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1 Introduction

1.1 What is Real-Time Optimization?

The term “real-time optimization” (RTO) tends to be employed for different purposes by dif-
ferent researchers/practitioners. In our context, we use the term very generally to denote more
specific terms like “measurement-based optimization”, “on-line optimization”, “iterative set-
point optimization”, “steady-state optimization”, “experimental optimization”, “iterative feed-
back optimization”, “run-to-run (batch-to-batch, cycle-to-cycle) optimization”, and “black-box
optimization”. It is important to emphasize, however, that we do not mean “optimization in
real-time” and that this solver is not intended for numerical optimization problems
with real-time constraints.

Specifically, the solver presented here is meant for solving problems of the following form:

minimize
u

φp(u)

subject to Gp(u) � 0
G(u) � 0
uL � u � uU

, (1)

where u ∈ Rnu are the manipulated variables (or “inputs”), φp : Rnu → R is the cost function to
be minimized, Gp and G are composed of, respectively, ng uncertain and n̄g certain inequality
constraint functions gp, g : Rnu → R (i.e., physical/safety/user-defined limitations), and uL and
uU denote the “box” constraints (the lower and upper bounds) on the inputs (e.g., actuator
limits).

The subscript p is used to refer to functions that are not known analytically and require an
“expensive” experiment so as to be evaluated for a given input u (in process systems lingo, p
stands for “plant”). In many cases, such an experiment will be real in nature and expensive
because it requires the operation of certain equipment – e.g., running a pharmaceutical batch,
manufacturing and testing of a certain part, or applying a certain operating regime to an au-
tomatic process. However, it is also possible that the experiment be numerical and expensive
because it requires running a long simulation. By contrast, the absence of p is used to denote
that the function is known analytically or can be evaluated inexpensively.

The goal of any good RTO algorithm is to solve Problem (1) to local optimality by finding a set
of inputs, u∗, that minimizes φp(u) while satisfying all of the constraints. This is always done
by iteratively carrying out experimental realizations according to some RTO update law Γ, with
k denoting the iteration counter:

u∗k+1 = Γ(u0, ...,uk,y0, ...,yk), (2)

with y used to denote measured output data and u∗k+1 denoting the set of inputs that the
RTO algorithm believes to be “optimal”, or at least “better” than the current applied uk. In
practice, Γ can be as simple as a human being (or many) who, based on what is observed and
measured, makes a decision on what inputs should be applied next to achieve better performance.
Alternatively, Γ may also be a complicated algorithmic law that, without requiring anything from
the operator, automatically generates new inputs based on what is measured. As many RTO
algorithms make judgments about future inputs based on measurements that are inherently local,

3



RTO

Algorithm

Append

Data

updated

measurements

initial

measurements

Apply

& Observe

new, “better”

target

new measurements

Figure 1: A qualitative illustration of the RTO loop.

setting the next set of inputs as uk+1 := u∗k+1 is not always a wise choice, and an input filter
Kk ∈ [0, 1] may be used instead:

uk+1 := uk +Kk

(
u∗k+1 − uk

)
, (3)

so as to “dampen” the adaptation.

It is generally desired that the RTO scheme described by (2) and (3) converge without needing
too many iterations, as these are usually expensive. Additionally, it may be required that the
iterates generated by the algorithm satisfy certain constraints at all iterations, as not doing so
may compromise the safety of the personnel or the functionality of the equipment. A simple
schematic of the iterative RTO procedure is given in Figure 1.

1.2 What is SCFO and Why Use It?

“SCFO” is the acronym adopted by the authors, and stands for the “sufficient conditions for
feasibility and optimality” as proposed by the authors with the hopes of creating a theoretical
foundation for RTO theory and analysis [8, 9]. Practically, we will use “SCFO” to refer to the
RTO framework designed around these conditions, as well as to the solver presented here, which
uses this framework.

The motivation for using the SCFO is that it is, to date, the only tool theoretically capable of
guaranteeing that the loop of Figure 1 converge to a local minimum while keeping the safety
constraints satisfied. As an additional benefit, the SCFO also ensure that the cost value improves
at every iteration, which acts as a conceptual guarantee that the user applying the SCFO can
only gain by doing so. The qualitative proof of convergence is simple and based on the following
logic:

• every iterate is feasible
• every iterate is better

⇒ convergence when no better feasible
iterate exists (i.e., local minimum)

,

with the theoretical details relegated to [8].
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Figure 2: A qualitative illustration of the RTO loop with the SCFO post-treatment included. The
dashed lines are used to indicate that the RTO algorithm is not necessary in this case.

Not surprisingly, such desirable theoretical guarantees cannot be preserved in practical appli-
cations, as much of the information needed to guarantee that the SCFO works conceptually is
either corrupted or unavailable. However, it has been shown that robust extensions of the SCFO
are easily formulated and applied [9], thereby allowing for the SCFO framework to retain, albeit
approximately, a lot of its strong qualities in more realistic settings. Schematically, it may be
seen as a “post-treatment” of the answer provided by a given RTO algorithm, which ensures
that the “better” target really is better (Figure 2). We point out that the SCFO framework
is purely data-driven – indeed, the essential role of the SCFO solver is to manage the obtained
data intelligently so as to force feasible-side convergence to the minimum. Additionally, the RTO
algorithm is not a necessity when the SCFO is used, as the SCFO can single-handedly use the
obtained data to solve the problem. However, it is still recommended that some intelligent RTO
algorithm is used as this aids in the convergence speed of the overall scheme.

1.3 Can I Use This Solver for My Problem?

1.3.1 Key Requirement

To apply the SCFO to your problem, the essential requirement is that you be able to phrase
what you want to do in the form of Problem (1). If you simply cannot do this, then the SCFO
solver is not applicable for you. If the formulation of Problem (1) seems too abstract, then we
urge you to have a look at Section 4, where some examples of applications where RTO problems
naturally appear are presented in a tutorial manner, together with detailed explanations of how
the SCFO solver could be configured and applied in these scenarios.

1.3.2 Additional Conditions and Caveats

Static problems

If the functions of Problem (1) are transient and depend on time as well as the inputs:
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minimize
u

φp(u, t)

subject to Gp(u, t) � 0
G(u, t) � 0
uL � u � uU

,

then you may not be able to apply the SCFO to your problem. In some cases, it may be possible
to reformulate the dynamic problem as a static one simply by working exclusively with steady-
state mappings (i.e., applying a certain u and waiting for the dynamics of the system to die out
so as to remove the dependance on t and return to the original formulation). Users interested in
this reformulation are referred to Section 4.1 and the examples therein.

“Reasonable” dimensionality

Ideally, the current version of the SCFO solver should be applied to problems with no more
than, as a rough (and ambitious) approximation, 100 manipulated variables. If your problem
has thousands or millions of variables that you would like to optimize over, then the current
version of the solver is probably not well-suited for you, as the solver’s subroutines may not be
able to handle your problem size. It is, however, possible that a custom-written modification that
takes advantage of certain additional assumptions tailored to your problem may work well.

Note as well that convergence speed will also change with the number of input variables. While
the exact trends of how exactly the SCFO scale up are still unknown and may be problem-
dependent, it is safe to say that this scale-up will, in the ideal case, be no better than linear.
Put otherwise, if a problem with 10 inputs converges in approximately 30 iterations, a 100-input
problem of similar structure cannot be expected, on average, to converge in less than 300. As
such, just because you have 100 inputs in your RTO problem should not mean that you should
try to optimize over all of them – it is recommended, instead, that you choose the subset of the
inputs that is the most crucial and optimize over those. Future versions of the solver will look
into possible automations of which inputs to optimize over.

Continuous functions

The solver is not theoretically equipped to handle RTO problems with discrete variables or
constraints. For example, the problem

minimize
u,z

φp(u, z)

subject to Gp(u, z) � 0
G(u, z) � 0
uL � u � uU

z ∈ {0, 1}

is not rigorously solvable with the current tools. Fundamentally, this is because the SCFO relies
very heavily on gradients, which do not exist for the discrete cases, thereby making it impossible
to treat the problem in the same rigorous sense as is done for the continuous inputs.

That being said, it is nevertheless the case that all real problems are discrete in nature due
to finite precision, and can only approximate the continuous case. When the round-off error
is negligible (e.g., when all the inputs u are rounded to, say, the tenth decimal place), the
corresponding inputs may be, without serious consequences, treated as continuous. This is,
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however, less justifiable when the round-off error is great (e.g., to the nearest integer). As
an example, one could treat z as continuous in the problem above, and then simply round
whatever z∗ value an RTO algorithm provides to either 0 or 1 – this is not, however, theoretically
guaranteed to produce good results.

A theoretically rigorous, though more expensive, approach would be to fix the discrete variables
and solve the resulting continuous RTO problem for each possible combination (i.e., once for
z = 0 and once for z = 1 in the example above).

Local solutions

The SCFO solver is designed for converging to a local minimum in the neighborhood of the best
known input point, and is by no means a rigorous global optimization algorithm (the existence of
which is largely absent for RTO problems). Users who wish to attempt global optimization with
the SCFO should do so by sampling different portions of their input space (either intelligently
or haphazardly) and then feed this data to the solver, which will proceed to locally minimize in
the region of the best available point.

No limiting real-time constraints

The SCFO solver does not promise any strict bounds on the computation time needed to provide
a solution. The “slow” (and original) version of the slower may need from seconds to hours,
depending on the number of inputs, the amount of data collected, and the number of p functions
that are present. The “fast” version sacrifices some theoretical rigor and will usually be a 100+-
fold faster, taking a few seconds or less for many problems. If real-time constraints are relevant
for your problem, we suggest that you use the fast version, but warn that you should try out
the solver on a similar dummy problem first so as to have an idea of the average computation
time needed for your problem. Future releases will work to optimize the internal routines of
both the slow and fast versions as well as to seek a compromise by removing certain “optional”
subroutines so as to meet user-specified real-time constraints.

No degradation

By “degradation”, we refer to the case where the RTO problem changes over the course of
operation (i.e., with respect to iteration k):

minimize
u

φp.k(u)

subject to Gp,k(u) � 0
Gk(u) � 0
uL � u � uU

,

which is a common occurrence in practice due to equipment degradation or changes in the
surrounding environment. The current version of the solver is not equipped to handle such
problems, though this will be accounted for in the next major version. For the time being, users
who are worried about degradation are advised only to put their most recent measured data into
the SCFO, as opposed to all of the data collected since the beginning of operation, as the older
data may no longer be valid for the process in its current degraded state.
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Certainty in the inputs

The inputs u must be certain – i.e., the user must be sure that the u specified really is the u that is
applied to the system, and not some corrupted version. When the inputs u are themselves subject
to uncertainty or noise, then the SCFO approach is no longer theoretically rigorous, which may
(or may not) make it perform worse in practice. Robustness considerations for noisy inputs are
currently underway and should be included in a not-too-distant future version, however.

Absence of gross measurement errors

It is assumed that all of the data has been treated for gross measurement errors and any highly
erroneous measurements have been removed. Failure to do so may result in an SCFO realization
that is highly influenced by the gross errors and that could potentially converge very slowly.
Future versions may attempt to integrate a gross-error filter into the solver.

Knowledge of a feasible point

At least one choice of u that satisfies the constraints of Problem (1) with some back-off (safety
margin) should be available. The size of these back-offs will depend on user specifications (dis-
cussed in more detail in Sections 2 and 3).
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2 Getting Started

This section is intended to provide the bare necessities for a user to apply the SCFO solver to
their problem. For those interested in the inner workings of the code, we discuss a number of
theoretical points in Section 3, but avoid them here as much as possible.

