set). If the feature

vectors of linked objects are ranked higher, then the loss will be small, otherwise it will be

large.

81



Chapter 5. Joint Similarity Learning for Predicting Links in Multi-Link Networks

We define here a pairwise hinge loss function L, which attempts to preserve the pairwise order

between objects in the training set by maintaining a margin between the scores of each pair Bai

et al. [2010]. For instance, in a friendship social network, the hinge function (computed only

using feature vectors) aims to preserve the order between the scores of the friend pairs and

the non-friend pairs, scoring all friends higher than all non-friend. Similarly, in the case of

hyperlinked documents, the score of the linked documents pairs should be higher, with a

certain margin, than the score of the non-linked documents.

The goal of training is to approximate the parameters of a similarity function for rankers which

minimizes the pairwise hinge loss function L over the network G with the various types of links

that are given in the training set. Training is performed over the graph G = (V ,E1 ∪E2 ∪ . . .EN ),

where V is the set of vertices (objects) and Ei is the set of edges (links) of type i .

Training the Shared Similarity Model

The empirical risk minimization by using a pairwise hinge loss function over the training set is

as follows. We start from training sets for each link type i :

Traini = {(a,b,c)|(a,b) ∈ Ei ∧ (a,c) ∉ Ei }

The goal is to minimize the loss function L as follows:

Mi nL = λ

2
||G||2F + λ

2

∑
i
||Si ||2F +

∑
i
∑

(a,b,c)∈Traini
max(0,d − fi (a,b)+ fi (a,c))

(
∑

i |Traini |)

The first two terms, the Frobenius norms of matrices G and Si , enforce a regularization on

the parameters and prevent the arbitrary increase of the parameters in the optimization. The

third term of the loss function maintains the order, with a margin d , between the scores of the

connected nodes and the unconnected nodes for link type i .

If we consider the definition of fi from the previous section and the decomposition of Mi

into G and Si , then the subgradients of the loss function with respect to G and to Si are the

following:

5L(G) =λG +
∑

i
∑

fi (a,b)− fi (a,c)<d x ′
a × (xc −xb)∑

i |Traini |

5L(Si ) =λSi +
∑

fi (a,b)− fi (a,c)<d x ′
a × (xc −xb)

|Traini |

If the training graph G is large, then minimizing the above summation is not tractable. To

overcome this problem we make use of a stochastic gradient descent algorithm in which at
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each iteration we select N samples (a,b,c), one randomly from each Traini set, and perform

gradient descent on each of them. As we are interested in modeling large scale graphs, we will

always make use of this stochastic gradient descent algorithm in the rest of the chapter. The

subgradients of the approximate loss function at iteration t are the following, for an iteration

over one of the samples (a,b,c) ∈ Traini :

5Lt (G) =λG t + {
x ′

a(xc −xb) if fi (a,b)− fi (a,c) < d

0 otherwise

5Lt (Si ) =λSi
t + {

x ′
a(xc −xb) if fi (a,b)− fi (a,c) < d

0 otherwise

The update of the parameters is done consequently as follows:

G t+1 =G t −ηt 5Lt (G)

Si
t+1 = Si

t −ηt 5Lt (Si )

where ηt is the learning rate at the iteration t .

Analysis of the training algorithm. The first observation is that the time complexity of each

iteration of the stochastic gradient algorithm is O(N 2
Z ) where NZ is the average of the number

of non-zero features of the xa , xb and xc . In the textual domain, the number of non-zero

features NZ is usually a couple of hundreds, which is much smaller than the dimension of a

word vector representation of the data, which is usually several hundred thousands (number

of all possible words).

We can follow the same approach that is used to prove the convergence of the PEGASOS

algorithm in Shalev-Shwartz et al. [2011] in order to prove the convergence of the training

algorithm presented above. In fact, we can show that the above algorithm is a special case of

PEGASOS. Prove of the convergence is at the of this chapter in section 5.4.

Low-Rank Factorization. The dimension of G and Si is Z 2 where Z is the number of features

of the data points. In practice, to make training and storage possible, particularly when we are

dealing with high dimension data such as text, a low-rank factorization of G and Si should

be considered. In this case we assume that G = A A′ and Si = Si 1S′
i 2 so that A, Si 1 and Si 2

are matrices from Z to a lower dimension. Given that Mi is not necessarily symmetric we

decompose the specific part Si to two lower-rank matrices. Also we change the regularization

on G and Si with the regularization on A, Si 1 and Si 2 in the objective function. The objective

function consisting of the low-rank matrices is not convex any more, but in practice it has

been shown that the low-rank factorization performs well Bai et al. [2009]. The subgradients
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are as following for a given sample (a,b,c) ∈ Traini :

5Lt (A) =λAt +

{
x ′

a(xc −xb)At + (xc −xb)′xa At if fi (a,b)− fi (a,c) < d

0 otherwise

5Lt (Si 1) =λS t
i 1 +

{
x ′

a(xc −xb)S t
i 2 if fi (a,b)− fi (a,c) < d

0 otherwise

5Lt (Si 2) =λS t
i 2 +

{
(xc −xb)′xaS t

i 1 if fi (a,b)− fi (a,c) < d

0 otherwise

Training two-layer Similarity Model

Similarly to the previous section, for the two-layer model the empirical risk minimization

using a pairwise hinge loss function over the training set is as follows. We start from training

sets for each link type i :

Traini = {(a,b,c)|(a,b) ∈ Ei ∧ (a,c) ∉ Ei }

The goal is to minimize the loss function L as follows:

Mi nL = λ

2
||A||2F + λ

2

∑
i
||Mi ||2F +

∑
i
∑

(a,b,c)∈Traini
max(0,d − fi (a,b)+ fi (a,c))

(
∑

i |Traini |)

Again, the first two terms enforce a regularization on the parameters and prevent the arbitrary

increase of the parameters in the optimization. If we consider the definition of fi then the

subgradients of the loss function with respect to A and to Mi are the following:

5L(A) =λA+

∑
i

∑
fi (a,b)− fi (a,c)<d

(x ′
a((xc −xb)A)+ (xc −xb)′(xa A))×Mi∑

i |Traini |

5L(Mi ) =λMi +

∑
fi (a,b)− fi (a,c)<d

(xa × A)′((xc −xb)× A)

|Traini |

If the training graph G is large we make use of a stochastic gradient descent algorithm in

which at each iteration we select N samples (a,b,c), one randomly from each Traini set, and

perform gradient descent on each of them. The subgradients of the approximate loss function
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at iteration t are the following, for an iteration over one of the samples (a,b,c) ∈ Traini :

mar g = fi (a,b)− fi (a,c)

5Lt (A) =λAt +

{
(x ′

a((xc −xb)At )+ (xc −xb)′(xa At ))×Mi
t if mar g < d

0 otherwise

5Lt (Mi ) =λMi
t +

{
(xa × At )′((xc −xb)× At ) if mar g < d

0 otherwise

The update of the parameters is done consequently as follows:

At+1 = At −ηt 5Lt (A)

Mi
t+1 = Mi

t −ηt 5Lt (Mi )

where ηt is the learning rate at the iteration t .

Analysis of the training algorithm. The time complexity of each iteration of the stochastic

gradient algorithm is O(K 2 + NZ ×K ) where NZ is the average of the number of non-zero

features of the xa , xb and xc and K is the size of latent space. The loss function is not convex

in the two-layer similarity model and, therefore, the initialization of the parameter can have a

significant effect on the performance.

5.2.5 Generalization for Related Problems

In this section we show that the above architectures for joint link prediction on multi-networks

can be extended for the similar problems.

Joint Classification and Link Prediction

We show that a joint classification and link prediction task over a network can be reformulated

as a multi-link prediction task, thus enhancing the generality of our proposal. Indeed, in most

real-world networks, objects are labeled with a certain finite label set, and these labels are not

independent from the link structure. For example, in a papers/citations network, it is more

likely that machine learning papers cite other machine learning papers rather than biology

papers. Conversely, a paper which cites many machine learning papers is more likely to be a

machine learning paper rather than a biology paper.

We introduce here a new link type based on the similarity of objects’ labels: every two objects

in the network that have the same label will be connected by such a link. Therefore, the classi-
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fication and the link prediction tasks can be casted to a multi-type link prediction problem, in

which one of the link types is based on the similarity of objects’ labels. Consequently, the goal

of learning for this task is to find similarity functions for which objects with the same labels are

closer than the other objects, and (as above) linked objects are closer than non-linked objects.

For the classification task, i.e. to determine the label of a yet unlabeled object, we consider the

majority label of the closest objects to that object.

