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Abstract—We introduce an algorithm for the efficient computation
of the continuous Haar transform of 2D patterns that can be described
by polygons. These patterns are ubiquitous in VLSI processes where
they are used to describe design and mask layouts. There speed is of
paramount importance due to the magnitude of the problems tobe
solved and hence very fast algorithms are needed. We show that by
techniques borrowed from computational geometry we are notonly
able to compute the continuous Haar transform directly, but also to
do it quickly. This is achieved by massively pruning the transform
tree and thus dramatically decreasing the computational load when
the number of vertices is small, as is the case for VLSI layouts. We
call this new algorithm the pruned continuous Haar transform. We
implement this algorithm and show that for patterns found in VLSI
layouts the proposed algorithm was in the worst case as fast as its
discrete counterpart and up to 12 times faster.

Keywords-Haar transform; piecewise constant; 2D polygons; VLSI
design;

I. I NTRODUCTION

The Haar transform (HT) is often a tool of choice in image
processing due to its edge detection property, low complexity and
the simplicity of its implementation. It is particularly suited for
piecewise constant functions that have a very sparse and accurate
representation in the Haar domain. An important class of two-
dimensional (2D) piecewise constant functions is the class of
functions described by a union of disjoint polygonal subsets of
R

2. Such a description is often used in different areas of image
processing such as contour detection, segmentation, tomography
image reconstruction [1] or for VLSI layouts description [2]. A
polygonal shape is usually described by an ordered list of its
vertices. This description has the advantage of being very compact
and natural to understand. Many algorithms in computational
geometry make efficient use of this description to solve various
problems like intersections of polygons, area computations or
point inclusion [3]. However, this description has no fixed length
which makes it more cumbersome for use in other applications in
image processing including machine learning, pattern matching or
measuring similarity. The Haar transform provides such a fixed-
length representation.

Optical lithography is the process that allows mass production
of VLSI circuits [4]. The HT has been used so far in lithogra-
phy to compress the Fourier precompensation filters for electron
beam lithography [5] and also to regularize the obtained mask in
inverse lithography [6]. More recently, Kryszczuk et al. introduced
the direct printability prediction of VLSI layouts using machine
learning techniques [7]. They use fixed-length feature vectors
from orthogonal transforms and train a classifier to predict the
printability of VLSI layouts without having to go through the

detailed, and thus computationally expensive, simulation of the
physical process of lithography. The HT is a perfect candidate to
provide features in that case due to its close match to the polygons
found in VLSI layouts. However, to obtain these features one has
first to perform the transform of the enormous amount of data
contained in modern VLSI layouts. It is thus crucial to have a very
fast algorithm to yield HT coefficients from the vertex description
of the polygons.

The most straightforward way would be to first create a discrete
image by sampling the polygons, and then use the discrete Haar
transform (DHT) on the resulting image. However, the polygons
describe an inherently continuous function, which allows us to
compute the continuous Haar transform (CHT) coefficients instead.
By using techniques borrowed from computational geometry to
compute the inner products with the CHT basis functions, we are
able to massively prune the transform flow-diagram in addition to
avoiding sampling completely. This leads to a dramatic decrease
of the computational load when the number of vertices is small.
We call this new algorithm pruned continuous Haar transform
(PCHT). The outputs of the DHT and the PCHT are identical for
2D polygonal patterns. The PCHT was concretely implemented in
a lithography tool and proved to have significantly lower runtime
compared to the DHT for the particular case of rectilinear polygons
from VLSI design layouts.

The main contribution of this work is PCHT, a fast algorithm,
and to the best of our knowledge the first of its kind for the CHT of
2D piecewise constant polygonal patterns. Its efficiency compared
to the DHT for the case of VLSI layouts is demonstrated with
potential high impact for pattern matching techniques envisioned
in computational lithography.

In Section II, we will first briefly introduce the signal model
we consider, namely 2D piecewise constant polygonal patterns. In
Section III, we give a reminder on the 1D and 2D Haar transform
while Section IV presents the PCHT algorithm. The results of the
application to VLSI design layouts are given in Section V and we
conclude in Section VI.