2.1 Installation

The current version of the solver is available in both MATLAB and GNU Octave and requires
the following files, all of which should be included in the corresponding archives –
SCFOmatV0_9_4.rar and SCFOoctV0_9_4.rar for the MATLAB and Octave versions, respec-
tively. These are available for download at http://infoscience.epfl.ch (simply search for
“SCFO”), and should be extracted into a directory where MATLAB/Octave will find them:

• SCFO.m/SCFO_oct.m (the core file)

• pengen.m/pengen_oct.m (subroutine for constructing a log-concave approximation of the
probability density function, or PDF, of the measurement noise)

• logccvfit.m/logccvfit_oct.m (routine for calculating a log-concave approximation of
histogram data)

• normaldist.m/normaldist_oct.m (normalization of a log-concave function to obtain a
log-concave pdf)

• penlinrep.m/penlinrep_oct.m (piecewise-linear approximation of a log-likelihood penalty
function)

• randgen.m/randgen_oct.m (random number generator for a given PDF)

• clusterdata.m/clusterdata_oct.m (binning of input points)

• gradboundM.m/gradboundM_oct.m (calculation of gradient bounds/estimates)

• gradboundMfast.m/gradboundMfast_oct.m (calculation of gradient bounds/estimates –
fast version)

• reffind.m/reffind_oct.m (smoothing of noisy data to find best reference point)

• reffindfast.m/reffindfast_oct.m (smoothing of noisy data to find best reference point
– fast version)

• gradboundM0.m/gradboundM0_oct.m (calculation of gradient bounds/estimates for noise-
free case)

• hood.m/hood_oct.m (sorting of input data with respect to distance from reference point)

• reguboundM.m/reguboundM_oct.m (bisection algorithm to find local neighborhood of struc-
tural validity)

• reguboundMfast.m/reguboundMfast_oct.m (bisection algorithm to find local neighbor-
hood of structural validity – fast version)

• reguboundM0.m/reguboundM0_oct.m (bisection algorithm to find local neighborhood of
structural validity for noise-free case)
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• gennorm.m/gennorm_oct.m (calculation of residual penalties with respect to a given log-
likelihood penalty function)

• respenal.m/respenal_oct.m (mapping between residual and penalty for a given proba-
bility distribution)

• congenM.m/congenM_oct.m (generation of linear constraints for the bisection algorithm)

• congenM0.m/congenM0_oct.m (generation of linear constraints for the bisection algorithm
for the noise-free case)

• congenM2.m/congenM2_oct.m (generation of linear constraints for the calculation of gra-
dient bounds)

• congenM20.m/congenM20_oct.m (generation of linear constraints for the calculation of gra-
dient bounds for the noise-free case)

• feascheck.m/feascheck_oct.m (routine to check the robust feasibility of a given input
point)

For MATLAB users, we note that a portion of the convex optimization subroutines are written in,
and solved by, the (free) CVX-SeDuMi/SDPT3 package, which should be downloaded separately
(www.cvxr.com) and installed where, again, MATLAB can find it. It is not necessary to under-
stand how this package works to use the SCFO solver (one only needs to install it), but interested
users are referred to [28, 27, 19]. Future versions will do away with this dependence, however,
and will give the user a choice of numerical solvers. The Octave version currently accomplishes
the same tasks with the built-in Octave linear/quadratic programming routines, although we
hope to expand on this as well in the future. We also note that the current MATLAB version is
significantly faster than the corresponding Octave one with respect to computation time.

Apart from acquiring the necessary files, the actual “installation” will inevitably depend on the
application that the user is applying the SCFO to, and on what acts as the interface between the
MATLAB/Octave solver and the data acquisition system. If the data is not in MATLAB/Octave
to begin with, then it is up to the user to export it to MATLAB/Octave, to run the SCFO, and
then to import the solution back into the system.

2.2 Running SCFO.m/SCFO_oct.m

The current version of the solver requires a total of 27 input elements, of which some are fixed,
some are easily chosen, and some need to be chosen with care. We explain all of these
here and try to place particular emphasis on the latter. The overall user input has the following
symbolic form1:

[uk+1, δexit] = SCFO

(
U, φ̂, Ĝp,u

∗
k+1,wφ,Wg,C,d,dT , pφ,u

L,uU ,Kp,Kp,

K,K,κφ,κφ,M,M,Gp,G, φ, εφ,∆umax, D,F

)
,

with the notation:

• δexit ∈ {0, 1, 2}: exit condition

• U ∈ R(k+1)×nu : input data collected to date

1This should be replaced with SCFO_oct() for Octave users.
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• φ̂ ∈ R(k+1)×1: cost data collected to date

• Ĝp ∈ R(k+1)×ng : uncertain constraint data collected to date

• u∗k+1 ∈ R1×nu : new input target as provided by RTO algorithm

• wφ: noise samples of cost function measurements/estimates

• Wg: noise samples of uncertain constraint function measurements/estimates

• C ∈ Zng×nu : Boolean matrix of concave relationships between uncertain constraints Gp

and inputs u

• d ∈ R1×ng
+ : maximal allowable violations of uncertain constraints

• dT ∈ R1×ng
+ : maximal allowable violation integrals for the uncertain constraints

• pφ ∈ {0, 1}: indicator of certainty in the cost function

• uL ∈ R1×nu : lower limits on the inputs

• uU ∈ R1×nu : upper limits on the inputs

• Kp ∈ Rng×nu : lower Lipschitz constants on the uncertain constraints

• Kp ∈ Rng×nu : upper Lipschitz constants on the uncertain constraints

• K ∈ Rn̄g×nu : lower Lipschitz constants on the certain constraints

• K ∈ Rn̄g×nu : upper Lipschitz constants on the certain constraints

• κφ ∈ R1×nu : lower Lipschitz constants on the cost

• κφ ∈ R1×nu : upper Lipschitz constants on the cost

• M ∈ Rnu×nu : lower quadratic bound constants on the cost

• M ∈ Rnu×nu : upper quadratic bound constants on the cost

• Gp ∈ R1×ng
− : lower bounds on the uncertain constraint values

• G ∈ R1×n̄g
− : lower bounds on the certain constraint values

• φ ∈ R: global lower bound on the cost

• εφ ∈ R+: tolerance for which convergence to a sufficiently optimal point may be declared

• ∆umax ∈ R1×nu
++ : maximal step sizes for the inputs

• D ∈ {0, 1, 2}: display settings of the solver

• F ∈ {0, 1}: slow/fast computation times

So as to make our detailed explanations of these elements a bit more concrete, we use a modifi-
cation of the RTO problem example from [8]:

minimize
u1,u2

φp(u) := (u1 − 0.5)2 + (u2 − 0.4)2

subject to gp,1(u) := −6u2
1 − 3.5u1 + u2 − 0.6 ≤ 0

gp,2(u) := 2u2
1 + 0.5u1 + u2 − 0.75 ≤ 0

g1(u) := −u2
1 − (u2 − 0.15)2 + 0.01 ≤ 0

u1 ∈ [−0.5, 0.5], u2 ∈ [0, 0.8]

, (4)
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and show how the different elements may be set for this particular problem before applying
the SCFO solver to solve it. We remind the user that the p functions in (4), though given
analytically here for the purposes of illustration, are assumed unknown to the user, and that
the only information that may be obtained is that which is measured when a given input is
applied.

2.2.1 The Data: U, φ̂, Ĝp

This is the measurement/estimation data obtained from previous iterations (experiments) and
should include as many samples as possible, provided that they are valid for the problem at
hand (i.e., the problem and equipment have not changed since the data has been collected). U

is simply the matrix of previous input sets that have been applied (stacked vertically), with φ̂

and Ĝp the corresponding values of the cost and uncertain constraints that were measured or
estimated when those inputs were applied to the real system. For Problem (4), we can suppose
the case where the points u0 = [0, 0],u1 = [0.1, 0.1],u2 = [−0.3, 0.4], and u3 = [0.4, 0.2] have
been previously applied, which would yield:

U :=


0 0

0.1 0.1
−0.3 0.4
0.4 0.2

 .
The corresponding measurements for the cost and constraints would then be:

φ̂ :=


0.41 + wφ,0
0.25 + wφ,1
0.64 + wφ,2
0.05 + wφ,3

 , Ĝp :=


−0.60 + w1,0 −0.75 + w2,0

−0.91 + w1,1 −0.58 + w2,1

0.31 + w1,2 −0.32 + w2,2

−2.76 + w1,3 −0.03 + w2,3

 ,
with w denoting either measurement noise or estimation errors that corrupt the user’s perception
of the true cost and constraint values (φ̂ and Ĝp usually simply being constructed from sensor

values or the outputs of an estimator). Ĝp should be defined by the empty brackets [] when
there are no uncertain constraints in the RTO problem (ng = 0).

It is recommended that the order in which the measurements are vertically stacked be chrono-
logical, with older data at the top and the latest at the bottom, for those measurements that
correspond to input points dictated by the SCFO solver. Measurements collected outside of
SCFO solver operation are recommended to be placed first and in the order of decreasing cost
– i.e., with the data point not obtained by the SCFO and having the lowest cost being the last
of the first set, right above the set of measurements that are due to SCFO operation. These are
only recommendations, however, and are not crucial, though they may improve performance in
some problems. It is, however, crucial that the rows be properly aligned between U, φ̂, and Ĝp

(e.g., the data in the third rows of φ̂ and Ĝp should correspond to what was obtained when the
input in the third row of U was applied).

It is required that at least one of the data points provided should satisfy the constraints of the
RTO problem robustly and with some satisfactory slack. If one is not available, then the SCFO
will quit with Error: Provided data should include at least one strictly feasible

point. See Section 5.1 for ways to avoid this error.
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2.2.2 Nominal RTO Target: u∗k+1

As shown in Figure 2, the SCFO may (and should) be coupled with an RTO algorithm, which
provides the solver with a nominal optimal input target u∗k+1. If this is the case, then simply
input it in this field as a row vector. If you do not want to use an RTO algorithm and want the
SCFO to optimize everything for you, then simply enter the empty brackets [].

2.2.3 Noise Samples: wφ,Wg

wφ represents any available samples of the noise (estimation error) that corrupts the observed
cost measurements (estimations):

φ̂p(uk) = φp(uk) + wφ,k.

As it will usually be impossible to determine wφ,k online during optimization, the user is required
to have obtained these noise samples beforehand. It is important to highlight that SCFO.m/
SCFO_oct.m does not accept noise models directly (e.g., one cannot specify that wφ comes from
a normal distribution with a certain mean and standard deviation), and that one is obliged to
provide a sufficient number (100+) of noise samples instead. To specify a particular model, we
recommend that the user supply random samples generated from the model of the distribution,
with 106 samples being a good amount. For example, to specify that the noise in the cost is
Gaussian with a mean of 0 and a variance of 1, one may input the MATLAB/Octave command
randn(1,1e6) to define wφ. If the noise is negligible, the user is encouraged to input the empty
brackets [], as this will use subroutines that are, in general, faster and more reliable.

The reason for specifying the noise model this way (as opposed to specifying the nature and
parameters of the distribution function) is flexibility – any noise distribution may be specified by
the user without the need for explicit parameterizations, with the user also able to input collected
noise samples directly (without having to fit a particular model to them). Future versions of
the solver will incorporate some standard noise parameterizations, however. The current version
also assumes that the noise is independent from sample to sample and that the noise for each
measurement/estimate comes from the same probability distribution.

Likewise, Wg corresponds to a MATLAB/Octave cell that contains the noise samples for the
different uncertain constraints, i.e., the w elements of

ĝp,1(uk) = gp,1(uk) + w1,k

ĝp,2(uk) = gp,2(uk) + w2,k
.