The empirical risk minimization for joint classification and link prediction by using a pairwise

hinge loss function over the training set is as follows. To simplify notations, we assume that

there is only one link type i in the network, and we note C (o) the label or class of an object o.

First, the training sets are defined as:

TrainL = {(a,b,c)|(a,b) ∈ E , (a,c) ∉ E } , TrainC = {(a,b,c)|C (b) =C (a),C (c) 6=C (a)}

Then, training is defined as minimizing the loss function L :

Mi nL =λ×Regularization on the parameters+
∑

(a,b,c)∈TrainL∪TrainC
max(0,d − fi (a,b)+ fi (a,c))

(|TrainC |+ |TrainL |)
Both models introduced above can be used as the similarity model in the above formulation.

In the shared similarity model case we consider a general similarity function which is shared

between classification and link prediction tasks, along with specific similarity functions for

each task separately. In the two-layer model the first layer is the shared representation between

classification and link prediction task, and the second layer shows the specific similarity in

the embedded space. The training algorithm is identical to the case of link prediction on the

multi-type links networks, which was discussed above.

Networks without Attributes

Throughout this chapter, we assumed that the similarity functions are learned over node

attributes. However, in networks where nodes do not have attributes or attributes are not

predictive , the proposed framework can still be applied. For each node, a feature vector is

defined of the size of all nodes in the graph, in which only the element corresponding to the

node has value 1 and the others are set to 0.

In this case, the low rank factorization of the similarity matrix in shared similarity model, or

the first layer in the two-layer model is similar to the existing methods for network matrix

decomposition, such as singular value decomposition or non-negative matrix factorization,

except that our method enforces the large margin criterion and is trained jointly. The empirical

exploration of this case is the topic of future work.

86



5.3. Experimental Results

Inter-Network transfer learning

We show in this chapter that we can transfer the learning from one link type to another

link type through the shared information part. Transferring learning from one network to

another one is another interesting and related problem. Considering two different online

social networks, one based on friendship (such as Facebook) and the second one based on

professional relations (such LinkedIn), the model described here could be applied to share the

learning between the two networks as long as it is possible to build identical feature vectors

for the nodes in both networks. This problem also deserves further investigations.

5.3 Experimental Results

Many real-world networks have multiple types of links. For example, in online social networks,

people have different types of relationships and interactions. In many such networks, espe-

cially those that are collaboratively built, some objects often have fewer links from one link

type. In this section, we consider two networks: TED videos and Amazon products which

are explained. We show that our joint link prediction algorithm improves the link prediction

performance, especially when there are fewer links from one link type.

5.3.1 Network of TED Talks

TED is an online audio-visual broadcasting platform for the TED talks. 1 We consider a

network consisting of nearly 1,200 TED talks, with metadata and transcripts, linked by two

types of links. The first type relate two talks based on the similarity of contents. We derive such

content links from the suggestions of similar talks made by experts from TED. The second type

of links connects two videos if they co-exist in many users favorite lists. Since less popular

talks do not appear in many people’s favorite lists, there are fewer links based on users favorite

lists for such talks, and presumably the links for these talks are not very reliable. Note that

recognizing automatically that two talks have similar contents is difficult, but inference about

the content can be done more easily when two talks co-occur in many people’s favorite lists.

More specifically, the second type of links based on users’ favorite lists is built as follows. Each

talk is represented by a vector in the space of all users, and an element of the vector is 1 if the

talk is in the favorite list of the corresponding user, and 0 otherwise. Given one specific talk,

the rest of the talks can be sorted according to cosine similarity between their vectors and the

initial talk in the space of users. If two talks co-exist in many users’ favorites list, the cosine

similarity between their vectors in the space of users is high. Therefore, to build the second

type of links, we connect each talk with the top k talks based on cosine similarity between

their vectors in the users space. We will call this type of links “co-liked”.

1This data set has been collected by Nikolaos Pappas from Idiap, who has kindly shared it for the work presented
here. See http://www.ted.com for the original website.
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For example, the TED talk “Lucien Engelen: Crowdsource your health” has two content links

(two recommendations of topically-related talks from TED experts): “Jacqueline Novogratz on

patient capitalism” and “Nicholas Christakis: How social networks predict epidemics”. The

three highest score co-liked talks are: “Marco Tempest: Augmented reality, techno-magic”,

“Aparna Rao: High-tech art (with a sense of humor)” and “Sheikha Al Mayassa: Globalizing the

local, localizing the global”. We can observe that the related videos are about the same topic,

but co-liked videos are much less predictable from the content.

We build a feature vector for each talk from three sources: (1) speaker name, (2) title of the talk,

and (3) talk description as provided by TED (a short text). Each feature vector has a dimension

of 4,771 (based on a filtered vocabulary of 4,771 words), but vectors are very sparse, on average

with only 35 non-zero coefficients.

5.3.2 Network of Amazon Products

We build a network from a subset of Amazon products (described in Leskovec et al. [2007])

with two types of links between them. The first type comes directly from the Amazon website:

for each product, some of the co-purchased products are shown by Amazon. Each product in

the network is connected to the products which are claimed to be mostly co-purchased by the

Amazon website. We call this type of links “co-purchased”.

Each product is assigned to at least one category, often to more. Categories form a hierarchy,

from more general ones to the most detailed ones. We represent each product as a vector in

the space of all categories: if the product is assigned to a category, the corresponding element

is 1, otherwise it is 0. Cosine similarity between category vectors of two products is high if

they are mostly in the same categories from the hierarchy. To build this type of the links, we

connect each product to the k most similar products using cosine similarity between the

category vectors of the products. We call this type of links “category links”.

For example, consider the book “Writers in the Schools: A Guide to Teaching Creative Writing

in the Classroom”. This book is co-purchased with the following other books: “The Magic

Pencil: Teaching Children Creative Writing [. . .]” and “Journal Jumpstarts: Quick Topics and

Tips for Journal Writing”. Two category links are “Reading, Writing, and Learning in ESL (2nd

Edition)” and “Time to Know Them: A Longitudinal Study of Writing and Learning at the

College Level”.

Features of each product in the network come from the title and description of the product. We

use a dictionary of 3,765 words and sampled 10,000 products to build our network of products.

So, our second network is about eight times larger than the first one.
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5.3.3 Prediction Performance

To study the link prediction ability of our models experimentally, we split the objects of each

network into disjoint training and test sets. The training is performed on the objects in the

training set and the links between them, excluding links from these objects to the test set. To

evaluate prediction performance, for each object in the test set, all the objects in the entire

data set (training plus test sets) are ranked by the ranker, and the Mean Average Precision

(MAP) is calculated for the resulting ranked list according to the links in the test set. The final

scores are the average of 5-fold cross validation, with 80% of the data used for training and

20% for testing, in each fold.

We are interested in observing the prediction performance of the joint model when there are

few available links from one link type. To perform such an analysis, we make available to the

joint learner a full training set for one link type (80% of the objects in the network), and a

variable-sized training set for the other link type, varying from a smaller subset (30% of the

nodes) to the full training set (80%) by fixed increments (10%). The test set is always fixed

(20%). We observe the evolution of prediction performance with the size of the training set for

the second type of links.

Table 5.1 shows the average MAP for the objects in the test set for the co-purchased links, in

the Amazon products network, for several models. As explained, the size of the co-purchase

training set varies from 30% to 80% of the entire network, while the training set for category

links is constant (80%). Both ’separate’ and shared similarity model are using low rank factor-

ization of M due to the dimension size of the features, with a latent space of dimension 100.

The size of latent space in two-layer network is set to 100 as well. All matrices are initialized by

random values.
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Proportion of training set
Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8

Cosine Similarity 8.03 8.03 8.03 8.03 8.03 8.03
SVMrank – 8.94 9.06 8.99 8.92 9.11

Separate Model – 8.39 8.53 8.70 8.92 9.13
Shared Similarity 8.43 9.16 (+9.1%) 9.21 (+7.9%) 9.31 (+7.0%) 9.56 (+7.1%) 9.59 (+ 5.0%)

two-layer 9.00 9.33 (+11.2%) 9.43 (+10.5%) 9.48 (+8.9%) 9.60 (+8.18%) 9.70 (+7.22%)

Table 5.1: Average Mean Average Precision (MAP) for predicting co-purchase links between Amazon products, when the size of co-purchase
training set varies from 30% to 80% of the entire network. The joint model uses both co-purchase and category links (training set for the latter
is always 80% of the network). Bold results are significantly better (t-test, p < 0.001).