II. SIGNAL MODEL

The signal model we consider is one of 2D piecewise constant
polygonal patterns. This is the class of images described by the
union of a finite number of disjointsimple polygons. Mathemati-
cally, a polygon is described by a set of points called vertices. A
polygonP ⊂ R

2 is typically defined by its boundary, which is a
collection of straight segments, called edges. The polygon contains
all the points inside the boundary. The description of a polygon is
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Figure 1. Example of polygons. Polygon A is a simple polygon. Polygon
B is a rectilinear polygon such as those found in VLSI layouts.

the list of itsK vertices, ordered clockwise:

{(x0, y0), . . . , (xK−1, yK−1)} , (xi, yi) ∈ R
2.

where any two successive vertices describe one edge of the bound-
ary. In addition, simple polygons have the property that no two
edges intersect each other. A subclass of simple polygons termed
rectilinear comprises all those with only right angles and is the
building block of VLSI layouts. An example of such polygons is
shown in Figure 1.

A 2D piecewise constant polygonalpattern is described by
a collection of M disjoint polygons each with an associated
weight {(Pi, wi)}M−1

i=0 and with disjoint interiors, i.e.Int (Pi) ∩
Int (Pj) = ∅ ∀i 6= j, whereInt(P) is the interior of polygonP,
andwi ∈ R. Finally the continuous image model is

f(x, y) =

M−1
∑

i=0

wi1Pi
(x, y) (1)

where we use an indicator function1P(x, y) = 1 if (x, y) ∈ P
and 0 otherwise.

III. T HE HAAR TRANSFORM

The 1D Haar basis is an orthonormal basis on[0, T ), composed
of the family of functions

{

ϕ
(T )
0,0 , ψ

(T )
j,k

∣

∣

∣
j ∈ N, k = 0, . . . , 2j − 1

}

where

ϕ
(T )
j,k (t) =

2
j

2

√
T
ϕ

(

2j

T
t− k

)

, ψ
(T )
j,k (t) =

2
j

2

√
T
ψ

(

2j

T
t− k

)

.

The functionsϕ andψ are respectively defined as

ϕ(t) =

{

1 if 0 ≤ x < 1

0 otherwise
, ψ(t) =











1 if 0 ≤ t < 1
2

−1 if 1
2
≤ t < 1

0 otherwise

.

As the 2D Haar basis is separable, we can define it in terms of
the 1D basis. Now we want to work over a surfaceT = [0, Tx)×
[0, Ty) we call a tile. The scaling function is given by:

ϕj,kx,ky (x, y) = ϕ
(Tx)
j,kx

(x)ϕ
(Ty)
j,ky

(y), (2)

wherej = kx = ky = 0. The other basis functions are given by
the possible combinations ofϕ andψ, one of them being:

ψ
(hl)
j,kx,ky

(x, y) = ψ
(Tx)
j,kx

(x)ϕ
(Ty)
j,ky

(y), (3)
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Figure 2. A pruned signal flow of the 1D CHT. The full flow-diagram is
shown in light grey. The signal transformed isf(t) = u(t − 3), defined
on [0, 8), whereu(t) is the Heaviside function.Xj,k =

〈

f , ϕj,k

〉

and

Cj,k =
〈

f , ψj,k

〉

.

wherej ∈ N is the scale andkx, ky ∈ {0, . . . , 2j − 1} the shifts
in the x and y directions respectively. Similarly, we getψ(lh)

j,kx,ky

andψ(hh)
j,kx,ky

. The first and second letter in the superscript indicate
which basis function is used forx andy directions respectively,h
and l indicateψ andϕ respectively.

Given the basis functions defined in (2) and (3), we derive the
Haar transform as the inner product between the functionf to
transform and the Haar basis functions. Using theL2(T ) and the
l2(T̂ ) inner products, with a discretized tilêT and discretized basis
functions, we respectively get the dyadic continuous and discrete
transforms [8]. The CHT and DHT coefficients are identical for
2D piecewise constant polygonal patterns.

Both the CHT and the DHT can be computed using the
fast orthogonal wavelet transform (FWT) [9]. This algorithm is
constructed using the two-scale relationships that link the basis
functions at different scales:

ϕ(t) =
√

2
∑

n

gnϕ(2t− n), ψ(t) =
√

2
∑

n

hnϕ(2t− n),

where gn and hn are the taps of two discrete-time filters [8].
The Haar filters are defined asgn = [2−1/2 2−1/2] and hn =
[2−1/2 −2−1/2]. This results in a Cooley-Tukey butterfly structure
[10] where only the inner products with the scaling function at the
lowest level need be computed. The full flow diagram for a length-8
1D transform is shown in light grey in Figure 2.

