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Abstract
We consider a collection ofN homogeneous interact-

ing Brownian agents evolving on the plane. The time
continuous individual dynamics are jointly driven by
mixed canonical-dissipative (MCD) type dynamics and
White Gaussian noise sources. Each agent is perma-
nently at the center of a finite size observation disk
Dρ. Steadily with time, agents count the number of
their fellows located inDρ. This information is then
used to re-actualize control parameters entering into the
MCD. Dissipation mechanisms together with the noise
sources ultimately drive the dynamics towards a con-
sensual stationary regime characterized by an invariant
measurePs on an appropriate probability space. As-
suming propagation of chaos, a mean field approach
enables to analytically calculatePs. For each agent,
our dynamics naturally implement: i) a trend to not be
isolated, ii) a trend to avoid strong promiscuity, and iii)
an overall trend to be attracted to a polar point. The
MCD drift is derived from a Hamiltonian functionH
and incites the agents to follow one consensual orbit
coinciding with a level curve ofH. WhenH is the
harmonic oscillator, we are able to analytically derive
the consensual orbit as a function of the size ofDρ.
Generalizations involving more complexH are explic-
itly worked out. Among these illustrations, we study a
Hamiltonian whose level curves are the Cassini’s ovals.
A selection of simulations experiments corroborating
the theoretical findings are presented.

Key words
Homogeneous Brownian agents, limited-range mu-

tual interactions, consensual orbit generation, mixed
canonical-dissipative dynamics, mean-field descrip-
tion, analytical results.

1 Introduction
The emergence of structured collective dynamical pat-
terns from simple agent level behaviors as observed in

nature for fishes, birds, insects and the like inspires
a sustained research activity in management and con-
trol of complex systems, and particularly in the do-
main of swarm robotics. The capability of agents
to act asynchronously to determine specific trajecto-
ries by relying only on local sensing is definitely at-
tractive when a centralized control becomes unfeasi-
ble - for example to coordinate large assemblies of au-
tonomous robots or other agents. One possibility to
address these difficult global control issues is by imple-
menting dynamic strategies where identical robots are
programmed with elementary features requiring lim-
ited on-board real time sensing and computational re-
sources. This general and truly simple idea triggers a
strong interdisciplinary research activity which, as em-
phasized in the recent review (Gazi and Fidan, 2007),
encompasses a relatively wide spectrum of perspec-
tives ranging from ethology to swarm robotics. Focus-
ing here on the dynamic system and control perspec-
tives, we study a collection of asynchronously interact-
ing point Brownian agents obeying elementary coordi-
nation algorithms. The basic ingredients of our model-
ing are: i) a Hamiltonian functionH which provides
a parametric family of non-intersecting level curves
defining closed orbits, ii) a mixed conservative and gra-
dient vector field constructed fromH involving one
(or several) control parameters, iii) a stochastic driv-
ing stylized by WGN’s sources and iv) for each agent,
a circular observation rangeDρ with radius ρ, cen-
tered at each agent location. The agents mutual in-
teractions directly depend on the size ofDρ. Inter-
actions produce an adaptive mechanism which drives
the agents to ultimately adopt one (or several) consen-
sual value(s) of the control parameter(s). The emerg-
ing consensual parameter(s) value selects one specific
orbit among the Hamiltonian parametric family. For
such mixed canonical-dissipative stochastic dynamics,
connected with models discussed in (Hongler and Ry-
ter, 1978), we are able to explicitly write the result-
ing invariant probability measure solving the associ-
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ated time-independent non-linearFokker-Planckequa-
tion (NLFP). We can therefore analytically investigate
the influence of the radiusρ of the observation range
Dρ on the emerging consensual dynamics achieved by
the agents. While our class of dynamics presents sim-
ilarities with potential-ruled algorithms as those used
for example in (Gazi and Passino, 2004; Gazi and
Fidan, 2007; Hsieh, Kumar and Chaimowicz, 2008;
Sepulchre, Paley and Leonard, 2008), it however keeps
a decentralized mechanism stylized in the basic agents
models pioneered by (Reynolds, 1987; Vicsek, Czirk,
Ben-Jacob, Cohen and Shochet, 1995) and more re-
cently by (Cucker and Smale, 2007).