Proportion of training set
Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8

Cosine Similarity 7.50 7.50 7.50 7.50 7.50 7.50
SVMrank – 7.73 7.82 7.89 7.92 7.92

Separate Model – 7.86 7.99 8.07 8.38 8.61
Shared Similarity 7.97 8.31 (+5.7% ) 8.42 (+5.3%) 8.53 (+5.7%) 8.73 (+4.1%) 8.92 (+ 3.6%)

two-layer 8.48 8.79 (+11.8%) 8.8(+10.51%) 8.8(+9.66%) 9.12(+8.8%) 9.25(+7.4%)

Table 5.2: Average Mean Average Precision (MAP) for predicting category links between Amazon products, when the size of category training
set varies from 30% to 80% of the entire network. The joint model uses both co-purchase and category links (training set for the former is
always 80% of the network). Bold results are significantly better (t-test, p < 0.001).

90



5.3. Experimental Results

The ‘separate’ model shown in Table 5.1 uses only the link type that must be predicted and is

identical to the classical distance learning model that has been used in previous works Bai

et al. [2010], Shaw et al. [2011], Bai et al. [2009]. This model was previously compared with

state-of-the-art link prediction methods and was shown to be effective for link prediction on

networks. The separate model is ignorant about the other link type. The joint models make

use of both link types according to the models described in this chapter. Table 5.1 clearly

shows that the joint models improve the results significantly comparing to the separate model,

SvmRank and Cosine similarity. The separate model is itself superior to the other models

tested in Bai et al. [2010], Shaw et al. [2011], Bai et al. [2009]). SVMrank Joachims [2002],

Herbrich et al. [2000] has shown high performance in ranking; to make it applicable to large

graphs (here, the Amazon products) the optimization was performed on the primal form by

using stochastic gradient descent. Not surprisingly, the two-layer Similarity model has better

performance in comparison to the Shared Similarity model.

Table 5.2 shows similar results, but reversing the link types. In this experiment, we varied the

proportion of category links made available for training, from 30% to 80% of the total number

of objects, and kept the co-purchase links at a constant value (all links over 80% of the nodes

used for training).

The important observation is that when there are few links available for training (columns at

the left of the tables), the improvement of using both link types by the joint ranker is higher,

percentage of the improvement is given in the parenthesis. However, even when the training

set is large, the joint modeling is useful. Moreover, we observe in the extreme case when

there is no training data available (marked “0 (transfer)” in the tables) and the ranker is only

trained on the other link type, still the performance reached through transferring the learning

from the other link type is significantly higher than the ad-hoc similarity metric in baselines

(cosine-similarity). In the two-layer Similarity model we transfer the first layer and use an

orthogonal matrix with all elements one for the second layer. The results confirm that there is

correlation between categorical similarity of the products in Amazon and being co-purchased

by customers, and each of them can help in modeling and predicting of the other one.

Table 5.3 similarly shows the average MAP of the TED dataset for the content links and Table 5.4

shows the average MAP for the co-liked links. The Joint models, specially two-layer model,

significantly improve the link prediction performance for both link types. This shows that

there is a big correlation between relatedness of talks in TED platform and being in the favorite

list of many users.
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Proportion of training set
Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8

Cosine Similarity 4.55 4.55 4.55 4.55 4.55 4.55
SVMrank – 5.10 6.44 6.87 7.44 8.02

Separate Model – 4.94 5.78 6.49 8.18 9.28
Shared Similarity 6.30 5.96 (+20.6%) 6.98 (+20.7%) 7.52 (+ 15.8%) 9.27 (+ 13.3%) 10.38 (+ 11.8%)

two-layer 7.61 8.72(+76.5%) 8.95(+54.8%) 9.50(+46.3%) 9.91(+21.1%) 11.13(+19.9%)

Table5.3: Average Mean Average Precision (MAP) of content links in TED when the size of content train set is changed. The joint model uses
both content and co-liked links, the size of co-liked links is 0.8. Bold results are significantly better (t-test, p < 0.001).

Proportion of training set
Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8

Cosine Similarity 2.84 2.84 2.84 2.84 2.84 2.84
SVMrank – 2.40 2.72 2.73 2.33 3.77

Separate Model – 3.42 3.75 4.02 4.82 5.70
Shared Similarity 4.77 4.14 (+21.0%) 4.54 (+21%) 4.83 (+20.1%) 6.10 (+26.5 %) 6.44 (+ 12.9%)

two-layer 5.50 6.11(+78.6%) 6.22(+65.8%) 6.49(+61.4%) 6.97(+44.6%) 7.60(+33.3%)

Table 5.4: Average Mean Average Precision (MAP) of co-liked links in TED when the size of co-liked train set is changed. The joint model uses
both content and co-liked links, the size of content links is 0.8. Bold results are significantly better (t-test, p < 0.001).
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5.4. Convergence of the Training Shared Similarity Model

The joint models have a higher performance than the separate models on both networks that

we experimented with. The difference in the performance of the joint model and separate

model is higher when there are fewer number of links from one link type. In that case, the

denser link type can help more strongly the sparser link type through the shared information

part. But even when there are equal links from different link types, joint modeling through

shared information helps with the generality of the model and improves the link prediction

performance.

5.3.4 Effect of Low-rank Factorization Dimension

We finally study the effect of low-rank factorization on the performance of ranking when the

full training set is available. When the graph is larger, it is possible to train larger dimensions,

but when the network is not large, larger dimensions make over-fitting more likely.

Table 5.5 shows the effect of dimension on link prediction performance for Amazon products.

We observe that the growth of increase in the performance decreases when we increase

the dimension. The time complexity of the algorithm linearly depends with the dimension.

Therefore, for large scale graphs, one should choose a dimension by considering the trade-off

between the time complexity and the performance.

Table 5.6 similarly shows the effect of dimension on the link prediction performance over

the TED talks. Considering the size of network, increasing the dimension decreases the

performance, as it over-fits the training set.

Dimension
Model 20 50 100 150

Separate Model (co-purchase) 6.60 8.52 (+29.9%) 9.13 (+7.16%) 9.31(+1.97%)
Shared Similarity (co-purchase) 7.29 9.24 (+26.75%) 9.59 (+3.79%) 9.91(+3.34%)

two-layer (co-purchase) 7.29 8.94(+22.63%) 9.70 (+8.50%) 10.11(+4.22%)
Separate Model (category) 7.59 8.41 (+10.08%) 8.61 (+2.38%) 8.67(+0.70%)

Shared Similarity (category) 7.96 8.76 (+10.05%) 8.92 (+1.83%) 8.98(+0.67%)
two-layer (category) 7.96 8.84(+11.05%) 9.25 (+4.63%) 9.40(+1.62%)

Table 5.5: Average Mean Average Precision (MAP) for predicting links between Amazon prod-
ucts.

5.4 Convergence of the Training Shared Similarity Model

To prove the convergence, first we need to establish an upper bound for the norm of the

subgradients at each iteration ||5t (.)||2F <U which can be easily found if the data points are

bounded. For example, if all data points vectors are normalized, then they are bounded, which

is the case in our study.

Theorem 2. Let Ḡ = 1
T

∑T
t=1 G t and S̄i = 1

T

∑T
t=1 Si

t be the averages of G and Si so far. Let the
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Dimension
Model 10 20 50 100 150

Separate Model (content) 9.33 10.63 9.52 9.47 9.28
Shared Similarity(content) 9.53 11.39 11.05 11.02 10.38

two-layer (content) 9.90 11.72 11.67 11.13 11.06
Separate Model (co-liked) 5.95 6.48 6.21 5.89 5.70

Shared Similarity (co-liked) 6.30 6.96 7.09 6.39 6.44
two-layer (co-liked) 7.63 7.99 7.97 7.60 7.67

Table 5.6: Average Mean Average Precision (MAP) for predicting links between TED videos.

update rate be ηt = 1
λt with λ≤ 1/4. Let also G∗ = arg min

G
L(G) and S∗

i = arg min
Si

L(Si ). If the

data points are bounded, i.e. ||x ′
a xb ||2F < R with R ≥ 1, then with a probability of at least 1−δ,

we have (with r = 4R2):

L(Ḡ) ≤ L(G∗)+ 21r ln(T /δ)

λT

L(S̄i ) ≤ L(S∗
i )+ 21r ln(T /δ)

λT

Proof. Each of the Lt (G) and Lt (Si ) is λ−strongly convex as they consist of a part with a shape
λ
2 ||M ||2F and a convex function (the average hinge function). According to the Theorem 1

in Shalev-Shwartz et al. [2011] the upper bound of the subgradients norms ||5Lt (Si )||2F ,

||5Lt (G)||2F is r = 4R2.

L(Si ) and L(G) can be considered as the loss function of a one-class PEGASOS algorithm for

which the input data pints are x ′
a(xc −xb) for (a,b,c) ∈ Traini . In Lemma 2 in Shalev-Shwartz

et al. [2011] the inequalities stated in the theorem are proven for the PEGASOS loss function

and are therefore valid for the L(G) and L(Si ).