Below is an example of how the noise parameters may be inputted for Problem (4) when wφ ∼
N (0, 0.64), w1 is negligible, and w2 ∼ U(0, 0.3):

wφ → wphi = 0.8*randn(1,1e6);

Wg → Wg{1} = []; Wg{2} = 0.3*rand(1,1e6);

Wg should be defined by the empty brackets [] if there are no uncertain inequality constraints
in the RTO problem (ng = 0).
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2.2.4 Concavity Matrix: C

In certain applications, relationships between the uncertain constraints and the different input
variables may be concave, which may lead to significant speed-ups in convergence speed (users
interested in an introduction to some concave functions are advised to check the examples section
of [13] or Chapter 3 of [1], and to keep in mind that the negative of a convex function is concave
– note, as well, that any linear relationship is concave). The matrix C consists of zeros and ones
denoting the absence or the presence, respectively, of a concave relationship between a given
constraint and an input. In Problem (4), one could define C as

C :=

[
1 1
0 1

]
,

since gp,1 is concave in both u1 and u2 (hence, the first row of C), and gp,2 is only concave
(linear) in u2 (the second row). It is important to note that this knowledge may, in many cases,
be unavailable, in which case we strongly advise the user to set 0 everywhere where they are
not confident of a concave relationship existing, since specifying such a relationship when one
cannot be verified may lead to hazardous RTO operation. If no concave/linear relationships can
be verified for the process being optimized, then the user should define C as the 0 matrix. If
there are no uncertain inequality constraints in the RTO problem (ng = 0), then C should be
defined by the empty brackets [].

2.2.5 Constraint Relaxations: d,dT

Choosing d := 0 will, in theory, ensure that the uncertain inequality constraints Gp(u) � 0
are always satisfied at every RTO iteration. This can, however, lead to slow convergence in
some cases due to conservatism. By setting the elements of d to values greater than 0, one
allows for certain maximal violations during convergence, which tends to speed up RTO progress
significantly in many cases. For example, by specifying

d := [1 2]

for Problem (4), one is stating that violations of up to gp,1(u) = 1 or gp,2(u) = 2 are tolerable
sometimes, provided that they do not last forever. To ensure that the violations are temporary,
the user must also specify the violation “integrals” dT , where a violation integral for a given
constraint denotes the total sum of violation magnitudes allowed during all RTO operation. For
example, specifying

dT := [10 10]

for the same problem limits the occurrence of gp,1(u) = 1 and gp,2(u) = 2 to 10 and 5 it-
erations, respectively. Note that d � dT always. Note as well that allowing violations does
not guarantee that they will occur, or that the worst-case violation magnitudes will come close
to being observed. As such, we strongly recommend the user to exploit this option whenever
possible.
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2.2.6 Cost Certainty Indicator: pφ

In some applications the cost function will be uncertain (and denoted with a p), in which case pφ
should be set to 0. However, significant speed-ups in computation, convergence, and performance
will be attained if your RTO problem happens to have an analytically known cost function,
thereby yielding the RTO problem:

minimize
u

φ(u)

subject to Gp(u) � 0
G(u) � 0
uL � u � uU

.

In this case, set pφ := 1 and specify an auxiliary function, phieval.m, that calculates the value
of the cost function and its derivatives for a given input point. Suppose that the cost function is
known for Problem (4). A suitable auxiliary file would then be:

function [phi,Jphi] = phieval(u)

phi = (u(1)-.5)^2 + (u(2)-.4)^2;

Jphi = [2*(u(1)-.5) 2*(u(2)-.4)];

end

Note that the gradient should be outputted in row format.

2.2.7 Input Bounds: uL,uU

The input bounds should simply define the input space that the user has chosen to work with.
For Problem (4), they would be:

uL := [−0.5 0], uU := [0.5 0.8].

Though this is not obligatory, we highly recommend the user to scale the inputs of their RTO
problem so that:

uU1 − uL1 ≈ uU2 − uL2 ≈ ... ≈ uUnu − u
L
nu ≈ 1. (5)

2.2.8 Lipschitz Constants: K,κ

The Lipschitz constants – Kp,Kp,K,K,κφ,κφ – act as lower and upper bounds on the sensi-
tivities of the functions involved in the RTO problem and play a very crucial role in the SCFO
solver. For the uncertain inequality constraints, the matrices Kp and Kp consist of the Lipschitz
constants κji and κji that are defined as:

κpji <
∂gp,j
∂ui

∣∣∣
u
< κpji, ∀u ∈ {u : uL � u � uU}. (6)

We may work these constants out for Problem (4) by noting that the derivatives are:
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∂gp,1
∂u1

∣∣∣
u

= −12u1 − 3.5,
∂gp,1
∂u2

∣∣∣
u

= 1

∂gp,2
∂u1

∣∣∣
u

= 4u1 + 0.5,
∂gp,2
∂u2

∣∣∣
u

= 1

,

and that minimizing and maximizing these derivatives over u1 ∈ [−0.5, 0.5], u2 ∈ [0, 0.8] leads to
the Lipschitz matrices:

Kp :=

[
−9.51 0.99
−1.51 0.99

]
, Kp :=

[
2.51 1.01
2.51 1.01

]
,

where a slack of 0.01 has been added to ensure strict inequality.

Because the analytical expressions for the uncertain plant constraints will never be available, this
method of calculating the Lipschitz constants is purely academic and of little practical interest.
Unfortunately, there is no “easy”, general way to choose these constants for the time being, and
we thus recommend the user to adopt an approach that is specific to their problem, where certain
physical laws or operation experience may be used to put bounds on the derivatives. For RTO
applications that use a model, however, one could calculate the constants as is done above for
the model and then, for example, to multiply these values by some safety factor (see Section 4.1.2
for an example). Heuristic data-driven approaches are also possible (see the example in Section
4.3.2), and some theoretical data-driven methods are also being developed, though these are not
yet integrated into the current version.

Choosing Kp or Kp whose elements are not sufficiently low or high, respectively, can have
significant negative effects on RTO performance – most notably, not defining proper Lipschitz
bounds can lead to safety constraints Gp being violated during RTO operation. As such, we
advice the user to err on the side of caution and make conservative choices if necessary, even
though making the choices too conservative could have adverse effects on performance with
respect to convergence speed. In the case where the RTO problem has no uncertain constraints,
the user should input the empty brackets [] for both Kp and Kp. We do note that the solver
has a built-in consistency check to ensure that the basic Lipschitz lower and upper bounds are
satisfied by the collected measurements (Section 3.10), with Kp and Kp automatically made more
conservative in the case that the user-specified constants are found to be inconsistent.

The choices of K and K are analogous but are for the constraints that are analytically known.
In this case, the method of calculating the Lipschitz constants by analytically writing out the
derivatives and minimizing/maximizing these values over the relevant input space may be used.
For Problem (4), this would be done as:

∂g1

∂u1

∣∣∣
u

= −2u1,
∂g1

∂u2

∣∣∣
u

= −2u2 + 0.3,

which would lead to:

K := [−1.01 − 1.31] , K := [1.01 0.31] .

As for the uncertain case, the user should input the empty brackets [] for both K and K if there
are no known inequality constraints in the RTO problem (n̄g = 0).
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Finally, the Lipschitz constants for the cost – κφ and κφ – should be chosen with the same
considerations as for the constraints, depending on whether the cost function is known or not.
Going again down the analytical path yields:

∂φp
∂u1

∣∣∣
u

= 2u1 − 1,
∂φp
∂u2

∣∣∣
u

= 2u2 − 0.8,

and

κφ := [−2.01 − 0.81] , κφ := [0.01 0.81]

as a suitable choice. When the cost function is unknown, a consistency check is carried out for
κφ and κφ as well.

2.2.9 The Quadratic Bound Constants: M

The quadratic bound constants M and M are second-order Lipschitz constants that bound the
second derivatives of the cost:

M ij <
∂2φp
∂ui∂uj

∣∣∣
u
< M ij , ∀u ∈ {u : uL � u � uU}.

As with the first-order Lipschitz constants, this analytical characterization is of little practical
use unless some sort of model of φp is available, in which case one could attempt to apply the
above for the model and then scale these quantities by a safety factor (see example in Section
4.1.2). For Problem (4), we may derive sufficient bounds by noting that:

∂2φp
∂u2

1

∣∣∣
u

= 2,
∂2φp
∂u1∂u2

∣∣∣
u

= 0

∂2φp
∂u2∂u1

∣∣∣
u

= 0,
∂2φp
∂u2

2

∣∣∣
u

= 2

→
M11 := 1.99,M12 = M21 := −0.01,M22 := 1.99

M11 := 2.01,M12 = M21 := 0.01,M22 := 2.01
.

Just like with the first-order Lipschitz constants, we cannot claim to have an easy, general
approach to determine the quadratic bounds for any given RTO problem, and urge the user to
employ whatever a priori knowledge is at their disposal to choose them wisely. As with the
first-order case, some heuristic data-driven methods may be employed and have been known to
work, however (Section 4.3.2).

There are also some cases where this choice is either straightforward or unnecessary. If the cost
is linear in all of the variables, then both M and M may be set to approximately (with slack) 0.
In the case where the cost is known (pφ = 1), M and M are not needed and the user may input
the empty brackets [] for both.
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2.2.10 Lower Scaling Bounds

The bounds Gp and G are used to scale the constraint values for the subroutines used in the
solver. Very simply, Gp denotes the lowest values that the uncertain constraints can take during
operation. For Problem (4), a suitable choice would be:

Gp := [−3.85 − 1].

Likewise, G would be the same but for the known constraints. For our example problem, G :=
−0.67 would be sufficient. The empty brackets [] should be inputted for the case where either
ng = 0 or n̄g = 0 (or both).

We do not expect these choices to be difficult, although this may vary from problem to problem.
It should also be noted that these choices are not required to be rigorous/robust and may be
approximate.

2.2.11 Global Minimum Cost Value and Tolerance

In most applications, the user should have a reasonably good idea of the best cost function value
(the globally minimal value) that they would like to achieve, and should define this value as
φ. Additionally, it will often be the case that coming within a certain tolerance of this value is
sufficient, and that from a practical point of view one does not need to actually reach φ but is
satisfied converging close to it. This tolerance, defined by εφ, is a positive number that should
reflect the degree of precision with which one would like to converge. Once the solver is provided
with a data point, uk, that robustly satisfies the constraints and the condition

φp(uk) ≤ φ+ εφ,

no adaptation is done as this point is already known to be sufficiently optimal. This is of practical
interest since the solver may make performance temporarily worse due to its continuous explo-
ration of the input space. This exploration, though beneficial for optimization and ultimately
necessary in the long run, is no longer so if optimal conditions have already been found.

2.2.12 Maximum Input Step Size: ∆umax

In principle, one does not need to limit the step size in the solver since everything in the SCFO
framework is designed in such a way so as to have desired step sizes implemented automatically.
However, while the solver does everything it can with the knowledge it has to drive the process
towards truly better performance, multiple errors (e.g., poor user specifications, significant noise
corruption in the data, low quality of gradient estimates) could create scenarios where the SCFO
may adapt the inputs in an undesirable manner. In this case, so as not to adapt the inputs too
much (thereby potentially causing significant losses), we allow the user to put upper limits on
the steps that the adaptation may take for the different inputs. These choices are largely ad hoc
and will depend on the problem and user preferences, but some general-purpose heuristics could
be proposed. For example, one might choose to define the maximum step for an input as 5% or
10% of the total domain size of that input. For Problem (4), a 10% limit would lead to:

∆umax := [0.10 0.08].
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2.2.13 Solver Display Options: D

The display options do not affect solver performance in any way and are only there to allow the
user to control how much output they would like to see from the solver during a single set of
computations. Users who are not at all interested in what the solver is actually doing and only
care about the answer that it outputs are advised to set D := 0, which results in nothing being
displayed. Those who want the main steps to be displayed as they are accomplished – perhaps
so as to have an idea of how close the solver is to outputting an answer – but do not want all
the details are advised to set D := 1. Setting D := 2 leads to a detailed display that

• Informs the user of the progress of the gradient estimation subroutines (i.e., for which
function the gradient is being estimated and how many points are being used for the
regularized estimate – see Section 3.5), as well as of the progress of the data smoothing
routine to compute the best reference point (see Section 3.9).