Using the separability of the 2D transform and the two-scale re-
lationships, we obtain the relations between the 2D basis functions
of the different scales. For example,ψ(hl)

j,kx,ky
can be written as

ψ
(hl)
j,kx,ky

(x, y) =
∑

n

∑

m

hngmϕj+1,2kx+n,2ky+m(x, y).

By replacinghngm in the sum bygngm, gnhm and hnhm we
obtainϕj,kx,ky , ψ(lh)

j,kx,ky
andψ(hh)

j,kx,ky
respectively. As in the 1D

case, these relations induce a 2D butterfly structure. Therefore
transform coefficients can be computed as a linear combination
of inner products with the scaling function at different scales.
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Figure 3. From left to right: Examples of 1024nm×1024nm tiles from
respectively M1, M2 and CA layers.

IV. PRUNED CONTINUOUS HAAR TRANSFORM

A. Algorithm Derivation

Let us consider the FWT described in Section III. First, using
the signal model from (1) and the linearity of the inner product,
we can decompose the transform into a sum of inner products of
individual polygons with basis functions:

〈

f , ϕj,kx,ky

〉

=

M−1
∑

i=0

wi

〈

1Pi
, ϕj,kx,ky

〉

.

Thus, from now on we consider only the transform of a single
polygon. The second idea is to use computational geometry tech-
niques to compute the inner product. The continuous inner product
between the indicator of a polygon and the scaling function is the
area of the geometrical intersection of the polygon and the support
of the scaling function, multiplied by2j/

√

TxTy.
The Haar transform acts as a discontinuity detector and all the

transform coefficients will be zero except for basis functions that
intersect the boundary of the polygon. As a consequence, the
basis functions completely inside or outside a polygon yield a
zero inner product. Moreover, all the coefficients below such a
basis function in the transform tree are also zero (see Figure 2).
Therefore the transform can be written as a divide-and-conquer
algorithm. Divide the tile in four rectangular parts recursively until
the part considered is completely inside or outside the polygon.
Pseudocode for the PCHT is given in Algorithm 1, in which
T j,kx,ky = [kxTx/2

j , (kx+1)Ty/2
j)×[kyTy/2

j , (ky +1)Ty/2
j)

is the support ofϕj,kx,ky . An example of the pruned transform
flow-diagram for the 1D case is shown in black in Figure 2. In
order to compute all the transform coefficients, the algorithm is
called in the following way:

X0,0,0 = s0

M−1
∑

i=0

wi PCHT(Pi, 0, 0, 0, s0wi) ,

where Xj,kx,ky =
〈

f , ϕj,kx,ky

〉

and s0 = 1/
√

TxTy. The

transform coefficients areC(ab)
j,kx,ky

=
〈

f , ψ
(ab)
j,kx,ky

〉

.

V. A PPLICATION TO VLSI L AYOUTS

We now show a practical example of the application of this
algorithm to compute the CHT coefficients of a VLSI layout.
In practice a layout is described using a vector format such as
OASIS [2]. Compared to general simple polygons, those found
in VLSI layouts have two additional properties. All vertices are
placed on the integer grid and all edges are parallel to either thex
or y axis. We call these polygons rectilinear. The routine used to
compute the intersection area in Algorithm 1 is specifically adapted

Algorithm 1 PCHT(P, j, kx, ky, s)

Require: The polygon to transformP, the scalej, the shiftskx

andky and the scaling factors.
Ensure: C(hl),C(lh),C(hh) contain the transform coefficients.