As a consequence of the above theorem we can write :

L̄ = L(Ḡ)+∑
i

L(S̄i ) ≤ L(G∗)+L(S∗
i )+ 21(N +1)r ln(T /δ)

λT

Therefore we can see that to obtain an error inferior or equal to ε with the confidence 1−δ we

need Õ( N+1
εδλ ) iterations.

5.5 Conclusion

In this chapter, we proposed two joint similarity learning models over nodes’ attributes for

link prediction in networks with multiple link types. The first model learns a similarity metric

that consists of two parts: the general part, which is shared between all link types, and the
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specific part, which is trained specifically for each type of link. The second model consists of

two layers: the first layer, which is shared between all link types, embeds the objects of the

network into a new space, and then a similarity is learned specifically for each link type in

this new space. Both models are applicable to large networks with high-dimensional feature

spaces. The experiments show that the proposed joint modeling and training frameworks

improve link prediction performance significantly for each link type in comparison to multiple

baselines. This improvement is higher when there are fewer links available from one link type

in the network. The two-layer similarity model outperforms the first one which is expected

due to its capability of modeling negative correlations among different link types. Moreover,

we illustrated that even if the models are trained completely on one link type and tested on the

other, our models significantly improve the performance in comparison to ad-hoc similarity

metrics.
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6 Similarity Learning for Collective
Ranking on Networks: Application to
Link Prediction
This chapter proposes a method for learning to rank over networks (relational data). The

ranking is performed with respect to a query object which can be part of the network or

outside it. The ranking method makes use of the features of the nodes as well as the existing

links between them. First, a neighbors-aware ranker is trained using a large margin pairwise

loss function. Then, collective inference is performed using an iterative ranking algorithm,

which propagates the results of rankers over the network. By formulating link prediction

as a ranking problem, the method is tested on three networks, with papers/citations and

webpages/hyperlinks. The results show that the proposed algorithm, which uses both link

structure and node attributes, outperforms several other methods: a content-only ranker, a

link-only one, a random walk method, a relational topic model, and a method based on the

weighted number of common neighbors. In addition, the propagation algorithm improves

results even when the query object is not part of the network, and scales efficiently to large

networks.

The chapter is organized as follows. After a brief introduction to the problem (Section 6.1),

we frame the model and put it into perspective in Section 6.2. In Section 6.3 we explain the

collective ranking framework, first by introducing the neighbors-aware ranker and then the

collective inference algorithm. In Section 6.4 we evaluate the proposed method on the three

different data sets, showing that it outperforms several other methods.

6.1 Introduction to Ranking on Relational Data

In network or relational data, the relations between objects are represented by directed or

undirected edges in a network. The ranking problem on network data requires that all objects

in the network are ranked given a query.

Two cases of the ranking problem can occur in network data such as social networks: the

query object itself is an object in the network – i.e. some prior relations with other objects are

known – or the query object is not part of the network.
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When the query object has already some links in the network, link-based approaches such as

random walk models can be effective, whereas when the query object is not in the network,

these link-based approaches are not applicable, and usually supervised learning over node

attributes are considered.

In both cases, it is possible to exploit the relations between objects in the network to increase

the accuracy of the ranking with respect to a given query. In this work we bridge these two

approaches and make use of attributes and of relations between objects at the same time.

For illustration purposes, let us consider a network formed by scientific papers linked by

citations between them. Given a “query” paper, the goal is to rank all papers in the network

according to a score that reflects the likelihood of being cited by this query paper. If the network

is made of completed papers with optimal citations, then this score should distinguish the

actually cited (respectively not cited) papers. Moreover, the model will also indicate papers that

should have been cited and were not, or, conversely, citations that were spuriously inserted.

But the ranking task is more clearly useful for recommending citations to include in a new

paper (object outside the network) or to extend an existing draft (already in the network). In

both cases, the model computes a ranked list of recommendations for additional citations,

using existing links and object features as well. A similar application is the recommendation

of new connections in social networks.

6.2 Motivation of the Model

Learning to rank can be formulated as a supervised learning task. Suppose that each object,

including the query, can be represented as feature vectors in a given space. Let X be the list of

feature vectors Xi for a list of objects, and let Y be the list of corresponding grades or relevance

scores, for each object, with respect to a given query object q . For example, in the case of a

friendship social network, the grades Yi represent the friendship status (‘friend’ or ‘not friend’)

with the query object (an individual profile) for each member i , and the feature vectors Xi

are derived from the information available from individual profiles of each member i . In

information retrieval terms, the grades Y represent the relevance degree of the objects with

respect to the query.

The goal of the learning to rank task is to automatically learn a function F transforming a

list of feature vectors X into a list of scores with respect to a query q , given the training data

(Xqi , X1,Y1qi ), (Xqi , X2,Y2qi ), . . . , (Xqi , Xm ,Ymqi ) in which Xqi and X j are showing the feature

vectors of the query qi and the object j , and Y j qi shows their corresponding grade.

In all generality, F (q, X ) is a global ranking function, meaning that F assigns scores to the list

of features vectors X for a given set of objects and a query. A global ranking function is able

to consider dependencies between objects as it scores a set of objects instead of each object

alone. However, to make the computation tractable in practice, a local ranking function is
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usually considered for applications:

F (q, X ) = [ f (q, X1), f (q, X2), . . . , f (q, Xn)]

The implicit assumption behind using a local ranking function is that the score of each object

is independent from the score of the other objects. In many applications this assumption

yields acceptable results, but in network data this assumption is quite questionable. In a

friendship network, for instance, friendship is more likely if there are more common friends,

and not only if two people have similar profiles. Or, in a citation network, a paper is more

likely to cite another paper if it has already cited several papers that cite the considered paper.

In this chapter, we model the dependency between data objects in the network to solve

the ranking problem more effectively. We make use of a loss function L(·, ·) to evaluate the

prediction result of F (q, X ) upon training. First, the feature vectors X are ranked according

to their scores F (q, X ). Then, the ranking results are evaluated against the corresponding

expected grades Y . If the feature vectors with higher grades are ranked higher, then the loss L

will be small, otherwise it will be large.

However, the minimization of the loss function is difficult as it is not continuous and uses

sorting Li [2011]. Therefore, we consider a surrogate loss function L′ to make the minimization

possible, specifically a pairwise hinge loss function. This function attempts to preserve the

pairwise order between the objects in the training set by maintaining a margin between the

scores of each pair Bai et al. [2010]. For instance, in a friendship social network, the hinge

function aims to preserve the order between the scores of the friend pairs and the non-friend

pairs.

Link prediction can also be formulated as a learning-to-rank problem: given a query node,

all other nodes are sorted according to the likelihood of creating a link between them and

the query node. Link prediction is a binary graded ranking and, in the training phase, if the

linked objects are ranked higher, then the loss will be small, otherwise it will be large. This

formulation has been used in many previous works including Liben-Nowell and Kleinberg

[2003], Adamic and Adar [2001], Backstrom and Leskovec [2011], Shaw et al. [2011], Agarwal

et al. [2006]. In the rest of this chapter we focus on the binary ranking problem for link

prediction, although the framework can be easily generalized for other ranking problems.

6.3 Learning to Rank on a Network

The classification of objects from network data sets has been shown to be successfully ad-

dressed by using collective classification algorithms Jensen et al. [2004], in which a local

classifier is trained to classify each object independently by using at the same time object

features and labels of other objects in its neighborhood. A collective inference algorithm

propagates the results of the local classifiers in the network.
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For ranking on a network, we draw inspiration from this approach to define a collective ranking

algorithm which consists of three parts:

1. The content-only ranker learns to rank only by using a similarity function on node

attributes, while ignoring relations between nodes. This ranker embodies the approach

which is traditionally used in learning to rank problems.

2. The neighbors-aware ranker learns how to rank according to the information locally

available at each node, coming from the node’s attributes and the neighborhood in-

formation. The size of the neighborhood of which the ranker is aware can vary in

principle; however, in this work, we limit the neighborhood to the direct neighbors, i.e.

one transition away.

3. The collective inference algorithm propagates the results of local rankers over the net-

work. Existing collective inference methods McDowell and K.M. Gupta [2009] are used

as inspiration for an original iterative propagation algorithm, defined below. We will

show that this algorithm is effective for collective ranking and is simpler to implement

and scales better to larger graphs in comparison to other collective inference algorithms.

Moreover, we prove the convergence of the inference algorithm.

In the following subsections we describe the neighbors-aware local ranker, the collective

inference algorithm, and the training process for the ranker.