• Informs the user if certain Lipschitz constants have been found inconsistent and have thus
been automatically modified by the solver – see Section 3.10. If the constants have been
modified, both the user-specified and the new choices are displayed.

The detailed display may be of use to those who want to debug/test certain parts of the solver
themselves.

2.2.14 Computation Time Option: F

If the time needed for the solver to provide a solution is not a limiting factor, then we suggest
setting F := 0, which leads to the standard subroutines being employed. From a theoretical
point of view, these are more “proper” and should be employed if permitted. However, if the
standard computation time is too slow and there is a significant need/interest in speeding up
the solver, the user may set F := 1, which activates the fast version of the solver. Contrary
to the standard version, the rigor of certain subroutines (see Section 3.5) is sacrificed in favor
of speed and a 100-fold or greater improvement in solution time is usually obtained. In our
limited experience, the performances obtained by the two versions appear comparable for many
problems, and so the user should not hesitate to make use of this option.

2.2.15 Auxiliary Function for Known Constraints

As with the cost when pφ = 1, an auxiliary function, geval.m, should be provided to evaluate
the known constraints (G) and their gradients as a function of u when these constraints are
present. For the example of Problem (4), this file would appear as follows:

function [g,Jg] = geval(u)

g(1,1) = -u(1)^2 - (u(2)-.15)^2 + .01;

Jg = [-2*u(1) -2*(u(2)-.15)];

end

Suppose now that we had a modified example where all three constraints were known with
certainty:
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minimize
u1,u2

φp(u) := (u1 − 0.5)2 + (u2 − 0.4)2

subject to g1(u) := −6u2
1 − 3.5u1 + u2 − 0.6 ≤ 0

g2(u) := 2u2
1 + 0.5u1 + u2 − 0.75 ≤ 0

g3(u) := −u2
1 − (u2 − 0.15)2 + 0.01 ≤ 0

u1 ∈ [−0.5, 0.5], u2 ∈ [0, 0.8]

,

The auxiliary function for this example would appear as follows:

function [g,Jg] = geval(u)

g(1,1) = -6*u(1)^2 - 3.5*u(1) + u(2) - .6;

g(1,2) = 2*u(1)^2 + .5*u(1) + u(2) - .75;

g(1,3) = -u(1)^2 - (u(2)-.15)^2 + .01;

Jg = [-12*u(1)-3.5 1;

4*u(1)+.5 1;

-2*u(1) -2*(u(2)-.15)];

end

2.2.16 Exit Condition: δexit

In the majority of cases when the solver successfully applies the SCFO, the exit condition δexit = 0
is outputted. Alternatively, it may occur that the solver is forced to override applying the SCFO
conditions in favor of enforcing sufficient excitation (see Section 3.6), in which case δexit = 1
is outputted. If no adaptation is done since sufficiently optimal conditions have already been
found, the solver outputs δexit = 2.

2.3 Example Problem

We now apply the SCFO solver to Problem (4) with the following specifications:

• An initial input data set of u0 = [−0.45 0.05], u1 = [−0.44 0.05], and u2 = [−0.45 0.06],
together with the corresponding (noisy) constraint and cost measurements, is provided.

• A simple gradient-descent RTO algorithm (with a diminishing step size) is used to provide
an optimal target, with u∗k+1 = uk − 1

k∇φp(uk). Here, we assume, for convenience, to
know ∇φp(uk), although any corrupted estimate of the gradient could just as easily be
used (employing, e.g., the routine of Section 3.5.3).

• The cost measurements are corrupted with white Gaussian noise of zero mean and a vari-
ance of 0.0025. Measurements for gp,1 are noise-free as the noise is considered negligible.
Measurements for gp,2 are corrupted with a noise that is uniformly distributed between
-0.05 and 0.05.

• It is assumed that gp,1 is concave with respect to u1 only.

• Maximum violations of 1 and 2 are allowed for gp,1 and gp,2, respectively, with maximal
violation integrals of 10 for both.

• The cost is assumed unknown (pφ := 0).
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• The Lipschitz constants as defined previously are used, but conservatism is added to these
values for all of the unknown p functions by multiplying positive upper bounds (or negative
lower bounds) by 2 and dividing negative upper bounds (or positive lower bounds) by 2.

• The quadratic bounds for the cost are taken as derived before, but conservatism is added
by doubling M and setting M := 0.

• The scaling bounds as proposed above are used.

• A global minimum cost value of 0 is chosen. However, converging to within 0.1 of this value
is deemed as sufficiently optimal.

• The 10%-limit maximum step sizes are used.

• We use the most detailed level of display, with D := 2.

• We do not use the fast computation option and set F := 0.

Taking all of these specifications into account allows us to simulate a hundred iterations of the
RTO problem with the following snippet of code2:

2Reminder: Octave users should use SCFO_oct() in place of SCFO().
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wphi = .05*randn(1,1e6);

Wg{1} = [];

Wg{2} = .05 - .1*rand(1,1e6);

C = [1 0; 0 0];

d = [1 2];

dT = [10 10];

phicert = 0;

uL = [-.5 0];

uU = [.5 .8];

Kmin = [-9.51*2 .5*.99; -1.51*2 .5*.99];

Kmax = [2.51*2 1.01*2; 2.51*2 1.01*2];

Kmincert = [-1.01 -1.31];

Kmaxcert = [1.01 .31];

Kcostmin = [-2.01*2 -.81*2];

Kcostmax = [0.01*2 .81*2];

Mmin = zeros(2,2);

Mmax = 2*[2.01 .01; .01 2.02];

Gmin = [-3.85 -1];

Gmincert = -.67;

phimin = 0;

costtol = .1;

Dumax = [.1 .08];

D = 2;

fast = 0;

u(1,:) = [-.45 .05];

for i = 1:100

phi(i,1) = (u(i,1) - .5)^2 + (u(i,2) - .4)^2 + .05*randn;

G(i,1) = -6*u(i,1)^2 - 3.5*u(i,1) + u(i,2) - .6;

G(i,2) = 2*u(i,1)^2 + .5*u(i,1) + u(i,2) - .75 + (.1-.2*rand);

Jphi = [2*(u(i,1)-.5) 2*(u(i,2)-.4)];

ustar = u(i,:) - (1/i)*Jphi;

if i == 1

u(i+1,:) = [-.4 .05];

elseif i == 2

u(i+1,:) = [-.45 .09];

else

[u(i+1,:),delta_exit] = SCFO(u,phi,G,ustar,wphi,Wg,C,d,dT,phicert,...

...uL,uU,Kmin,Kmax,Kmincert,Kmaxcert,...

...Kcostmin,Kcostmax,Mmin,Mmax,Gmin,Gmincert,...

...phimin,costtol,Dumax,D,fast);

end

end
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Figure 3: The performance of the SCFO solver for the example problem. The figure on the left shows
the input space of the problem, with the red denoting the infeasible regions and the green the feasible
ones. Here, the red circles denote the RTO iterations while the green circle denotes the true (unknown)
optimum of the RTO problem. The figure on the right shows the value of the cost function, with blue
denoting the true (unknown) cost, green denoting the measured, noisy cost, and black denoting the cost
at the true optimum.

The results of this simulation may be visualized graphically as shown in Figure 3, where we can
see that the solver reaches the neighborhood of the optimum in less 20 iterations and converges
there, having found a sufficiently optimal point that satisfies the constraints.

2.4 Some General Guidelines

Below are some basic “rules” that we encourage the user to follow when configuring the SCFO
solver. While you may break some of these and still get good performance, it is our belief that
these guidelines should be followed in most cases.

2.4.1 Scale Everything

The current version of the solver only does partial scaling (via Gp and G) for the subroutines,
and it is strongly recommended that the user scale the inputs and the cost/constraint functions
to account for major discrepancies. The recommended scaling for the inputs is that of (5). For
the cost/constraints, scaling is less crucial but should be done so as to avoid potential numerical
difficulties – e.g., if φp takes values of up to 1020, it is advised to scale it down by dividing by
1020.

2.4.2 Make Bounds as Tight as Possible

The general rule for choosing bounds (e.g., the Lipschitz constants, the quadratic bound con-
stants, the scaling bounds, the input bounds) is to make them as tight as possible without
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endangering their validity. For example, suppose that you really are not sure of what the maxi-
mal value of

∂φp
∂u1

is, and so you set κφ,1 to a value of 105 as something that is very conservative
and guaranteed to be valid. When doing so, ask yourself if, for example, a value of 10 is not
already sufficient. The latter would be greatly preferred for a number of numerical and perfor-
mance reasons, provided that it is valid. Similarly, if a given constraint has never been known
to go below, for example, −5, then there is probably no reason to set its Gp value to −100, as
this could also lead to significant worsening in performance. We note once again, however, that
slight invalidities in Gp and G are not expected to have very debilitating effects.

2.4.3 When in Doubt, Err on the Side of Conservatism

Solving RTO problems is not an easy business, and in some applications, it can even be a dan-
gerous business when safety constraints are involved. As such, avoid cheating with assumptions
that you cannot back up. Some examples would include setting very tight Lipschitz bounds
when they cannot be justified, filling the concavity matrix with 1’s even though you are not sure
if those concave relationships exist, specifying non-negligible noise as negligible, or treating a p
function as certain because you believe that your model “is very good”. By contrast, we would
advise that you make the Lipschitz constants a bit more conservative than you would like, do
not assume concavity unless it is rigorously justified, specify noise models even when there is
little noise (and with variances that are slightly greater than the suspected true variances), and
do not assume that certain functions are perfectly modeled unless the particular relation is so
well-documented and known that there is no reason to assume otherwise. Risky assumptions can
sometimes lead to performance gains, but when they fail, they may do so in a very unfavorable
manner.

2.4.4 Have an Override Switch Ready

Unlike numerical optimization solvers, where a numerical error or a bug will simply cause the
solver to quit with an error message on your computer screen, the SCFO solver acts to dictate
real experiments. As such, if you choose to apply the SCFO in a loop in a real system, have
some override ready for the unlikely case that SCFO.m/SCFO_oct.m simply does not return a
solution or crashes (for whatever reason). While we have tested, and continue to test, so as to
minimize and eliminate this behavior, one should never be too careful when it comes to real
experiments.
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3 Theoretical Foundations

This section is intended for those interested in the theory and justifications behind the SCFO
solver, thereby making it possible for them to look through, and possibly modify, the source code,
as well as to make connections with the previously reported [8, 9, 5] – and soon to be reported
[7] – material. On the whole, the presentation in this section will still be somewhat cursory (we
refer the reader to the cited work for the complete story and mathematical rigor), although a
bit more attention will occasionally be given to those subroutines for which the theory has not
been previously reported.

3.1 The Theoretical Backbone

The entire SCFO framework is centered around satisfying the following conditions at every
iteration k:

gp,j(uk) +

nu∑
i=1

max
(
κpji(uk+1,i − uk,i), κpji(uk+1,i − uk,i)

)
≤ 0, ∀j = 1, ..., ng (7)

gj(uk+1) ≤ 0, ∀j = 1, ..., n̄g (8)

uL � uk+1 � uU (9)

∇gp,j(uk)T (uk+1 − uk) < 0, ∀j : gp,j(uk) ≈ 0 (10)

∇gj(uk)T (uk+1 − uk) < 0, ∀j : gj(uk) ≈ 0 (11)

∇φp(uk)T (uk+1 − uk) < 0 (12)

∇φp(uk)T (uk+1 − uk) +
1

2

nu∑
i=1

nu∑
j=1

max

(
M ij(uk+1,i − uk,i)(uk+1,j − uk,j),
M ij(uk+1,i − uk,i)(uk+1,j − uk,j)

)
≤ 0. (13)

The roles of the different conditions may be summarized as follows:

• Conditions (7)-(9) guarantee that all of the constraints be satisfied at uk+1.

• Conditions (10) and (11) guarantee that the scheme not converge prematurely.

• Conditions (12) and (13) guarantee that the cost value always improve from one iteration
to the next.