Mathematically speaking, our modeling relies on a set
of N continuous time, coupled nonlinear stochastic
differential equations (SDE) driven by White Gaus-
sian noise (WGN). In this context, the basic formal
question, first raised first by H. McKean (McKean Jr.,
1966), is to calculate the limit of the probability dis-
tribution which describes a large agent collection (i.e.
formally the thermodynamic limitN → ∞) and then
fluctuations around this limit for finiteN . Considering
that all agents have random identical independent ini-
tial conditions, one mathematically expects (this can be
rigorously proved under somehow restricting technical
hypothesis) that in the thermodynamic limit, all finite
number of agents behaves independently of the others
and they can all be described by the same probability
distribution (this is known aspropagation of chaos).
The common probability distribution solves a Marko-
vian evolution described by a nonlinear Chapman-
Kolmogorov type partial differential equation. Accord-
ingly, when propagation of chaos holds, we may char-
acterize the dynamic behavior of the global population
by only studying the dynamics of a single, randomly
chosen, agent subject to an effective externalmean-
field generated by its surrounding fellows. In presence
of WGN’s sources, the single representative agent fol-
lows a diffusion process and its probability measure
obeys to a NLFP, (Frank, 2005).

2 Interacting Brownian Agents Driven by
Canonical-Dissipative Dynamics and White
Gaussian Noise

We consider a swarm ofN mutually interacting
dynamical agentsak for k = 1, 2, · · · , N evolv-
ing on the planeR2 with state variables~X(t) =
(X1(t), X2(t), · · · , XN (t)). In this section, we as-
sume the homogeneous situation in which all indi-
vidual isolated agentsak are dynamically identical.
The collective dynamics is assumed to obey anN -
dimensional diffusion process onR2 given by a set of
stochastic differential equations (SDE):







dXk(t) = Ak(t)Xk(t) dt+

Ck(Xk(t))
︷ ︸︸ ︷

γ
[
L2
k,ρ(t)− ‖Xk(t)‖22

]
Xk(t)

dt+ σ dWk(t), k = 1, 2, · · · , N,

Xk(0) = X0,k, and Xk(t) ∈ R
2.

(1)
In Eq.(1), the following notations are used:Xk(t) =
(xk,1(t), xk,2(t)) ∈ R

2, the usual norm‖Xk(t)‖22 :=
(

x2
k,1(t) + x2

k,2(t)
)

, γ and σ are positive constants

common to allak (i.e. homogeneity assumption) and
Wk(t) = (Wk,1, Wk,2)t≥0 are independent standard
Brownian Motions (BM) and hence the formal differ-
entialsdWk(t) are White Gaussian Noise (WGN) pro-
cesses. The agents interactions will be defined via the
scalarsL2

k,ρ(t) and the matricesAk(t) which both will
depend onDk,ρ(t) the set of instantaneous neighbor-
ing fellows surrounding agentak at timet. For a given
observation rangeρ, theak-instantaneous observation
neighborhoodDk,ρ(t) is the disk:

Dk,ρ(t) =
{
X ∈ R

2 | ‖X−Xk(t)‖2 ≤ ρ
}

(2)

and we define the indices set

Vk,ρ(t) = {i | Xi(t) ∈ Dk,ρ(t)} . (3)

which identifies theak-neighboring agents present in
the diskDk,ρ(t). We shall writeNk,ρ(t) := |Vk,ρ(t)|
the cardinality of the setVk,ρ(t). The dynamic ele-
ments contained in Eq.(2) and Eq.(3) are now used to
characterize the agents’ mutual interactions via a cou-
ple of contributions:

i) Canonical-dissipative matrix Ak(t). The dy-
namic matrixAk(t) associated with agentak can
be defined as:

Ak(t) :=






Nk,ρ(t)
N − 1

M
Nk,ρ(t)

N

−Nk,ρ(t)
N

Nk,ρ(t)
N − 1

M




 , (4)

with 1 ≤ M ≤ N andNk,ρ(t)/N is the fraction
of the total swarm that agentak detects inDk,ρ(t)
(we shall adopt the convention that agentak sys-
tematically detects itself, implying thatNk,ρ (t) ≥
1, ∀ t). As Xk = 0 is a singular point of the de-
terministic dynamics (i.e. obtained forσ = 0 in
Eq.(1)) the matrixAk(t) formally stands for the
linear mapping of the dynamics in the neighbour-
hood of the origin. The associated couple of eigen-
values ofAk(t) read:

λk,±(t) =

[
Nk,ρ(t)

N
− 1

M

]

︸ ︷︷ ︸

:=Rk,ρ(t)

± (
√
−1)

[
Nk,ρ(t)

N

]

︸ ︷︷ ︸

:=Ik,ρ(t)

.

(5)
Hence, at a given timet, the real part in Eq.(5) ex-
presses the non-conservative type of the dynamics
(i.e. the divergence part of the vector field (VF)).
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The singular point0 ∈ R
2 is an attractive (respec-

tively repulsive) node whenRk,ρ(t) < 0 (resp.
Rk,ρ(t) > 0). Moreover, the componentIk,ρ(t)
expresses the rotational nature of the VF. In partic-
ular, whenRk,ρ(t) = 0, the dynamics are conser-
vative; it expresses theHamiltoniancomponent of
theak-VF.
ii) Adaptive limit cycle radius. The scalar quan-
tity L2

k,ρ(t) :=
1

|Vk,ρ(t)|
∑

j∈Vk,ρ(t)

‖Xj(t)‖22 (6)

defines the (square) of the radial position of the
barycenter of the agents belonging toDk,ρ.

Proposition 1. Consider themixed-canonical dissi-
pative diffusive dynamicsEq.(1). Asymptotically with
times, the dynamics propagates chaos and the MF rep-
resentative agent obeys to the couple of diffusion equa-
tions :






dX1(t) = + 1
MX2(t) + γ

[
L2
s,ρ − (X2

1 (t) +X2
2 (t))

]

·X1(t) dt+ σdW1(t),

dX2(t) = − 1
MX1(t) + γ

[
L2
s,ρ − (X2

1 (t) +X2
2 (t))

]

X2(t) dt+ σdW2(t).
(7)

For weak noise (i.e. large values ofγ/σ2), the radius
approximately readsLs,ρ ≃ ρ√

2(1−cos(π/M))
and the

associated stationary probability densityPs(x) reads:

Ps(x)dx1dx2 =
exp

{
2γ
σ2

[
L2
s,ρ − (x2

1 + x2
2)
]}

dx1dx2

Z ,

(8)
with x = (x1, x2) ∈ R

2, andZ being the probability
normalization factor.

Proof of Proposition 1.
The Fokker-Planck equation associated with the diffu-
sion process of Eq.(1) can be written in the form:

∂tP (~x, t| ~x0) = −▽ ·
{

1
2

[
Aa(t)▽ ‖~x‖2 −▽Vρ (t, ~x)

]

P (~x, t| ~x0) +
σ2

2 ▽ P (~x, t| ~x0)
}

,

(9)
whereAa is the(2N × 2N) block-simplectic matrix:

Aa(t) :=






B1(t) 0
. . .

0 BN (t)




 ,

with Bk(t) =

(

0
Nk,ρ(t)

N

−Nk,ρ(t)
N 0

)

and thetime-dependentgeneralized potentialVρ (t, ~x)
from which the dissipative component of the drift is
derived, can be written as:

Vρ (t, ~x) =
∑N

k=1

{

1
2

:=Rk,ρ(t)
︷ ︸︸ ︷
[
Nk,ρ(t)

N
− 1

M

]

‖~x‖2+

γ
2

[

L2
k,ρ(t)− ‖~x‖2

]2
}

.