6.3.1 Neighbors-aware Ranker

The neighbors-aware ranker returns a score given a query, a target node, and the overall graph

structure. The ranker’s score is a function of the neighbors’ scores and of the similarity between

the query and the target node. If we denote the ranker by f , the entire graph by G , the query

and target nodes respectively by q and t , and the features of a node i by xi , then we have:

f (q, t ,G) = si mi l ar i t y(xq , xt )︸ ︷︷ ︸
content-only

+αnei g hbor (q, t ,G)︸ ︷︷ ︸
neighbors scores

The first part, si mi l ar i t y(xq , xt ), is the content-only ranker which computes the similarity

between q and t based only on their attributes, as proposed by most previous learning to rank

methods. Many content-based rankers with various learning abilities have been studied in the

literature, for instance RankNet Burges et al. [2005], polynomial semantic indexing Bai et al.

[2009] or structure preserving metric learning Shaw et al. [2011]. In this study, we choose a
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similar approach and define the similarity function as:

si mi l ar i t y(xq , xt ) = xq ×M ×x ′
t

The M matrix is a N ×N matrix, where N is the number of words. In practice, to make the

training and the storage possible, some constraints on M are considered, such as using a

diagonal matrix or performing low-rank factorization Bai et al. [2009], Shaw et al. [2011].

The second part of f , i.e. the neighborhood score, shows how the neighbors of t are scored

with respect to q . If the neighbors of t have high scores, it is more likely that t itself has high

scores. For instance, in a friendship social network, a person q is more likely to be friend with a

person t if they have many common friends. This part of the neighbors-aware ranker takes into

account the dependencies between data objects, and allows us to perform collective ranking

instead of local ranking only. As we are dealing with directed networks here, we consider two

types of neighbors: neighbors from in-links (Ni n(t )) and neighbors from out-links (Nout (t )).

We define the nei g hbor function recursively by using the score function of the neighbors as

follows:

nei g hbor (q, t ,G) = w1

∑
n∈Ni n (t ) f (q,n,G)

|Ni n(t )| +w2

∑
n∈Nout (t ) f (q,n,G)

|Nout (t )|

The parameters w1 and w2 represent the importance of the in-links neighbors and out-links

neighbors, and are learned during the training along with the parameters of the si mi l ar i t y

function.

Putting all together we have the following formula for the neighbors-aware ranker:

f (q, t ,G) = xq M x ′
t +

αw1
∑

n∈Ni n (t ) f (q,n,G)

|Ni n(t )| + αw2
∑

n∈Nout (t ) f (q,n,G)

|Nout (t )|

According to the above formula, the score of a target node t is defined based on the score of

its neighbors, recursively. Therefore, to compute the score to a target node, the score to its

neighbors should be computed, and to compute the score to the neighbors, the score to the

neighbors of the neighbors should be computed first, and so on. The next sections explains

how these values are estimated.

The α parameter in the definition of the neighbors-aware ranker (we choose α < 1) is the

dampening parameter which decreases the effect of the neighbors’ scores on the target node

score as their distance from the target node increases. For instance, the effect of a neighbor

two transitions away is α times smaller than the effect of the neighbor one transition away.

101



Chapter 6. Similarity Learning for Collective Ranking on Networks

A larger α means that a larger neighborhood is allowed to have an effect on the target node

score, whereas a smaller α achieves the opposite effect. Therefore, α is a hyper-parameter of

the algorithm and is not learned during the training.

6.3.2 Collective Inference

To compute the score for a given query and a target node, we need to know the scores of the

query to the target’s neighbors. To compute this recursive function, we start from an initial

score and iteratively compute the scores.

The score of a node at iteration τ is thus computed based on the score of nodes at iteration

τ−1. More precisely, if f τ(q, t ,G) is the score of node t for the query q at iteration τ, it is

computed as:

f τ(q, t ,G) = xq M x ′
t +

αw1
∑

n∈Ni n (t ) f τ−1(q,n,G)

|Ni n(t )| + αw2
∑

n∈Nout (t ) f τ−1(q,n,G)

|Nout (t )|

There are two cases for the initial scores f 0(q, t ,G): first, if no prior relation is known for the

query in the network, the scores are initialized by the scores of the content-only ranker. Second,

when the query node itself is in the network, they come from the prior known relations, the

initial score is set to 1 if (i , j ) is an edge of the graph G and to 0 otherwise.

To perform the propagation, we propose here a collective inference algorithm, which is

effective for collective ranking, as we will show. The algorithm is easy to implement and scales

well to large graphs in comparison to other collective inference algorithms. We refer to the

algorithm as ‘Iterative Ranking Algorithm’ (IRA) because at each iteration the results of the

neighborhood-aware rankers are propagated one step further in the graph. The pseudocode

for the IRA is given as Algorithm 7 below.

At the first step, the initial score of all nodes with respect to the query is computed according

to the explanation above. Then, scores are normalized and the scores above the threshold

propagate to the neighbors at the next step of the algorithm. This propagation of above-

threshold scores continues until convergence or until the maximum number of iterations is

reached.

The algorithm converges if |w1| < 1 and |w2| < 1, because the effect of long paths decreases

exponentially and eventually vanishes. To ensure the convergence, during the training of the

ranker we impose the constraint that all the parameters (similarity matrix parameters and wi )

must be between zero and one. By imposing this constraint on the parameters we achieve

two goals: (1) we can prove the convergence, and (2) the constraint acts as a regularizer on the

parameters in the loss function minimization and avoids arbitrary growth of the parameters

(see Section 6.3.3).

102



6.3. Learning to Rank on a Network

Algorithm 7 Iterative Ranking Algorithm.

IRA for query node q
q = query node,
f = neighborhood-aware ranker,
fcontent = content-only local ranker,
c = threshold for scores to propagate,
T = maximum number of iterations,
G = graph with vertex set V and edge set E ,
α= dampening parameter,
f τi = score of node i after τ iterations (long: f τ(q, i ,G))
if q ∈V then

∀i ∈V , f 0
i =

{
1 if (q, i ) ∈ E
0 otherwise

else
∀i ∈V , f 0

i = fcontent (q, i )
end if
f 0

nor m(i ) = nor m( f 0
i ) (normalize scores to [0, 1])

τ= 1
while NotConverged and τ≤ T do

for i ∈V do
if f τ−1

nor m(i ) < c then
f τ−1

i = 0
(scores below threshold do not propagate)

end if
end for
HighScoreNodes = {i | f τ−1

i > 0}
PossiblyChanged = {i |i ∈Ni n(HighScoreNodes)∨ i ∈Nout (HighScoreNodes)}
for i ∈ PossiblyChanged do

f τi = f (q, i ,G , f τ−1
i )

end for
f τnor m(i ) = nor m( f τi ) (normalize scores to [0, 1])
τ= τ+1

end while

The proof of convergence of the algorithm can be sketched as follows. We first make explicit

the value of f τi , the score of the node i after τ iterations, and we omit q from the equations for

simplicity.

f τi = Si mi +α w1

|Ni n(t )|
∑

n1∈Ni n (t )
(Si mn1 +α

w1
∑

n2∈Ni n (n1) f τ−2
n2

|Ni n(n1)| +αw2
∑

n2∈Nout (n1) f τ−2
n2

|Nout (n1)| )

+α w2

|Nout (t )|
∑

n1∈Nout (t )
(Si mn1 +α

w1

|Ni n(n1)|
∑

n2∈Ni n (n1)
f τ−2

n2
+α w2

|Nout (n1)|
∑

n2∈Nout (n1)
f τ−2

n2
)
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If we continue expanding the above equation, the coefficient for the similarity of a node that

is n transitions away is αn × (wa1 · · ·wan ) with ai being either 1 or 2. When increasing n, this

coefficient tends to zero (given that α< 1, w1 < 1, w2 < 1, etc.), which means that the effect of

long paths (including loops) vanishes, and the algorithm converges. One might think that the

thresholding changes this linear algebraic nature of the propagation and then the convergence

can not be guaranteed, but the normalization of the scores and thresholding are used in the

following way considering this issue. In algorithm 7, if the normalized score is higher than the

threshold, the unnormalized score is passed to the next step, and otherwise the score is set to

zero in the next step. In other words, in the above expansion only some terms are expanded

and others are set to zero, which still holds the convergence.

The scores below threshold c will not propagate to the next step of the IRA. There are two main

reasons to add this threshold: the first one is that it prevents the propagation of noise in the

graph, therefore improving performance, as shown in Section 6.4.1. The second reason is to

increase the speed of the collective inference algorithm for larger graphs. In the IRA, in each

iteration, only the score of nodes for which the scores are possibly changed are updated. Only

the scores of the neighbors of nodes with scores higher than the threshold can be changed in

the next iteration. By using a reasonably high threshold, only the scores of very few nodes will

change, despite the size of the graph, and therefore the propagation algorithm is sped up, as

confirmed experimentally in Section 6.4.1. However, in theory, the worst case time complexity

of the algorithm does not change and is still O(N T ).