We refer the user to [8, 9] for the justifications of these statements.
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3.2 Implementation: Project and Filter

In general, the uk+1 that results from whatever u∗k+1 is provided by a given RTO algorithm
and the filter law (3) will not satisfy all of the conditions (7)-(13). As such, the essential
implementation of the SCFO consists in generating a modified (projected) input ū∗k+1 that
is, by construction, forced to satisfy Conditions (9)-(12) while remaining as close to u∗k+1 as
possible:

ū∗k+1 = arg minimize
u

‖u− u∗k+1‖22
subject to ∇gp,j(uk)T (u− uk) ≤ −δg,j , ∀j : gp,j(uk) ≥ −εg,j

∇gj(uk)T (u− uk) ≤ −δḡ,j , ∀j : gj(uk) ≥ −εḡ,j
∇φp(uk)T (u− uk) ≤ −δφ
uL � u � uU

, (14)

where δg, δḡ, δφ, εg, εḡ � 0 are all projection parameters used to approximate the conditions. It
is easy to show that ū∗k+1 satisfying these conditions implies that uk+1 satisfies them as well
whenever the filter law:

uk+1 := uk +Kk

(
ū∗k+1 − uk

)
(15)

with Kk ∈ (0, 1] is used.

To satisfy Conditions (7), (8), and (13), one may simply substitute (15) into these conditions
and choose Kk such that the resulting expressions hold:

gp,j(uk) +Kk

nu∑
i=1

max
(
κpji(ū

∗
k+1,i − uk,i), κ

p
ji(ū

∗
k+1,i − uk,i)

)
≤ 0, ∀j = 1, ..., ng (16)

gj(uk +Kk

(
ū∗k+1 − uk

)
) ≤ 0, ∀j = 1, ..., n̄g (17)

Kk∇φp(uk)T (ū∗k+1 − uk) +
K2
k

2

nu∑
i=1

nu∑
j=1

max

(
M ij(ū

∗
k+1,i − uk,i)(ū∗k+1,j − uk,j),

M ij(ū
∗
k+1,i − uk,i)(ū∗k+1,j − uk,j)

)
≤ 0, (18)

which is guaranteed to be the case for a small enough choice of Kk > 0 [8], the latter easily
calculated by a line search (see Section 3.8).

It may be proven [8] that applying these conditions leads one to approach a Karush-Kuhn-
Tucker (KKT) point to arbitrary closeness as δg, δḡ, δφ, εg, εḡ → 0. The actual choice of these
parameters is, however, automated in the solver. Since larger values tend to lead to faster
progress but smaller values are needed to force convergence to a KKT point, the solver starts by
setting εg := δg := −Gp, εḡ := δḡ := −G, and δφ = max

i=0,...,k
φ̂(ui)−φ, and then attempts to solve

the projection problem (14) with these parameters. If the problem is found to be infeasible, the
projection parameters are halved and the solution is attempted again – this cycle continues until
a feasible projection is found. If the parameters have been halved more than a dozen times and
still no feasible solution exists, then this is proof that the current input point is a KKT point
with very high accuracy. No adaptation of the input is done if this is the case.
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3.3 Robust Implementation

Both the projection of (14) and the implicit filter gain limits (16) and (18) are conceptual in
nature, as neither the gradients ∇gp,j(uk),∇φp(uk) nor the exact constraint values gp,j(uk) will
be available in application – the former being estimated from discrete measurements and the
latter either measured with noise or estimated with a certain variance. As such, what is actually
used in the SCFO solver is a robust version of these conditions, with the gradients limited to the
uncertainty boxes:

∇g
p,j

(uk) � ∇gp,j(uk) � ∇gp,j(uk), j = 1, ..., ng

∇φ
p
(uk) � ∇φp(uk) � ∇φp(uk)

,

and the constraint values upper bounded by the values gp,j(uk) so that:

gp,j(uk) ≤ gp,j(uk), j = 1, ..., ng

with sufficiently high confidence.

The robust implementation then becomes:

ū∗k+1 = arg minimize
u

‖u− u∗k+1‖22
subject to ∇g̃p,j(uk)T (u− uk) ≤ −δg,j , ∀j : gp,j(uk) ≥ −εg,j

∀∇g̃p,j(uk) : ∇g
p,j

(uk) � ∇g̃p,j(uk) � ∇gp,j(uk)

∇gj(uk)T (u− uk) ≤ −δḡ,j , ∀j : gj(uk) ≥ −εḡ,j
∇φ̃p(uk)T (u− uk) ≤ −δφ
∀∇φ̃p(uk) : ∇φ

p
(uk) � ∇φ̃p(uk) � ∇φp(uk)

uL � u � uU

, (19)

followed by the robust filtering step:

gp,j(uk) +Kk

nu∑
i=1

max
(
κpji(ū

∗
k+1,i − uk,i), κ

p
ji(ū

∗
k+1,i − uk,i)

)
≤ 0, ∀j = 1, ..., ng (20)

Kk∇φ̃p(uk)T (ū∗k+1 − uk) +
K2
k

2

nu∑
i=1

nu∑
j=1

max

(
M ij(ū

∗
k+1,i − uk,i)(ū∗k+1,j − uk,j),

M ij(ū
∗
k+1,i − uk,i)(ū∗k+1,j − uk,j)

)
≤ 0

∀∇φ̃p(uk) : ∇φ
p
(uk) � ∇φ̃p(uk) � ∇φp(uk)

. (21)

3.3.1 Tractable Reformulation of the Robust Conditions

As Projection (19) is an optimization problem with a semi-infinite number of constraints, it must
be placed into a tractable form in order to be solved. This is done by adding auxiliary variables
sφ ∈ Rnu and S ∈ Rng×nu and writing the projection problem in the following equivalent form
[9]:
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ū∗k+1 = arg minimize
u,S,sφ

∥∥u− u∗k+1

∥∥2

2

subject to

nu∑
i=1

sji ≤ −δg,j

∂g
p,j

∂ui

∣∣∣
uk

(ui − uk,i) ≤ sji
∂gp,j
∂ui

∣∣∣
uk

(ui − uk,i) ≤ sji

∀j : gp,j(uk) ≥ −εg,j
∇gj(uk)T (u− uk) ≤ −δḡ,j , ∀j : gj(uk) ≥ −εḡ,j
nu∑
i=1

sφ,i ≤ −δφ

∂φ
p

∂ui

∣∣∣
uk

(ui − uk,i) ≤ sφ,i

∂φp
∂ui

∣∣∣
uk

(ui − uk,i) ≤ sφ,i

uL � u � uU

, (22)

which is a convex problem with a quadratic objective and linear constraints.

A similar transformation is possible for (21):

Kk

nu∑
i=1

max

(
∂φ

p

∂ui

∣∣∣
uk

(ū∗k+1,i − uk,i),
∂φp
∂ui

∣∣∣
uk

(ū∗k+1,i − uk,i)

)

+
K2
k

2

nu∑
i=1

nu∑
j=1

max

(
M ij(ū

∗
k+1,i − uk,i)(ū∗k+1,j − uk,j),

M ij(ū
∗
k+1,i − uk,i)(ū∗k+1,j − uk,j)

)
≤ 0

. (23)

3.3.2 Choosing the Degree of Robustness in the Gradient Bounds

It will often occur that the robust projection (22) is infeasible due to the bounds on the gradients
being too conservative and not tight enough – i.e., one cannot be completely robust and account
for all of the possible gradients in the uncertainty sets. When this occurs, the SCFO solver
sacrifices some of the robustness so as to make the problem feasible, which it does by artificially
making the bounds tighter. Using φp as an example, and denoting by ∇φ̂p(uk) the best gradient
estimate at point uk (see Section 3.5.3 for how such an estimate may be obtained), the bounds
are parameterized as follows:

∇φ
p
(uk) := ∇φ̂p(uk) + P

(
∇φ

p
(uk)−∇φ̂p(uk)

)
∇φp(uk) := ∇φ̂p(uk) + P

(
∇φp(uk)−∇φ̂p(uk)

) , (24)

with P = 1 corresponding to full robustness and P = 0 corresponding to no robustness, with the
latter describing the case where the best gradient estimate is used directly in the projection as
if it were the true gradient.
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The solver starts with P = 0 and attempts to find a choice of projection parameters δg, δḡ, δφ, εg, εḡ
so that the projection problem is feasible. In the rare cases that the estimated gradients describe
a KKT point this will not be possible and the algorithm will yield uk+1 = uk as the solution,
with sufficiently low projection parameters being found in most cases. Following this step, the
solver then fixes the parameters and begins to increase P as much as possible while retaining
the feasibility of the projection. This is done by a bisection algorithm, which then finds P as the
maximum P value – i.e., the maximum amount of robustness that is possible for the projection
with the chosen projection parameters. As this may, in some problems, introduce too much
conservatism, a heuristic of choosing P := 0.5P is applied, with the resulting P then used to
define the bounds in (24), which are in turn used both in the robust projection of (22) and in
the robust filter gain limit (23).

3.3.3 Calculating Upper Bounds on Constraint Values

The main way of obtaining robust upper bounds gp,j(uk) from the measured or estimated values
ĝp,j(uk) involves supposing an additive noise model:

ĝp,j(uk) = gp,j(uk) + wj,k, (25)

and lower bounding the noise to obtain:

gp,j(uk) = ĝp,j(uk)− wj , (26)

where wj bounds the noise term from below with 99% probability, so that:

prob
(
wj ≤ wj,k

)
= 0.99, (27)

based on the noise statistics provided by the user (this is calculated in the SCFO solver by Monte
Carlo sampling).

A second method involves refining this bound for any repeated measurements, i.e., measurements
that correspond to the same point in the input space. In this case, uk = uk+1 = ... = uk−n+1,
and the bound is refined as:

gp,j(uk) =
1

n

k∑
i=k−n+1

ĝp,j(ui)− wj(n), (28)

where wj(n) is the lower bound defined as:

prob

(
wj(n) ≤ 1

n

k∑
i=k−n+1

wj,i

)
= 0.99. (29)

A third bound is calculated using the Lipschitz constants and is derived iteratively from the
other upper bounds, (26) and (28), as follows:
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gp,j(uk) = gp,j(u) +

nu∑
i=1

max
(
κpji(uk,i − ui), κ

p
ji(uk,i − ui)

)
, (30)

where u may be any of the other available data points. As refining one upper bound using this
method may, in turn, refine another, the refinement of (30) is looped in the solver, with the
loop exiting once no more refinement is obtained (or once the refinement is negligible). Since
(26), (28), and (30) all represent valid ways to upper bound the true constraint value, the upper
bound that is employed is defined as their minimum.

We note, in passing, that identical methods may be used for lower bounding, with

g
p,j

(uk) = ĝp,j(uk)− wj , prob (wj ≥ wj,k) = 0.99, (31)

g
p,j

(uk) =
1

n

k∑
i=k−n+1

ĝp,j(ui)− wj(n), prob

(
wj(n) ≥ 1

n

k∑
i=k−n+1

wj,i

)
= 0.99, (32)

g
p,j

(uk) = g
p,j

(u) +

nu∑
i=1

min
(
κpji(uk,i − ui), κ

p
ji(uk,i − ui)

)
(33)

serving as the analogues to (26)-(30).

3.4 Management of Noise Statistics

A number of preliminary operations are carried out on the noise statistics that are provided by
the user so as to make them compatible with the subroutines where they are required.

3.4.1 Log-Concave Approximation of the Noise PDFs

The current version of the solver requires that the user input all noise statistics via a set of noise
samples, as this saves the user the trouble of having to specify a particular model that the solver
is compatible with and lets them input the samples directly (perhaps from a set of experimental
measurements). However, since a number of the subroutines that use the noise are essentially
optimization problems that require the noise probability distribution function (PDF) to be log-
concave in order to have tractable, convex problems, a current limitation of the SCFO solver
is that it can only work with log-concave PDFs. As such, one of the first steps in the solver
is to take the user inputted noise statistics and to approximate them with discretely-defined
log-concave functions. This is done via the following steps:

1. Arranging the noise data in histogram form with 100 bins.

2. Adding artificial finite support to the data by populating the left and right sides of the
histogram with very small values (10−6).