(10)

The potential parameterizationRk,ρ(t) andL2
k,ρ(t) in

Eq.(10) explicitly depends on the agents’ configura-
tions implying that Eq.(9) is effectively a NLFP. The
potentialVρ (t, ~x) is globally attractive onR2N , (i.e
Vρ (t, ~x) → ∞ for ‖~x‖ → ∞). Global attraction to-
gether with the WGN driving sources imply that the
diffusive dynamic Eq.(1) isergodicon R

2N . Accord-
ingly, it exists a unique invariant measurePs(~x) and
therefore bothRk,ρ(t) andL2

k,ρ(t) asymptotically con-
verge to stationary (i.e time-independent) valuesL2

k,s,ρ

andRk,s,ρ. Eqs.(9) and (10) being explicitly invari-
ant under permutations in the agents labeling, we shall
also haveL2

k,s,ρ = L2
s,ρ andRk,s,ρ = Rs,ρ. Finally, in

the stationary regime, the system is driven to its mini-
mal energy configuration implying here thatRs,ρ ≡ 0.
This in turn yields thatlimt→∞ Aa(t) = Aa,s with:

Aa,s :=






As 0
.. .

0 As




 , As =

(
0 1

M
− 1

M 0

)

.

The gradient▽Vρ (t, ~x) is systematically orthogonal to
the antisymmetric component12Aa(t)▽ ‖x‖2 (this re-
mains true for the stationary regimeAa,s). It enables to
write the stationary solution of Fokker-Planck Eq.(9) in
theproduct-formPs(~x):

Ps(~x) = [Ps(x)]
N

=
[
N−1e{Vs,ρ(x)}

]N
,

Vs,ρ(x) = +γ
2

[
L2
s,ρ − ‖x‖2

]2 (11)

with the notation~x = (x1,x2, · · · ,xN ) ∈ R
2N ,

xk ∈ R
2 andx ∈ R

2 stands for one representative
agents among the collection of thexk ’s. The product
form of the invariant measure explicitly shows that our
dynamics propagates chaos, validating the use of a MF
approach where a single agent behavior effectively re-
flects the global dynamics.

Taking the MF approach, and focusing on the station-
ary regime, from the point of view of a single represen-
tative planar agentX(t) = (x1(t), x2(t)), we have:

0 = ▽
{

1
2

[
As ▽ ‖x‖2 −▽Vs,ρ (x)

]
·

Ps(x)
}
− σ2

2 △Ps(x),
(12)

wherePs(x) is the invariant probability density.
Within the stationary regime, autoconsistency implies

Ns,ρ

N
=

∫

(x)∈Dρ

Ps(x) dx1 dx2

(

=
1

M

)

(13)

and

L2
s,ρ =

∫
(
x2
1 + x2

2

)

(x1,x2)∈Dρ

Ps(x) dx1 dx2, (14)

whereDρ is the representative agent’s neighborhood.
From a uniformly rotating coordinates’ frame with an-
gular velocityM−1, the stationary regime dynamics
becomes purely gradient and the resulting probability
densityPs(x) solving Eq.(12) enjoys microscopic re-
versibility (i.e. detailed balance). It explicitly reads,
(Hongler and Ryter, 1978):

Ps(x)dx1dx2 = Ps(r)dr dθ =

= N (Ls,ρ) e
[− γ

σ2
(r2−L2

s,ρ)
2]d(r2) dθ.