The above reasons to use threshold in the propagation algorithm are justified, if and only

if, there are only few nodes with high scores in each iteration and there is a long-tail of low

scores nodes. Most real-world networks are small world networks, meaning that nodes form

communities, and these communities are connected by short paths. Therefore, each node is

not connected uniformly to all other nodes in the network, but is usually only connected to a

small number of other nodes in its community. We perform more experimental investigations

in the next sections to validate these assumptions on the networks used as test sets.

6.3.3 Training the Neighbors-aware Ranker

The goal of training is to approximate a local ranker which minimizes a ranking loss function

over the graph G for the queries, target nodes, and associated grades that are given in the

training set. In this section we discuss the training of the binary ranking for link prediction

problem. This can be easily generalized to other ranking problems if needed.

At training time, the graph G = (V ,E) is available, where V is the vertex set and E the edge set,

as in Algorithm 7. We assume that there are two possible grades, ‘connected’ or ‘not connected’,

which are given by the existing edges in the graph. We consider the following training set T

with triples of nodes such as T = {(i , j , z)|(i , j ) ∈ E and(i , z) ∉ E }. The goal of training is to

minimize the empirical risk using a pairwise hinge loss function L over the training set T as

follows:
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L = ∑
(i , j ,z)∈T

max(0,dmar g − f (i , j ,G)+ f (i , z,G))

so that 0 ≤ wi ≤ 1 and 0 ≤ Mi j ≤ 1

where wi are the parameters of the neighborhood component of f and Mi j are the parameters

of the similarity component of f . We define dmar g as a constant margin that should separate

the examples of two grades (connected vs. not connected). By using the constraint that the

parameters should be bounded, we ensure that the collective inference algorithm converges.

Moreover, the constraint is a regularization on the parameters and prevents the arbitrary

growth of the parameters in the optimization, which is equivalent to the optimization of the

same loss function plus the infinity norm of the parameters.

If the training graph G is large, then minimizing the above summation is not tractable. To

overcome this problem we make use of a stochastic gradient descent algorithm in which at

each iteration we randomly select i , j and z from G and perform gradient descent on them.

To impose the constraint we use gradient projection method.

To perform the training for a given triple (i , j , z), we need to know the score of query i to the

neighbors of j and z. We set the score to the maximum value (1) if there is a link between i and

the neighbor of j in the training graph G , and to the minimum value (0) if there is no such link.

In this case, the optimization is convex and the gradient of the loss function is easy to compute

as the score of the neighbors is constant. We use Ei j = 1 if (i , j ) ∈ E and Ei j = 0 otherwise. The

subgradients of the approximate objective function at time (iteration) τ are the following:

(i , j , z) ∈T

5Lτ(M) = {
x ′

i (x j −xz ) if f τ(i , j ,G)− f τ(i , z,G) < d

0 otherwise

dif i n =
∑

n∈Ni n ( j ) Ei n

|Ni n ( j )| −
∑

n∈Ni n (z) Ei n

|Ni n (z)|

5Lτ(w1) = {
dif i n if f τ(i , j ,G)− f τ(i , z,G) < d

0 otherwise

dif out =
∑

n∈Nout ( j ) Ei n

|Nout ( j )| −
∑

n∈Nout (z) Ei n

|Nout (z)|

5Lτ(w2) = {
dif out if f τ(i , j ,G)− f τ(i , z,G) < d

0 otherwise
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The update of the parameters is done consequently as follows:

Mτ+1 = Mτ−ητ5Lτ(M)

w1
τ+1 = w1

τ−ητ5Lτ(w1)

w2
τ+1 = w2

τ−ητ5Lτ(w2)

where ητ is the learning rate at the iteration τ.

The dimension of M is N 2 where N is the number of features of the data points. In practice, to

make training and storage possible, particularly when we are dealing with high dimension

data such as text, we perform low-rank factorization of M . In this case we assume that A = AB ′

so that A and B are matrices from N to a lower dimension. Given that M is not necessarily

symmetric, we decompose it into two lower-rank matrices. The objective function consisting

of the low-rank matrices is not convex any more, but in practice it has been shown that the

low-rank factorization performs well Bai et al. [2009]. At each iteration the time complexity of

the stochastic training algorithm is O(Z 2), where Z is the average number of non-zero features

of the objects, which can be much smaller than the dimension N of the features. For example,

for textual data, the feature vectors are very sparse in comparison to the dimension of the

features (i.e. the number of possible words, or vocabulary size).

6.4 Experimental Setup and Results

In this section, we apply the proposed method to Link Prediction problem (connected vs. not

connected) on three network data sets: WEBKB, CiteSeer and Cora which have already been

explained in Section 3.3.3. Given a query, all other objects are ranked according to their score,

and the goal is to get the linked objects at the top of this list.

To build test sets, we randomly exclude some objects from the initial network (about 10%),

and train the algorithm on the remaining network.

We present the performance of the proposed method in terms of precision and recall at 10

for the three data sets. The training set is built by excluding about 10% of the nodes and

their links from the network, meaning that for each query object there is no prior link in the

training network. This scenario corresponds to certain real-world situations, for example

when a new person joins a social network, or a paper is being written and does not cite any

other paper yet. Therefore, the ranking is performed by using two types of information sources

only: first, the features of the query node and of the objects in the network; and second, the

relations between the objects in the network. The second type can be exploited only by using

the neighboorhood-aware ranker and the propagation algorithm described above. This task

is clearly difficult for algorithms based on only the link structure, for example random walk

algorithms or algorithms based on common neighborhood.

106



6.4. Experimental Setup and Results

Another possible real-world situation is when some prior relations of the query object are

known, e.g. a paper with some known citations or a person which already has some relations

in a social network. This will also be explored, by making available some of the relations of the

query object.

To perform a detailed analysis of the performance of the proposed algorithms, their perfor-

mance is analyzed by changing the proportion of the known prior links of the query objects in

the test set, from 0 to 0.7, with 0 meaning that no prior links of the query object are known

(first scenario). This covers therefore the two types of situations described above.

The threshold of the IRA algorithm is set to c = 0.8, which makes the computation fast on the

studied networks, and the effect of this threshold is discussed in the following section through

additional experiments. The similarity matrix M is constrained to be diagonal. The reported

results are the average of 10 different runs for which the test set was chosen randomly at the

start of each run.

Figures 6.1 and 6.2 show respectively the average precision and recall at 10 for the eight algo-

rithms listed below, where the first one corresponds to the full proposal of this chapter, the

second one to its first part only (without propagation), and the other six are previously pro-

posed ones, serving for comparison. Namely, we report the performance of the Personalized

Page Rank random walk Haveliwala [2003], of the Adamic and Adar similarity Liben-Nowell and

Kleinberg [2003], and of a relational topic model, which are the methods that gave especially

high scores in previous studies.

1. Neighbors-aware ranker with IRA.

2. Neighbors-aware ranker without IRA.

3. Content-only ranker.

4. Neighbors-only ranker with IRA.

5. Neighbors-only ranker without IRA.

6. Relational Topic Model (RTM).

7. Personalized Page Rank random walk (RW).

8. Adamic and Adar similarity.

Figures 6.1 and 6.2 show that for all three data sets the ranking performance using the

neighbors-aware ranker with the propagation algorithm ,IRA, is always higher than all the

other algorithms, including the neighbors-aware ranker alone. Therefore, the method pro-

posed in this chapter appears to be effective and competitive.

When the number of known relations of the query objects is increased (right side of the

graphs), the performance of the neighbors-only ranker and the link-based measures get closer

to the rest of the rankers (such as random walk), because the neighborhood and link structure
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information become available. But when there are few known relations of the query objects in

the network (left side of the graphs), the performance of the neighbors-aware ranker plus IRA,

neighbors-aware ranker alone and even content-only ranker are much higher than link-based

approaches such as random walk model.

Propagation by IRA is shown to be useful even when queries have no known relations at all in

the network (leftmost data points in Figures 6.1 and 6.2). In this case, the IRA propagates the

result of the content-only ranker in the network by exploiting the relations between objects in

the network. For instance, this can increase the score of a node that does not get a high score

from features similarity, but is connected to many nodes with high scores. If we imagine the

scientific papers network again, a low-score paper (according to the content) might get a high

score after propagation because it is cited by many high-score papers. Therefore, modeling

the relations between objects in the network even when there are no known links for the query

object is shown to be helpful.