3. Replacing the histogram values, yh, with their negative logarithms: ỹh = −log yh.

4. Fitting a convex function to the transformed values ỹh to obtain the convex approximation
ỹcvxh ≈ ỹh.
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Figure 4: Obtaining a log-concave PDF approximation from noise samples.

5. Taking the exponential of −ỹcvxh to obtain the discrete log-concave approximation: yh ≈
ylccvh = e−ỹ

cvx
h .

6. Normalizing the approximation (dividing by its integral) to obtain the log-concave PDF
approximation.

An illustration of this step is given in Figure 4.

3.4.2 Generating Log-Likelihood Penalty Functions

The gradient estimation subroutines in the SCFO solver (see Section 3.5) employ a maximum-
likelihood regularization, for which a log-likelihood penalty function is required. The discrete
form of this is simply obtained by taking the negative of the logarithm of the approximate PDF.
Because the PDF is forced to be log-concave, the resulting penalty function is always convex
(Figure 5). So as to make this function more suitable for numerical solvers (i.e., to allow the
problems of interest to be solved as linear programming problems), we take a 5-piece linear
approximation of the penalty function, pr(x):

pr(x) ≈ max (ar,1x+ br,1, ..., ar,5x+ br,5) ,

which allows us to exploit the following reformulation:

minimize
x

pr(x) ≈ minimize
x,v1,...,v5

5∑
i=1

vi

subject to ar,ix+ br,i ≤ vi, i = 1, ..., 5

, (34)

with v denoting slack variables.

3.4.3 Data Binning

The procedure described above is valid for generating the statistical properties of each inde-
pendent measurement, i.e., the PDF of the noise for each measurement and the corresponding
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Figure 5: The PDF and its corresponding penalty function.

penalty function. However, there are times when it is more computationally efficient to bin
several measurements together – particularly, when measurements have nearly identical u val-
ues, as this allows us to essentially achieve the same results but with a more compact data set
whose uncertainty due to noise is reduced. This has also been observed to reduce the number of
numerical difficulties encountered by the optimization subroutines.

The basic idea of binning is illustrated geometrically for a simple two-input example in Figure 6.
We first present the case where no error is incurred by binning two points together, e.g., when
u1 = u2 exactly. Using the cost function as an example, we note that we can easily derive the
noise statistics of the averaged point, ubin, via:

φ̂p(u1) = φp(ubin) + wφ,1

φ̂p(u2) = φp(ubin) + wφ,2

⇒ 1

2

(
φ̂p(u1) + φ̂p(u2)

)
= φp(ubin) +

1

2
(wφ,1 + wφ,2)

⇔ φp(ubin) =
1

2

(
φ̂p(u1) + φ̂p(u2)

)
− 1

2
(wφ,1 + wφ,2)

,

or, more generally, when n measurements are binned:

φp(ubin) =
1

n

n∑
i=1

φ̂p(ui)−
1

n

n∑
i=1

wφ,i. (35)

The resulting PDF for φp(ubin), which depends on the mean of the measurements and on the
statistics of the stochastic summation term, may be easily approximated by a log-concave dis-
tribution following Monte Carlo sampling.

When the points are close but not equal, as in Figure 6, more care should be taken since the act
of binning introduces a deterministic error. In this case, we may use the Lipschitz constants to
bound the value of the binned measurement as follows:
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Figure 6: Averaging of two data points (red) that belong to the same bin (the square) to yield a single
combined data point (blue).

φp(u1) +

nu∑
i=1

min
(
κφ,i(ubin,i − u1,i), κφ,i(ubin,i − u1,i)

)
≤ φp(ubin) ≤ φp(u1) +

nu∑
i=1

max
(
κφ,i(ubin,i − u1,i), κφ,i(ubin,i − u1,i)

)
φp(u2) +

nu∑
i=1

min
(
κφ,i(ubin,i − u2,i), κφ,i(ubin,i − u2,i)

)
≤ φp(ubin) ≤ φp(u2) +

nu∑
i=1

max
(
κφ,i(ubin,i − u2,i), κφ,i(ubin,i − u2,i)

)
.

We may next substitute in the measurement equality φp(ui) = φ̂p(ui)− wφ,i to obtain:

φ̂p(u1)− wφ,1 +

nu∑
i=1

min
(
κφ,i(ubin,i − u1,i), κφ,i(ubin,i − u1,i)

)
≤ φp(ubin) ≤ φ̂p(u1)− wφ,1 +

nu∑
i=1

max
(
κφ,i(ubin,i − u1,i), κφ,i(ubin,i − u1,i)

)
φ̂p(u2)− wφ,2 +

nu∑
i=1

min
(
κφ,i(ubin,i − u2,i), κφ,i(ubin,i − u2,i)

)
≤ φp(ubin) ≤ φ̂p(u2)− wφ,2 +

nu∑
i=1

max
(
κφ,i(ubin,i − u2,i), κφ,i(ubin,i − u2,i)

)
,

and then combine the two inequalities:
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1

2

(
φ̂p(u1) + φ̂p(u2)

)
− 1

2
(wφ,1 + wφ,2)

+
1

2

[ nu∑
i=1

min
(
κφ,i(ubin,i − u1,i), κφ,i(ubin,i − u1,i)

)
+

nu∑
i=1

min
(
κφ,i(ubin,i − u2,i), κφ,i(ubin,i − u2,i)

) ]
≤ φp(ubin) ≤ 1

2

(
φ̂p(u1) + φ̂p(u2)

)
− 1

2
(wφ,1 + wφ,2)

+
1

2

[ nu∑
i=1

max
(
κφ,i(ubin,i − u1,i), κφ,i(ubin,i − u1,i)

)
+

nu∑
i=1

max
(
κφ,i(ubin,i − u2,i), κφ,i(ubin,i − u2,i)

) ]

,

or, for the general case of n binned measurements:

1

n

n∑
i=1

φ̂p(ui)−
1

n

n∑
i=1

wφ,i +
1

n

n∑
j=1

nu∑
i=1

min
(
κφ,i(ubin,i − uj,i), κφ,i(ubin,i − uj,i)

)
≤ φp(ubin) ≤

1

n

n∑
i=1

φ̂p(ui)−
1

n

n∑
i=1

wφ,i +
1

n

n∑
j=1

nu∑
i=1

max
(
κφ,i(ubin,i − uj,i), κφ,i(ubin,i − uj,i)

) .

Since this only generates lower and upper stochastic bounds on the value of φp(ubin), we cannot
give a single PDF as we did for the case of identical u values. Instead, we are left with a family of
possible distributions, defined by a bounded deterministic component and an additive stochastic
element. We conclude that the true PDF is somewhere in the family defined by the PDF of (35)
with minimal and maximal shifts of 1

n

∑n
j=1

∑nu
i=1 min(κφ,i(ubin,i − uj,i), κφ,i(ubin,i − uj,i)) and

1
n

∑n
j=1

∑nu
i=1 max(κφ,i(ubin,i − uj,i), κφ,i(ubin,i − uj,i)), respectively. This idea is illustrated in

Figure 7.

As binning is done solely for improved computational performance of the gradient estimation
subroutines, what is particularly relevant is not so much the PDF of the binned data point but
its corresponding penalty function (since this is what is actually used in the subroutines). As
the PDF is uncertain, the corresponding negative logarithm is as well. However, it is fairly
straightforward to obtain a single convex penalty function that encompasses all of the possible
penalty functions (see Figure 8). Mathematically, this penalty function may be defined in a
piecewise manner by joining the leftmost penalty function, the rightmost penalty function, and
the constant corresponding to their minimum.

Practically, this “relaxed” penalty function is used to robustify the gradient-estimation algorithm,
as it allows for the algorithm to use binned data without invalidating any of its theoretical
properties. The obvious drawback to doing this is that binning points that are very far apart
will lead to very large errors and very loose penalty functions, thereby leading to the gradient-
estimation algorithms calculating gradient bounds that are not of much use (see Section 3.5 for
a supplement to this discussion). For this reason, fairly small bins are used in the solver so
as to keep binning error small, with each input direction split into approximately 200 binning
compartments (for a total of approximately 200nu data binning boxes).
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Figure 7: Uncertainty in the PDF of the noise due to binning, with the error-free (no binning error)
PDF shown in blue and its corresponding extreme left and right shifts (due to binning error) shown in
green and red, respectively. We note that the true PDF must lie somewhere between the green and red
extremes. Also, while the two shifts possess different signs here, it is possible for the extreme PDFs to
be shifted in the same direction – this depends on the input change due to binning and on the Lipschitz
constants.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30

Residual

P
e
n
a
lt
y

penalty function of ,

1 1

1 1ˆ ( )
n n

p i i

i i

w
n n

φφ
= =

−∑ ∑u

( ), , , , , , ,

1 1 1 1

1 1 1ˆ ( ) min ( ), ( )
unn n n

p i i i bin i j i i bin i j i

i i j i

w u u u u
n n n

φ φ φφ κ κ
= = = =

− + − −∑ ∑ ∑∑upenalty function of 

( ), , , , , , ,

1 1 1 1

1 1 1ˆ ( ) max ( ), ( )
unn n n

p i i i bin i j i i bin i j i

i i j i

w u u u u
n n n

φ φ φφ κ κ
= = = =

− + − −∑ ∑ ∑∑upenalty function of 
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3.5 Gradient Estimation Subroutines

As the SCFO fundamentally depend on the local derivatives of the black-box functions φp and
Gp, a lot of the computational effort in the solver is spent on obtaining “smart” estimates of
these derivatives based on the available data and the noise statistics. The essential algorithm at
work, as well as the theory behind it, is presented in detail in [5]. As such, we will not go into
much detail here and will only outline the crucial aspects, referring the reader to [5] for the full
story.

3.5.1 Outline of the Algorithm

The basic purpose of the algorithm is to obtain lower and upper bounds on the derivatives for the
given reference point, taken here to be uk. In order to do this, a local structural assumption is
made on the function in question, with the current solver automatically deciding between linear,
diagonal-quadratic, and full-quadratic structures as follows:

• a linear structure is assumed when the number of measurements provided to the solver is
less than 2nu + 1,

• a diagonal-quadratic structure (that ignores interaction terms) is assumed when the number
of measurements provided to the solver is greater than or equal to 2nu + 1 but less than
2nu + 1 +

∑nu−1
i=1 i,

• a full-quadratic structure (with interaction terms) is assumed otherwise.

A constrained maximum-likelihood regularization is then carried out in the neighborhood of n
points around and including uk so as to decide if the chosen structure is a valid fit for the data
in question. For the most general (full-quadratic) case, the regularization takes the following
form:

minimize
ŷ,ŵ,F̂,Q̂,â,b̂

n∑
i=1

pr,i(ŵi)

subject to ŵi = yi − ŷi, i = 1, ..., n

ŷi = uTi Q̂ ui + âTui + b̂, i = 1, ..., n

∇f̂(ui) = 2 Q̂ ui + â, i = 1, ..., n

κ � ∇f̂(ui) � κ, i = 1, ..., n

, (36)

with ŷ ∈ Rn denoting the estimations of the true outputs, y ∈ Rn the actual measured/estimated

outputs, ŵ ∈ Rn the estimated additive noise values, F̂ ∈ Rnu×n the estimated gradients,
and Q̂ ∈ Rnu×nu , â ∈ Rnu , b̂ the parameters of the quadratic function used to regularize the
data (the linear and diagonal-quadratic structures are obtained by simply constraining certain

elements of Q̂ to be 0). The penalty functions pr,i are obtained as outlined in Section 3.4, with
the transformation of (34) used to make the optimization problem linear. Other regularizing
structures are, of course, possible as well [5], and may be included in future versions of the
solver.