1: i← IntersectionArea
(

P,T j,kx,ky

)

2: if i = 0 or i = TxTy/2
2j or j = J then

3: Returni
4: end if
5: x← PCHT(P, j + 1, 2kx, 2ky, 2s)
6: y ← PCHT(P, j + 1, 2kx + 1, 2ky, 2s)
7: z ← PCHT(P, j + 1, 2kx, 2ky + 1, 2s)
8: t← PCHT(P, j + 1, 2kx + 1, 2ky + 1, 2s)
9: a← x− y

10: b← x+ y
11: c← z − t
12: d← z + t
13: C

(hl)
j,kx,ky

← C
(hl)
j,kx,ky

+ s(a+ c)

14: C
(lh)
j,kx,ky

← C
(lh)
j,kx,ky

+ s(b− d)
15: C

(hh)
j,kx,ky

← C
(hh)
j,kx,ky

+ s(a− c)
16: Returnb+ d

for rectilinear polygons from classical computational geometry
techniques [3].

We implemented the PCHT and DHT algorithms in a compu-
tational lithography tool that we ran on a 3GHz Intel Xeon 5450
running Linux in 64-bit mode. All the code is C++, single-threaded
and was compiled using GCC 4.1.2 with option “-O3”. The DHT
was custom implemented taking into account the knowledge that
the input image is binary. For both transforms the output coeffi-
cients were discarded instead of being stored in order to minimized
the impact of memory transfers on the runtime measurements. We
ran a benchmark of the PCHT and the DHT on different layers of a
22nm VLSI layout. Layers M1 and M2 are metal layers that contain
both rectangles and other polygons, while the contact array (CA)
layer contains only rectangles. Examples of tiles from the different
layers are shown in Figure 3. Figure 4 shows the runtime as a
function of the number of verticesK in 1024nm×1024nm tiles
from the M1 layer, the worst configuration for the PCHT in our
experiment. The empirical distribution of the number of vertices
in the tiles is shown in light grey. Although the runtime of the
continuous transform grows withK, it outperforms its discrete
counterpart for about half the tiles. The peaks aroundK = 190
are caused by the very low number of tiles in that range, as shown
by the empirical distribution, and all these tiles having a worse than
average runtime. The DHT also shows a slight dependence onK
due to the time needed to create the discrete image. The average
speed-up of the runtime as a function of the tile size is shown
in Figure 5. The speed-up is defined as the ratio of the runtimes
of the DHT and pruned CHT. Because it has the highest vertex
density, the M1 layer shows the least improvement, between 1 and
3 times speed-up. For large tiles, layers M2 and CA show speed-up
over 6 and 12 times, respectively. In a practical scenario where the
output coefficients need to be stored for further use we expect the
PCHT to outperform even more the DHT as its pruned structure
avoids completely the computation of zero coefficients and thus
their storage and associated memory transfers. On the other hand,
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Figure 4. Median runtime of the PCHT (dashed line) and DHT (plain
line) of 1024nm×1024nm tiles from the M1 layer containingK vertices.
Tiles withK > 200 have a lower runtime because they contain exclusively
rectangles which are less complex. The empirical distribution of the number
of vertices is shown in grey.

the DHT has no knowledge of which coefficients will be zero and
thus either tries to store every output coefficients or an if statement
can be used if we know in advance that most coefficients will be
zero, as is the case here. In addition, further optimizations such as
parallelization and optimization for the cache size are possible.

VI. CONCLUSIONS

We introduced the PCHT, a new algorithm for the computation
of the CHT of 2D polygonal patterns. We showed significant speed-
up compared to the DHT in an implementation targeting rectilinear
polygons found in VLSI layouts. We expect the PCHT to impact
machine learning techniques being developed for application in
computational lithography, such as printability prediction [7], as
well as in the VLSI design process in general.

The natural next step for our work would be to analyze the
computational complexity of PCHT in order to validate theoret-
ically its superiority over the DHT. The performance of both
algorithms implementations should also be reassessed when the
coefficients are stored in memory in order to account for the impact
of memory transfers. Another important implementation step is
the parallelization of the code as current and future increases in
computation power come primarily through multi-core chips. The
recursive nature of the PCHT algorithm makes it a perfect candidate
for parallelization.

We also intend to apply our vertex based approach to other
transforms such as the continuous Fourier series. A fast algorithm
to compute the Fourier series would also be very valuable in
lithography where the fast Fourier transform is routinely used in
optical lithography process simulation despite the introduction of
aliasing due to the infinite bandwith of the polygons. Moreover,
we expect an optimized vertex based fast continuous Fourier series
algorithm to be inherently faster than the fast Fourier transform.
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