Neighbors-aware ranker, that uses neighborhood information that is only one transition away,

improves the results significantly for Cora and CiteSeer networks, but does not always improve

the results on WEBKB network. On the other hand, the propagation algorithm, IRA, improves

the performance more on WebKB and Cora network and is less effective on CiteSeer network.

The combination of both neighbors-aware ranker and IRA is a rich model that is able to model

varying-length dependencies if needed, and results in a robust ranking method which is

effective on different networks.

Precision and recall score are not necessarily increasing with the increase of the known links

of the query objects (going from the left to the right side of the figures). This is because for

each query object in the dataset only a fixed number of connected objects (e.g. cited papers)

is available, and by revealing more of them the number of potential correct answers decreases,

i.e. the upper bound of precision at k.

6.4.1 Effect of Threshold

In this section, we analyze experimentally the effect of the threshold c for the propagation of

scores in the IRA algorithm. We report precision and recall at 10 for the three test data sets

while varying the threshold c and the proportion of known links, over the three data sets, in

Figures 6.3 and 6.4.

The first observation is that the performance increases when increasing the threshold. The

main reason is that with a lower threshold, many wrong predictions are propagated in the

graph. Still, when the threshold is close to 1, the performance drops again as the propagation

(which was shown above to be clearly useful) decreases and eventually stops.

The results demonstrate the advantage of the proposed method: the performance increases

when using a high threshold, and in this case only few nodes are updated at each iteration,

therefore the IRA is much faster. The running time, in practice, is nearly constant with respect
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Figure 6.1: Precision at 10, as a percentage, for the eight rankers listed in the text. The
proportion of known prior relations of the query objects in the network is increased from 0 to
0.7. From left to right, the data sets are WebKB, Cora, and CiteSeer.

to the graph size, although the theoretical worst case time complexity remains linear. We

report in Figure 6.5 the required inference time on the data sets while varying the threshold c.

Increasing the threshold makes the required time decrease rapidly for low thresholds, as there

are many nodes with very low scores (long tail). Then, by increasing further the threshold,

the required time decreases only slightly. This confirms our assumption that the networks

are small world graphs and form connected communities, which makes our propagation

algorithm very efficient.

We performed a similar experiment varying α when the threshold c is fixed. The results show

that for very small values of α the neighborhood does not have any effect on the score and

performance unsurprisingly decreases. If α is close to 1, then although the w1 and w2 are

trained on the network, the training becomes more difficult as the loss function gives a high

weight to the neighborhood part in comparison to the similarity part, so again performance

decreases. In addition, when al pha is close to 1, the convergence is harder and loops can

have negative effects on the performance.

6.5 Conclusion and Future Perspectives

We proposed a learning to rank algorithm on network data, which uses both the attributes of

the nodes and the structure of the links, for learning and inference. The proposed collective

inference algorithm, IRA, propagates the predicted scores through the graph on condition that

they are above a given threshold. Thresholding adds two features to the algorithm: it improves

performance, and makes a time-efficient implementation possible, for application to large

scale graphs.
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Figure 6.2: Recall at 10, as a percentage, for the eight rankers listed in the text. The proportion
of known prior relations of the query objects in the network is increased from 0 to 0.7. From
left to right, the data sets are WebKB, Cora, and CiteSeer.

Figure 6.3: Precision at 10, as a percentage, when increasing the threshold c of the IRA from
0.2 to 0.95 on the three data sets. In each graph, the curves correspond to 0.2, 0.4 and 0.8 of
prior relations known.

The experimental results showed that using the proposed algorithm improves the performance

of the link prediction on three different network data sets, for binary graded scores (connected

vs. not connected). The results showed more specifically that the neighbors-aware ranker,

which uses content features and scores of the neighbors, has a higher performance than the

content-only ranker, the neighbors-only ranker, Relational Topic Model and two linked-based

similarity measures. Moreover, using the proposed propagation algorithm, IRA, in addition to

the neighbors-aware ranker improves the performance even more.

In the current model, the influence of the neighbors is not considered: all neighbors are

assumed to be equal. However, neighbors might have different influences, including negative

ones. Our model can be generalized to learn a node-specific influence of neighbors as a

function of their features and of the features of the edges between them. This model has more

parameters and needs therefore bigger training sets to perform reliable experiments.

Moreover, a recursive procedure can be considered for training the ranker. Here, when training

over a network, we assumed that the scores of a target node’s neighbors are constant (1

if they are connected with the query or 0 otherwise). The implicit assumption is that the
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Figure 6.4: Recall at 10, as a percentage, when increasing the threshold c of the IRA from 0.2 to
0.95 on the three data sets. In each graph, the curves correspond to 0.2, 0.4 and 0.8 of prior
relations known.

Figure 6.5: Inference time of the IRA when increasing the threshold c from 0.2 to 0.95 on the
three data sets. In each graph, the curves correspond to 0.2, 0.4 and 0.8 of prior relations
known.

training network is “complete” and all links are “correct”. In some networks this assumption is

questionable, since there are missing links or spurious ones. To model this fact, it is possible to

train the ranker recursively: first by using the constant scores according to the current links in

the network, and then by replacing these scores by the scores provided by the ranker learned

in the previous iteration. This model also deserves further experimental investigations.
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7 Conclusion and Perspectives

In this thesis, we have proposed novel solutions to similarity learning problems on collabo-

rative networks. As shown throughout the thesis, similarity learning is an essential task for

modeling and predicting the evolution of collaborative networks. Moreover, we showed that

similarity learning is used to perform ranking, which is the main component of recommender

systems. Due to the the low cost of developing such collaborative networks, they grow very

quickly, and therefore, we have aimed for models that scale well to large networks.

Conclusion

Various sources of information can be considered when building a distance measure over a

collaborative network. The first important source of information is the global link structure

of the network. In collaborative networks, there are many spurious and missing links, which

make a proximity measure based on local link structure unreliable. The link structure also

might consist of multiple link types.

In Chapter 3, to answer these requirements, we defined a random walk model, named Visiting

Probability (VP), to measure proximity between two nodes in a graph. VP considers all

the paths between two nodes collectively and thus reduces the effect of unreliable links.

We defined a symmetric VP similarity measure and showed experimentally that using the

symmetric VP improves the prediction performance of the distance. Moreover, we showed

how to use both the VP definition and the structural characteristics of many social networks,

namely the case of small-world networks, to design scalable algorithms based on VP similarity.

We designed approximation algorithms to perform ranking based on VP on large graphs.

Besides, we defined the community of a node according to VP and gave experimental evidence

that this definition was effective. Fast algorithms were designed to solve K-nearest neighbors

and identify the communities over large graphs, based on symmetric VP proximity.

In the second part of Chapter 3, we took advantage of the homophily principle in social net-

works, the fact that two nodes having similar ”social characteristics” have a higher probability
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to be linked. We defined a latent space as the space that is formed by the “social characteristics”

or “latent features”, and assumed that homophily holds in this latent space.

Therefore, we showed that the link structure of a graph can be modeled by the proposed

similarity learning framework, in which the transformation of nodes to the latent space is

trained using a discriminative model. We showed how to apply this framework to learn the

similarity between two nodes based on their attributes, over large graphs. Moreover, we

showed that similarity learning on attributes derived from random walk scores, specifically

VP scores, can model and predict better the relations in the graph in comparison to learning

on the network’s links directly. Especially, we showed that training the latent space on the

VP-based communities of nodes resulted in the best prediction performance.

Therefore, we used both global network structure (VP scores) and node attributes to learn

a reliable similarity measure. In the experimental results, we observed that sometimes the

nodes’ attributes were not predictive enough to be able to describe the global link structure of

the network, and the prediction performance dropped when using only the node attributes.

To answer this problem, we designed a learning to rank framework specific to the network

data in Chapter 6.

In Chapter 4, we explained how to transfer knowledge from a hypertext encyclopedia to text

analysis tasks. We have constructed a graph including Wikipedia articles and two different link

structures between them. Our hypothesis was that using both word co-occurrence information

and user-defined hyperlinks between articles could improve the resulting textual distance

for application to a variety of tasks: word similarity; document similarity, clustering, and

classification; information retrieval, and learning to rank.

To transfer learning from the Wikipedia network to text analysis tasks, we proposed and tested

two representation methods. In the first one, a given text is mapped to the corresponding

concepts in the network. Then, to compute similarity between two texts, VP similarity is

applied to compute the distance between the two sets of nodes. In other words, the shared

representation space is the set of concepts in the network and every text is represented in this

space. The second method uses the latent space model explained in Chapter 3 as the shared

representation, by training a transformation from words to the latent space over VP scores.