To judge whether the local structure is statistically invalid or not for a given n measurements,
Monte Carlo sampling is employed to calculate the largest acceptable likelihood penalty L, de-
fined implicitly as:
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prob

(
n∑
i=1

pr,i(wi) ≤ L

)
= 0.99,

where the values of wi are drawn from the corresponding (log-concave) distributions obtained as
described in Section 3.4.1.

If the global minimum value of (36) is larger than L, the structural assumption is rejected as
invalid over the neighborhood defined by the n points. Otherwise, it is kept. Using this strategy,
a bisection algorithm is employed to find the largest n for which the structure cannot be proven
invalid (denoted here by nL). Once this is done, the minimal and maximal derivative values are
calculated subject to this validity constraint by solving two optimization problems for each input
(ui):

minimize
ŷ,ŵ,F̂,Q̂,â,b̂

± ∂f̂
∂ui

∣∣∣
uk

subject to ŵi = yi − ŷi, i = 1, ..., nL

ŷi = uTi Q̂ ui + âTui + b̂, i = 1, ..., nL

∇f̂(ui) = 2 Q̂ ui + â, i = 1, ..., nL

κ � ∇f̂(ui) � κ, i = 1, ..., nL
nL∑
i=1

pr,i(ŵi) ≤ L

. (37)

The main benefit of this approach is that the calculated bounds are theoretically guaranteed to
be accurate (and to contain the true derivatives) for the case when the structural assumption is
correct and locally matches the structure of the true function for the nL points. As we expect
many functions to be approximately quadratic in a local neighborhood, this properly is expected
to hold approximately in many cases. The obtained bounds may then be used in the robust
projection (22).

3.5.2 Extension to the General Input Point

Sometimes, usually due to binning, it is necessary to estimate the gradient for a data point
without a corresponding output measurement. To do this, we modify the algorithm of [5] and,
denoting the desired reference point by uref , solve an augmented version of (37):
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minimize
ŷ, ŷref , ŵ, F̂,

∇f̂(uref ), Q̂, â, b̂

± ∂f̂
∂ui

∣∣∣
uref

subject to ŵi = yi − ŷi, i = 1, ..., nL

ŷi = uTi Q̂ ui + âTui + b̂, i = 1, ..., nL

ŷref = uTref Q̂ uref + âTuref + b̂

∇f̂(ui) = 2 Q̂ ui + â, i = 1, ..., nL

∇f̂(uref ) = 2 Q̂ uref + â

κ � ∇f̂(ui) � κ, i = 1, ..., nL

κ � ∇f̂(uref ) � κ
nL∑
i=1

pr,i(ŵi) ≤ L

, (38)

which essentially forces the reference point to succumb to the same structural constraints as the
others, but does not take its corresponding noise value into consideration for satisfying the bound
of L, as the measurement does not exist.

3.5.3 Obtaining a “Best” Gradient Estimate

As mentioned in Section 3.3.2, a single best estimate of the gradient is needed to act as the center
of the gradient uncertainty set. The current version of the solver computes this by simply taking
the gradient of the quadratic function with the largest likelihood value for the nL points:

minimize
ŷ, ŷref , ŵ, F̂,

∇f̂(uref ), Q̂, â, b̂

n∑
i=1

pr,i(ŵi)

subject to ŵi = yi − ŷi, i = 1, ..., n

ŷi = uTi Q̂ ui + âTui + b̂, i = 1, ..., n

ŷref = uTref Q̂ uref + âTuref + b̂

∇f̂(ui) = 2 Q̂ ui + â, i = 1, ..., n

∇f̂(uref ) = 2 Q̂ uref + â

κ � ∇f̂(ui) � κ, i = 1, ..., n

κ � ∇f̂(uref ) � κ

, (39)

and then outputting the ∇f̂(uref ) obtained as the best estimate.

3.5.4 Modifications for the Fast Version

If the fast version of the solver is used, what is sacrificed is essentially all of the work done by the
gradient estimation subroutines, as these currently take up the majority of the computational
effort. In particular, the following simplifications are made:
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• Instead of approximating the noise statistics by a general log-concave distribution, they
are approximated by a Gaussian distribution with a variance equal to the variance of the
provided noise data.

• Instead of solving the regularization problem (36) as a linear programming problem, it is
solved via simple least-squares regression (i.e., fitting a quadratic to the data), with the
Lipschitz constraints ignored.

• The best estimate is taken as the gradient of the regressed quadratic at the reference point.
Any derivatives that violate their corresponding Lipschitz constants are then trimmed to
satisfy them.

• The bounds are not calculated and are simply set as the lower and upper Lipschitz con-
stants.

• No data binning is done as this does not affect the speed of the least-squares computations
much.

While these simplifications may jeopardize the statistical rigor of the approach (by using a
Gaussian distribution) and may not yield very useful bounds on the gradient estimates (by
simply using the Lipschitz constants), we note that the observed difference in performance does
not appear to be too great in our experience, with the fast version even performing better at
times.

3.6 Sufficient-Excitation Considerations

Like many data-driven methods, the SCFO solver requires continued information gathering and
is designed to allow perturbations in the inputs with a norm of δe ∈ [δe, δe] at all iterations,
with the guarantee that any such perturbations do not violate the constraints. This becomes
particularly relevant when the solver converges to the neighborhood of the optimum, as the
input changes in this region will tend to be very small, or even null, if no excitation is enforced.
In order to allow for the asymptotic rejection of the measurement noise and to allow for the
optimizer to adapt to potential degradation/changes in the problem over time, it is of interest to
keep perturbing the inputs, if only slightly, so as to obtain the most up-to-date local derivative
estimates. Additionally, it is desired that the input points generated by the solver be well-poised
for regression, as this aids significantly with regard to the quality of these estimates.

Much of the theory related to this topic is taken from [7] (currently in preparation).

3.6.1 Guaranteeing the Existence of a Sufficient-Excitation Ball

It is desired that the ball defined by

Bk = {u : ‖u− uk‖2 ≤ δe}

always lie in the feasible set of the RTO problem, where δe is the lower limit on the required
excitation, defined in the current version of the solver as:

δe =
0.005

nu

nu∑
i=1

(
uUi − uLi

)
.
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Figure 9: By forcing a back-off on the inequality constraint gp,j(u) ≤ 0, it becomes possible to guarantee
that the ball Bk always lie inside the feasible region of the original problem.

In doing this, it is guaranteed that the boundary of Bk, which has the desired sufficient excitation,
lie in the feasible set as well. This is accomplished by applying back-offs to the original RTO
problem:

minimize
u

φp(u)

subject to Gp(u) � −bp
G(u) � −b
uL � u � uU

, (40)

with the back-offs defined as:

bp,j = δe‖(κ
p
j )
∗‖2, j = 1, ..., ng

bj = δe‖κ∗j‖2, j = 1, ..., n̄g
, (41)

where:

(κpj )
∗ =

[
max

(
|κpj1|, |κ

p
j1|
)
... max

(
|κpjnu |, |κ

p
jnu
|
)]T

κ∗j =
[
max

(
|κj1|, |κj1|

)
... max

(
|κjnu |, |κjnu |

)]T . (42)

This is illustrated geometrically in Figure 9 for a simple case with a single constraint. Note
that no back-offs are needed for the box constraints due to their orthogonal nature, as even if
nu box constraints are active simultaneously, there will nevertheless exist an orthant that allows
for excitation in all directions without violating these constraints (i.e., in the interior of the
box).

Conditions (7), (8), (10), and (11) are modified accordingly:
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gp,j(uk) +

nu∑
i=1

max
(
κpji(uk+1,i − uk,i), κpji(uk+1,i − uk,i)

)
≤ −bp,j , ∀j = 1, ..., ng (43)

gj(uk+1) ≤ −bj , ∀j = 1, ..., n̄g (44)

∇gp,j(uk)T (uk+1 − uk) < 0, ∀j : gp,j(uk) + bp,j ≈ 0 (45)

∇gj(uk)T (uk+1 − uk) < 0, ∀j : gj(uk) + bj ≈ 0 (46)

with the implemented robust versions re-derived accordingly as explained in Sections 3.2 and
3.3.

3.6.2 Applying the Sufficient-Excitation Condition

In general, one cannot both guarantee satisfaction of the SCFO and sufficient excitation at all
iterations, and it may occur that the two are mutually exclusive. Additionally, neither one may be
given constant priority, since it may occur that the sufficient-excitation requirements can rarely
be met while the SCFO are applied, and applying the SCFO without allowing perturbations to
enforce sufficient excitation could lead to poor estimations of the local derivatives.

In the current version of the solver, sufficient excitation is enforced in one of two scenarios:

1. If ‖uk+1 − uk‖2 < δe for five or more consecutive iterations, or if ‖uk+1 − uk‖2 ≤ 10−4.

2. If the poisedness metric Λk > 10 for five or more consecutive iterations, with Λk defined
as the condition number of the matrix:

∆Uk :=

 ũk+1−nu − ũk+2−nu
...

ũk+1 − ũk


of scaled inputs:

ũk+1−i,j :=

uk+1−i,j − min
i=0,...,nu

uk+1−i,j

max
i=0,...,nu

uk+1−i,j − min
i=0,...,nu

uk+1−i,j
, i = 0, ..., nu, j = 1, ..., nu.

The first condition is meant to force sufficiently large steps being consistently taken “from time
to time” (this frequency decided by the heuristic choice of “five”), while the second is intended
to ensure that sufficient excitation is forced whenever there is a consistent linear dependence
between consecutive input points. The condition ‖uk+1 − uk‖2 > 10−4 is enforced to avoid
having two consecutive input points being approximately the same, as this provides absolutely
no excitation.

The actual choice of δe is adaptive, since more excitation is desired in regions of the input space
with a low signal-to-noise ratio, while less excitation is preferred if the signal-to-noise ratio is
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high. In calculating an appropriate value for δe, we first fix its domain by specifying δe (defined
earlier) and δe, with the latter defined as:

δe = min ∆umax,

with δe < δe implicit.

The next step is to pick a value of δe that falls into this domain and is sufficiently large enough
to reject potential measurement noise. To do this, we make an estimate of the signal-to-noise
ratio for both the cost (if it is noisy) and the uncertain constraint (if they are noisy) functions
at uk. For the noise component, we simply take max(|w|, |w|) as an estimate of the worst-case
noise magnitude for the appropriate functions. To estimate the signal, we estimate (shown here
for the cost only) the expected change in the function value based on a second-order approxima-
tion:

δe√
nu

nu∑
i=1

∣∣∣∣∣∂φ̂p∂ui

∣∣∣
uk

∣∣∣∣∣+
1

2

δ2
e

nu

nu∑
i=1

∣∣∣∣∣∂2φ̂p
∂u2

i

∣∣∣
uk

∣∣∣∣∣ , (47)

i.e., we suppose than an “average” excitation will perturb equally in all directions (by δe/
√
nu),

and that the resulting signal, in the best case a sum of positive components, may be approximated
by the first and second (diagonal) derivatives multiplied by the appropriate steps. The gradient
estimate used is the “best” estimate of Section 3.5.3, while the diagonal second derivatives are
estimated by regressing all of the available data with a diagonal-quadratic model. As a heuristic
choice, we take δe ∈ [δe, δe] as the smallest value for which (47) is greater than half of the
worst-case noise magnitude for all functions considered.