(15)
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with N−1(Ls,ρ) =
√

π3σ2/γ Erfc
(

−
√
γ (L2

s,ρ)

σ )
)

be-

ing the normalization factor.
In this stationary regime, the stationary observation
neighborhood of each agent exactly encompasses a cir-
cular sector with apertureϕ(M) and radiusL2

s,ρ(M).
Both ϕ(M) andLs,ρ(M) are adjusted to ensure that
N/M agents are located inDs,ρ. For large ratio γ

σ2

(i.e. essentially a large signal-to-noise ratio), Eq.(15)
exhibits a sharply peaked ”mexican hat” shape with its
maximum on the circler = Ls,ρ (i.e. almost all agents
stay confined in the direct neighborhood of the circle
r = Ls,ρ).
As detailed in Figure 1’s caption, an elementary
trigonometric argument enables to derive the compact
relation:

Ls,ρ =
ρ

√

2− 2 cos(π/M)
. (16)

Figure 1: The cylindrical symmetry characterizing the station-

ary regime implies that the agents probability distribution is rota-

tionally invariant with respect toO. Accordingly, there will be

on averageN/M agents located in a sector with an opening angle

2π/M . For largeγ/σ2, these agents will be confined in the di-

rect proximity of the circle of radiusLs,ρ. Let us consider an arbi-

trary agent located atA with a stationary observation range of radius

ρ = AC. This range exactly encompasses the circular arc with

aperture2π/M thus ensuring that the agent atA hasM/N neigh-

boring fellows. The cosine theorem in the triangleOAC implies

thatL2
s,ρ

= 2ρ2/ [1− cos(π/M)]2L2
s,ρ

= ρ2/ [1− cos(π/M)].

�

Additional remarks . Observe that besidesγ and σ
which define an overall time scale, there are two addi-
tional control parameters in the dynamics Eq.(1):

a) Hamiltonian parameter M . The sector angle
M into the canonical-dissipative matrixA(t). This
parameter fixes the angular velocityω = M−1 of
the swarm and adjusts the size of the consensual
limit cycle radiusLs,ρ. For a given size of the ob-
servation disk with radiusρ and for largeM , we
haveLs,ρ ≃ ρM/π and the angular velocity tends
to vanish.
b) Interaction range parameter ρ. The radius of
the observation diskρ which directly determines
the consensual size of the limit cycle radiusLs,ρ.

3 Numerical Experiments
In all numerical experiments performed, we observe a

truly remarkable agreement with the theoretical predic-
tions (see Figure 2 for a specific illustration). Accord-
ing to Eq.(16), by reducing the sector opening angle (i.e
by increasing the values of theM ), the resulting limit
cycle radiusLs,ρ increases and the number of agents
present inDs,ρ is reduced thus somehow invalidating
the large population required for MF to be used. Even
whenM = 50, the couple of orbits realizations shown
in Figure 3 show that analytical results, in particular
Eq. (16), remain valid in this largeM limit.

Figure 2: For a collection ofN = 100 agents withM = 4 and

ρ = 1. The observation range of the considered agent encompasses

exactly the sector of apertureπ/4 to determine the size of the self-

generated limit cycle (see the construction given in Figure 1). We

explicitly draw the trajectory of a randomly chosen agent andobserve

that this agent indeed follows the consensual limit cycling orbit with

analytically predicted radiusLs,ρ =
√
2ρ =

√
2.

Figure 3: For a collection ofN = 100 agents withM = 50 and

ρ = 1. The observation range of the considered agent encompasses

exactly the narrow sector of apertureπ/50 to determine the size of

the self-generated limit cycle (see the construction given in Figure 1).

We explicitly draw the trajectory of a randomly chosen agent and ob-

serve that this agent indeed follows the consensual limit cycling orbit

with analytically predicted radiusL2
s,ρ

= 2/ [1− cos(π/50)] ≃
(50/π)2 ≃ (17)2. The High valueM = 50 is responsible for the

sometimes erratic behaviour of the agent, as its observation range

only encompasses a very small sector of the consensual circle.
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4 Generalization
By using the class of mixed-canonical dissipative dy-

namics (Hongler and Ryter, 1978) and following the
same lines as those given in Proposition 1, we now can
relax the cylindrical symmetry and write:

Proposition 2. Consider the class of functions
H(x1, x2) : R

2 7→ R
+ for which the family of pla-

nar curves defined by[H(x1, x2)−R] = 0 are closed
∀ R > 0 and do not intersect for different values of
R’s. Introduce the functionalV(H) : R+ 7→ R with
limH→∞ V(H) = ∞. Assume in addition that the val-
ues of theH-derivativesV ′(0) < 0 andV ′(H) |H=C=
0 andC is the unique value for which it holds. Then
Eqs.(1) and (7) can be respectively generalized as:







dXk(t) = Ak(~X) dt− γ {V ′(H(X))∂Xk
H(Xk)} dt

+σ dWk(t), k = 1, 2, · · · , N,

Xk(0) = X0,k, and Xk(t) ∈ R
2,

(17)
where

Ak(~X) =





Nk(t)
N − 1

M
Nk(t)
N

−Nk(t)
N

Nk(t)
N − 1

M



·





∂X1,k
H(Xk)

∂X2.k
H(Xk)





(18)
and






dX1(t) =
[
+ 1

M ∂X2
H(X)− γ

{
[V ′(H(X)]

·∂X1
H(X)

}]
dt+ σdW1(t),

dX2(t) =
[
− 1

M ∂X1
H(X)− γ

{
[V ′(H(X)]

·∂X2
H(X)

}]
dt+ σdW2(t).

(19)
The stationary measure Eq.(8) here reads:

Ps(H) dH = Z−1 exp

{
2γ

σ2
[V(H)]

}

dH, (20)

whereZ is the normalization constant.

�

Additional remarks .

a) Observe that Proposition 1 follows from the
Proposition 2 in the rotationally symmetric case
resulting whenH(X) = (1/2)

[
X2

1 +X2
2

]
.

b) Contrary to Proposition 1, in Proposition 2,
neither the limit cycle nor the invariant mea-
surePs(H) generally have a cylindrical symmetry.
This precludes the possibility to analytically deter-
mine the selected consensual limit cycle (i.e we do
not have in the general case a simple expression
like the one given by Eq.(16)).
c) As an illustration of Proposition 2, we may con-
sider the Cassini Hamitonian function given by

H(X) =
[
(x1 − 1)2 + x2

2

] [
(x1 + 1)2 + x2

2

]
= b4,
(21)

Figure 4: Typical shapes of the Cassini’s ovals determined by the

equationH(x1, x2) =
[

(x1 − 1)2 + x2

2

] [

(x1 + 1)2 + x2

2

]

= b4

for b-values ranging fromb = 0.1 to 1.5.

Figure 5: Top: Selection of a couple of limit cycling orbits ob-

tained from the Cassini Hamiltonian Eq.(21) when the controlpa-

rameters are set toM = 4 andρ = 0.4.

Bottom: Single limit cycling trajectory for the Cassini Hamiltonian

Eq.(21) but here with the control parameters set toM = 4 and

ρ = 0.8.

with the level orbits sketched in Figure 4. Accord-
ing to the values ofM andρ which ultimately will
fix the size of the parameterb, we are in this case
able to generate two different regimes. For large
b a single closed consensual limit cycle is gen-
erated. Alternatively, for smallb, the agents are
shared into two clusters and evolve on two sepa-
rated consensual limit cycles (see Figure 5).
d) Generalizing the previous Cassini ovals con-
struction, one may construct Hamiltonian gener-
ating agents circulation on even more complex or-
bits. We provide an additional example in Figure
6.

5 Conclusions and Perspectives
While agents with behavior-based interactions are rela-
tively easy to implement, it is widely recognized that
the underlying mathematical analysis of such mod-
els is generally difficult and often even impossible to
perform completely. It is therefore quite remarkable
that very simple analytical results can be derived for
a whole class of dynamics which, due to its simplic-
ity, offers potential for applications. Despite that for
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limited number of agents, typically one hundred in our
present study, the mean-field approach can only be ap-
proximative, we nevertheless emphasize that all our nu-
merical investigations still closely match the theoretical
predictions. The resilience of our modeling approach
opens several perspectives for implementations on ac-
tual agents. Several further research directions are nat-
urally suggested by this contribution, among them:

a)Extended MCD dynamics to higher dimensional
spaces. The role played here by the Hamiltonian
function leading to a canonical motion on the plane
can be extended. In particular one may consider,
along the lines explained in (Schweitzer, Ebeling
and Tilch, 2001), integrable canonical systems ex-
hibiting additional constants of the motions. Us-
ing these extra constants of the motion, one will
be able to stabilize the swarm motion along orbits
in higher dimensions.
b) Heterogeneity in agents and soft control of
swarms. Instead of focusing on homogeneous
agents and by following the work (Han, Li and
Guo, 2006), we intend to use the context of MCD
to study the possibility to influence (i.e.soft con-
trol) the behavior by introducing into the society a
single ”fake” agent (i.e. ashill), playing the role of
a leader, and which can be externally controlled.
c) Resilience of the modeling.In Eq. (2), we used
the Euclidean norm to defineDk,ρ(t), the instan-
taneous neighboring agents in Eq. (3). To match
specific applications, other type of norms could be
used to redefine the interactions.

Figure 6: Top: Orbit generated by the
(

2π

3

)

-symmetric

Hamiltonian function: H(x1, x2) =
[

(x1 − 1)2 + (x2)2
]

·
[

(x1 + 1

2
)2 + (x2 −

√

3

2
)2
] [

(x1 + 1

2
)2 + (x2 +

√

3

2
)2
]

. Here

we haveN = 100 and the control parameters are set toM = 4 and

ρ = 0.5.

Bottom: Here, all parameters are identical, except for the interaction

range which isρ = 1.

6 Acknowldgement
This research has been partly supported by the Swiss

National Fund for Scientific research and the ESF
project“Exploring the Physics of Small Devices”.

References
Cucker, F. and Smale, S. (2007). Emergent behavior
in flocks, IEEE Transactions on Automatic Control
52(5).

Frank, T. D. (2005).Nonlinear Fokker-Planck Equa-
tions, Springer series in Synergetics, Springer: Com-
plexity.

Gazi, V. and Fidan, B. (2007).Coordination and con-
trol of multi-agent dynamic systems: Models and ap-
proaches, Vol. 4433 LNCS ofLecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), Springer.

Gazi, V. and Passino, K. M. (2004). A class of attrac-
tions/repulsion functions for stable swarm aggrega-
tions,International Journal of Control77(18): 1567–
1579.

Han, J., Li, M. and Guo, L. (2006). Soft control on col-
lective behavior of a group of autonomous agents by a
shill agent,Journal of Systems Science and Complex-
ity 19(1): 54–62.

Hongler, M.-O. and Ryter, D. M. (1978). Hard
mode stationary states generated by fluctuations,
Zeitschrift f̈ur Physik B Condensed Matter and
Quanta31(3): 333–337.

Hsieh, M. A., Kumar, V. and Chaimowicz, L. (2008).
Decentralized controllers for shape generation with
robotic swarms,Robotica26(5): 691–701.

McKean Jr., H. P. (1966). A class of markov processes
assocaietd with nonlinear parabolic equations,Proc.
Natl. Acad. Sci USA56(6): 1907–1911.

Reynolds, C. W. (1987). Flocks, herds, and schools:
A distributed behavioral model.,Computers (ACM)
21(4): 25–34. Cited By (since 1996): 1704.

Schweitzer, F., Ebeling, W. and Tilch, B. (2001). Statis-
tical mechanics of canonical-dissipative systems and
applications to swarm dynamics,Physical Review E
- Statistical, Nonlinear, and Soft Matter Physics64(2
I): 211101–211112.

Sepulchre, R., Paley, D. A. and Leonard, N. E. (2008).
Stabilization of planar collective motion with lim-
ited communication,IEEE Transactions on Automatic
Control 53(3): 706–719.

Vicsek, T., Czirk, A., Ben-Jacob, E., Cohen, I. and
Shochet, O. (1995). Novel type of phase transition in
a system of self-driven particles,Physical Review Let-
ters75(6): 1226–1229. Cited By (since 1996): 1354.