Therefore, to transfer knowledge from the network to any machine learning algorithms, the

given texts are transformed using this learned transformation. This second approach is easy to

integrate with other machine learning algorithms and also speeds up similarity computation

(testing time) in comparison to the first method.

We tested our proposals on different benchmark tasks: word similarity, document similarity,

clustering, classification, information retrieval and learning to rank, and found that results

were most often competitive compared to state-of-the-art task-specific methods. Our exper-

imental results supported the hypothesis that both types of links over Wikipedia are useful,

as the improvement of performance was higher when both were used together rather than

separately. This sheds light on the fact that in many collaborative networks different link types
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can be used in a complementary way, and we investigated this problem formally in Chapter 5.

In Chapter 5, we proposed two joint similarity learning models over nodes’ attributes for link

prediction in networks with multiple link types. The first model learns a similarity metric

that consists of two parts: the general part, which is shared between all link types, and the

specific part, which is trained specifically for each type of link. The second model consists of

two layers: the first layer, which is shared between all link types, embeds the objects of the

network into a new space, and then a similarity is learned specifically for each link type in this

new space.

Both models are applicable to large networks with high-dimensional feature spaces. The

experiments showed that the proposed joint modeling and training frameworks improve link

prediction performance significantly for each link type in comparison to multiple baselines.

This improvement is higher when there are fewer links available from one link type in the

network. The two-layer similarity model outperforms the first one, as expected, due to its ca-

pability of modeling negative correlations among different link types. Moreover, we illustrated

that even if the models are trained on only one link type and tested on the other, our models

significantly improve the performance in comparison to ad-hoc similarity metrics.

Finally, in Chapter 6, we proposed a learning to rank algorithm on network data, which uses

both the attributes of the nodes and the structure of the links, for learning and inference.

The global link structure of the network is used in inference by using an original propaga-

tion algorithm named IRA. This algorithm propagates the predicted scores in the graph on

condition that they are above a given threshold. Thresholding improves performance, and

makes a time-efficient implementation possible, for application to large scale graphs. These

improvements were explained considering a structural property of many networks, to be

specific that they are small-word ones.

The experimental results showed that using the IRA algorithm improved the performance of

link prediction on three different network data sets, for binary graded scores (connected vs. not

connected). The results showed more specifically that our neighbors-aware ranker, which uses

content features and scores of the neighbors, has a higher performance than the content-only

ranker, the neighbors-only ranker, Relational Topic Model and two linked-based similarity

measures. Moreover, using the IRA in addition to the neighbors-aware ranker improved the

performance even more.

Overall, we proposed and evaluated distance learning methods over large and collaborative

networks with high-dimensional features, to be used for prediction tasks. These methods

make use of the global structure of a network and the attributes of its nodes. We also showed

how to make use of the correlation between various link types for transfer learning. Moreover,

we showed how to leverage reliable content in these networks to perform text analysis tasks,

improving the state-of-the-art performance.

While we showed the importance of similarity learning in analysis and modeling collaborative
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networks, we propose in what follows a perspective on other concepts that can also play role,

which should be the topics of future investigations.

Perspectives on Similarity, Consistency and Diversity in Networks

Recommended sets of items generated by a recommender system are limited, in practice, to a

few items. In this thesis, we almost always followed the assumption that the score assigned to

such a set of items is equal to the sum of the scores of each item, given by its similarity with

the query object. This assumption conforms to the homophily principle, but is in fact stronger

than it. For instance, one exception was presented in Chapter 6, in which we considered the

dependency between linked objects and showed improvement in the prediction performance,

assuming also that there should be consistency between the scores of the linked objects.

Consistency increases the relevance of the recommended set by reducing the value of uncer-

tain objects and increasing the value of coherent objects. This uncertainty is usually due to

the imperfect content analysis techniques or intrinsic noise in the content of the query object.

For example, in a recommender system for multimedia data, this uncertainty can be due to

the imperfection of audio and video content analysis methods. Moreover, the uncertainty can

be due to the intrinsic noise introduced by the unfocused nature of human communication,

for example a video about social network analysis might also mention briefly the application

of social network analysis to neuroscience.

In these cases, if we could also model consistency of the recommended set, then we would be

able to reduce some of the uncertainty in the recommended set. In Chapter 4, Section 4.12, we

showed that performing random walk on the network of objects implicitly solves this problem

for a speech-based recommender system. In the following, we will sketch a formal definition

of consistency based on the models presented in this thesis, to be explored in future work.

In almost all collaborative networks there is a cost for creating a link and therefore, the number

of links per object is limited. For example, the number of products customers can buy from an

online store is limited by their budget. The number of citations in a paper is limited because

authors can not afford reading all papers. Therefore, forming a link between similar objects is

more likely, but it does not imply that each object should necessarily connect to all similar

objects.

Hence, among all similar objects, a diverse set of objects should be chosen for linking, so that

it covers most aspects of the query object. For example, if an article is about the application

of Hidden Markov Models to cryptanalysis, only important papers about Hidden Markov

Models and cryptanalysis should be cited. Diversity thus plays a role in link formation in many

examples, such as Wikipedia, news readers, article citations, consumer products, and music

recommendation. Moreover, in difficult queries like ambiguous ones, diversification of the

recommended set reduces the number of times that the system fails to recommending at least

one relevant item.
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Introducing Consistency and Diversity to the Latent Space Model

In this section, we will show how the latent space model which we used frequently in this

thesis can be generalized to consider diversity and consistency, and indicate the investigation

directions opened by this generalization.

If S(q,T ) is utility function represents the score assigned to the set T given the query q and xi

is the normalized feature vector of object i . Using the assumption of independence of objects

and the latent space model we have:

S(q,T ) = ∑
i∈T

(xq A)(xi A)′ = ∑
i∈T

∑
j

(xq A) j (xi A) j =
∑

j

∑
i∈T

(xq A) j (xi A) j︸ ︷︷ ︸
reward of latent feature j

This is the linear model which sorts the objects according to their similarity to the query object

in the latent space, and returns the first k objects regardless of the dependencies between

them. (xi A) j represents the “social characteristic” or latent feature j of the object i in the

latent space and (xq A) j (xi A) j represents how much the query object and object i are similar

with respect to the feature j . In the future, we propose to generalize this model using the

following formula which now includes parameter p as exponent:

S(q,T ) =∑
j

(
∑
i∈T

(xq A) j (xi A) j )p

︸ ︷︷ ︸
reward of latent feature j

According to the value of p, we will be able to emphasize either of the following correlated

aspects of the ranked set of objects.

Convexity ↔ supermodularity ↔ consistency: If p = 1, this model is equal to the previous

linear model. If p > 1, i.e. the reward of a latent feature j is convex, then the reward of adding

an object with latent feature j is higher when there are other objects with the same latent

feature j . This model thus boosts consistency in the recommended set. In this case, the utility

function S(q,T ) is supermodular for a given query and therefore, finding the set of objects

with the highest score amounts to maximizing a supermodular function.

Concavity ↔ submodularity ↔ diversity: If 0 < p < 1, i.e. the reward of the latent feature

j is concave, then the reward of adding an object with the latent feature j is smaller when

there are other objects with the same latent feature j in the set. In other words, the reward of

adding an object is smaller if there are other similar objects in the set. In this case, the model

gives a higher score to a diverse set of items. The utility function S(q,T ) is now submodular

for a given query and therefore, finding the top score set of items amounts to maximizing a

submodular function.
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These proposals enrich the latent space model to encompass the concepts of diversity and

consistency. The model still has the main desirable properties for the objective function: first,

it gives a higher score to a set with items that are related to the query object (homophily) and,

second, it emphasizes the diversity or consistency of items depending on the value of p.

There are several questions that must be investigated before putting this model into appli-

cation. First, we need efficient algorithms to train both set of parameters, namely A and p.

Moreover, is p dependent on the query object? It may be the case, indeed, that for some query

objects diversity is more important than consistency, or vice-versa. In this case, can we learn

the value of p depending on the query object? Besides, is p equal for all latent features or

does it change for different features? Again, consistency could be more important for some

features and diversity for other ones. Moreover, is it possible to consider both diversity and

consistency simultaneously for a query object? It may be the case that given a query, a diverse

set of consistent objects is the best recommended set.

Finally, after training these parameters, finding a set with a maximal score is not tractable for

large data sets. In the case of a submodular utility function (with diversity being the target),

efficient greedy algorithms have been proposed for inference on large data sets [Nemhauser

et al., 1978, Minoux, 1978, Krause and Golovin, 2012]. Conversely, if the utility function is

supermodular (consistency being the target), we need to design efficient algorithms to find

the maximal set, or, presumably, approximate it. We foresee further investigations on these

topics to make training and inference possible on large data sets.
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