For the first insufficient-excitation scenario, where the magnitude of the adaptation steps is
consistently small, we first attempt to preserve as much of the SCFO as possible by extending
the SCFO-provided uk+1:

uk+1 := uk +
δe

‖uk+1 − uk‖2
(uk+1 − uk),

and see if this uk+1 satisfies Λk ≤ 10 and if it may be proven to be feasible for the RTO problem
(using the methods of Section 3.8 when uncertain inequality constraints are present). If not, or
if uk+1 := uk, we choose the next input by approximately solving:

uk+1 := arg maximize
u

min
i=0,...,k

‖u− ui‖2
subject to ‖u− uk‖2 = δe

, (48)

i.e., the sufficiently-exciting input is chosen as the one that is the furthest away, in the Euclidean
sense, from all of the inputs that have already been applied. This choice of criterion promotes
the exploration of the input space and often encourages poisedness indirectly, as exciting in
orthogonal directions that have not received sufficient excitation will generally help maximize
this criterion.

To solve (48) approximately, the following randomized procedure is adopted:

1. Five thousand random vectors of nu elements are generated.
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2. These are normalized to yield step directions, which in turn are used to calculate random
points on the surface of the corresponding sufficient-excitation ball, all of which satisfy
‖u− uk‖2 = δe.

3. The point that has the highest objective value and can be proven to be feasible for the
RTO problem is chosen as uk+1.

The resulting uk+1 is then outputted by the solver instead of the standard uk+1 that would have
been given normally, together with δexit = 1 to indicate that the SCFO have been overridden in
favor of sufficient excitation. In the case that none of the generated test points can be rigorously
proven to meet the RTO problem constraints, δe is halved and the procedure is repeated again.
If this is repeated until δe < δe, rigorously feasible test points are guaranteed to be found due to
the existence of the sufficient-excitation ball Bk.

When the steps are sufficiently large but the resulting input set is consistently not well-poised,
we choose the next input by solving a problem similar to (48), but in the neighborhood of the
SCFO-provided uk+1 and subject to the ∆umax limitation:

uk+1 := arg maximize
u

min
i=0,...,k

‖u− ui‖2
subject to ‖u− uk+1‖2 = δe

uk −∆umax � u � uk + ∆umax

. (49)

3.7 Temporary Constraint Violations

It is often the case that some of the uncertain inequality constraints Gp in the RTO problem are
“soft”, in the sense that they should not be violated indefinitely but may be violated temporarily
– in particular, while the algorithm is converging to the neighborhood of the optimum. The SCFO
solver accomodates such constraints by allowing the user to specify the largest violation that may
be allowed for a given constraint, dj , and the total sum of violations (the “violation integral”) that
is allowed during all operation, dT,j . This allows us to relax the modified Condition (43):

gp,j(uk) +

nu∑
i=1

max
(
κpji(uk+1,i − uk,i), κpji(uk+1,i − uk,i)

)
≤ −bp,j + dj , ∀j = 1, ..., ng, (50)

which, in many cases, improves convergence speed since it allows for the solver to take bigger steps
that would normally be precluded by the need to guarantee feasibility for the 0-slack case.

In order to guarantee that the algorithm does not violate the constraint defined by dT,j , the
current version of the solver employs the following reduction law:

gp,j(uk) ≥ −bp,j → dj := βjdj , (51)

where βj is set as:

βj =
dT,j − dj,0

dT,j
, (52)
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with dj,0 denoting the original user-set dj value prior to the reduction of (51). Practically, dj has
a lower tolerance past which it is simply set to 0 (in the current version, this tolerance is 10−6).
This guarantees that the constraint can only be violated for a certain (finite) number of iterations
before the slack is removed and the original problem, without the slack, is recovered. From a
theoretical point of view, this ensures that the desired convergence properties are retained for a
sufficiently large number of iterations.

The current version of the solver calculates the appropriate dj values by cycling through all of the
previous measurements and applying (51) as necessary. It is more than likely that this introduces
a fair amount of conservatism, as the definition of βj in (52) is “open-loop” in nature and only
employs the initial values. A more advanced reduction law that compares the amount of actual
violations incurred to the maximum allowable dT,j would probably improve performance further,
and will likely be implemented in future versions of the solver.

3.8 Line Search Techniques and Relaxations

In the solver, the choice of Kk is formulated as a line search problem subject to Conditions (7),
(8), (9), (13), and the maximal allowable step changes:

maximize
Kk,uk+1

Kk

subject to uk+1 = uk +Kk

(
ū∗k+1 − uk

)
gp,j(uk) +

nu∑
i=1

max

(
κpji(uk+1,i − uk,i),
κpji(uk+1,i − uk,i)

)
≤ −bp,j + dj , j = 1, ..., ng

gj(uk+1) ≤ −bj , j = 1, ..., n̄g
nu∑
i=1

max

(
∂φ

p

∂ui

∣∣∣
uk

(uk+1,i − uk,i),
∂φp
∂ui

∣∣∣
uk

(uk+1,i − uk,i)

)

+
1

2

nu∑
i=1

nu∑
j=1

max

(
M ij(uk+1,i − uk,i)(uk+1,j − uk,j),
M ij(uk+1,i − uk,i)(uk+1,j − uk,j)

)
≤ 0

0 ≤ Kk ≤ 1

uL � uk+1 � uU

−∆umax � uk+1 − uk � ∆umax

. (53)

This problem is solved by a logarithmic line search (with a much finer grid for lower values of
Kk and a coarser grid for larger ones).

In this section, we describe several techniques that can relax the constraints in this problem so
as to allow for larger values of Kk, which, in general, leads to faster convergence and better
performance. Additionally, we discuss the addition of constraints in the line search that prevent
a choice of uk+1 that is theoretically guaranteed to increase the cost.

3.8.1 Incorporating a Known Cost Function

When the cost function of the RTO problem is known and can be evaluated inexpensively nu-
merically, the objective of (53) is changed and Condition (13) is removed:
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minimize
Kk,uk+1

φ(uk+1)

subject to uk+1 = uk +Kk

(
ū∗k+1 − uk

)
gp,j(uk) +

nu∑
i=1

max

(
κpji(uk+1,i − uk,i),
κpji(uk+1,i − uk,i)

)
≤ −bp,j + dj , j = 1, ..., ng

gj(uk+1) ≤ −bj , j = 1, ..., n̄g

0 ≤ Kk ≤ 1

uL � uk+1 � uU

−∆umax � uk+1 − uk � ∆umax

. (54)

i.e. the line search is now done with the goal of minimizing the cost instead of maximizing Kk,
as the former is linked directly to the degree of optimality obtained, while the latter is more of
a heuristic.

3.8.2 Using Concavity Assumptions

When the uncertain inequality constraints may be assumed to be concave in certain variables,
the concavity matrix C, as specified by the user, may be used to relax the feasibility guaranteeing
constraint as [9]:

gp,j(uk) +

nu∑
i=1

max
(
κpji(uk+1,i − uk,i), κpji(uk+1,i − uk,i)

)
≤ −bp,j + dj

→ gp,j(uk) +

nu∑
i=1

(1− Cji) max
(
κpji(uk+1,i − uk,i), κpji(uk+1,i − uk,i)

)
+

nu∑
i=1

Cji max

(
∂g

p,j

∂ui

∣∣∣
uk

(uk+1,i − uk,i),
∂gp,j
∂ui

∣∣∣
uk

(uk+1,i − uk,i)

)
≤ −bp,j + dj

.

3.8.3 Using All of the Measurements with the Lipschitz Bound

Defining the polyhedron Lk,j as:

Lk,j =

{
u : gp,j(uk) +

nu∑
i=1

max
(
κpji(ui − uk,i), κ

p
ji(ui − uk,i)

)
≤ −bp,j + dj

}
,

we note that any points in this polyhedron are guaranteed to meet the feasibility condition, and
that every iteration will generate a valid L. As such, we may define the union of L over all of
the available data points:

LU,j =

k⋃
i=0

Li,j , (55)
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with any uk+1 ∈ LU,j satisfying the feasibility condition for gp,j . It follows that the intersection
of the unions with respect to all of the constraints builds a space that is guaranteed to satisfy
the feasibility condition for all of the constraints, thereby allowing us to relax the feasibility
condition to:

uk+1 ∈
ng⋂
j=1

LU,j .

Additionally, we may denote by

Sk̄ =

{
u : φ

p
(uk̄) +

nu∑
i=1

min
(
κφ,i(ui − uk̄,i), κφ,i(ui − uk̄,i)

)
≥ φp(uk)

}

a region of the input space where the cost is guaranteed to be superior to the cost at uk, with
the lower and upper bounds φ

p
and φp being calculated by the methods of Section 3.3.3. Noting

that the union of such regions is also undesired, we may prevent the solver from going there by
imposing the constraint:

uk+1 6∈
k−1⋃
k̄=0

Sk̄ , (56)

which is simply added to (53).

3.9 Choice of Reference Point

From a purely theoretical standpoint, the appropriate reference point in the SCFO implementa-
tion is always uk, as it is theoretically guaranteed to be the best point found to date and should
be used as the reference so that the SCFO lower the cost further at uk+1 – as choosing any other
point as a reference would not guarantee that uk+1 would lead to improvement.

Practically, however, a number of difficulties may arise so as to invalidate the guarantee that uk
is always the best point to use as a reference. Some of the most frequent are:

• Errors in the gradient estimates, noise in the measurements, or bad Lipschitz bounds lead
to an increase in the cost function when applying the SCFO solver, thereby making uk a
worse point than uk−1 due to φp(uk) > φp(uk−1) .

• uk is a feasible point for the RTO problem with relaxed constraints, but no longer feasible
when some of the slack on the constraints has been removed (see Section 3.7).

• uk is not a feasible point for the RTO problem with back-offs applied to allow for sufficient
excitation (see Section 3.6).

• Previous experimental data, which is independent of the iteration counter k and the RTO
algorithm but should nevertheless be provided to the solver, may already possess points
better than uk.

• The problem changes during operation (either due to user-induced or external effects),
thereby leading to a problem for which uk is no longer the best reference.
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In all of these cases, it is of interest to find a reference point other than uk.

The basic criteria for the reference point, uref , is that it satisfy all of the constraints robustly
(taking into account possible slacks and back-offs – see Sections 3.7 and 3.6) and have the lowest
cost. When the cost is uncertain and its measurement/estimation error non-negligible, it may
be difficult to decide which point is best, and so preference is given to uk, then to uk−1, to uk−2,
and so on unless it can be robustly proven that the cost at one of these points is greater than the
cost at another. This may be summarized via the following scheme:

1. Set k̂ := k.

2. Set uref := uk̂.

3. If ∃i ∈ {0, ..., k̂ − 1} : φ
p
(uref ) > φp(ui) or ∃j ∈ {1, ..., ng} : gp,j(uref ) ≥ −bp,j + dj or

∃j ∈ {1, ..., n̄g} : gj(uref ) ≥ −bj or uL 6� uref or uref 6� uU , set k̂ := k̂ − 1 and return to
Step 2. Otherwise, terminate.

This choice of uref is then refined further by solving the regularization of (36) in the same
manner as done when estimating the gradients – i.e., the solver calculates, by bisection, the
largest neighborhood where the quadratic structure is statistically valid. As this regularization
smoothes out the noisy data, the final choice of uref is the point that the regularization believes
to have the lowest cost while robustly satisfying all of the constraints.

Following this choice of uref , one simply needs to modify Conditions (7)-(13) and their imple-
mentation with the substitution uk → uref .

3.10 Consistency Check for Lipschitz Constants

Taking a constraint gp,j as an example, it follows that the Lipschitz constants satisfying (6) must
satisfy the relations:

gp,j(ub) ≤ gp,j(ua) +

nu∑
i=1

max
(
κpji(ub,i − ua,i), κ

p
ji(ub,i − ua,i)

)
gp,j(ub) ≥ gp,j(ua) +

nu∑
i=1

min
(
κpji(ub,i − ua,i), κ

p
ji(ub,i − ua,i)

) (57)

for any two points ua and ub in the input space. One of the solver’s subroutines involves cycling
through all of the combinations of available input points (i.e., testing all pairs of ua and ub) and
confirming that these relations hold for the Lipschitz constants provided by the user. Since the
values of gp,j will usually be corrupted by noise or estimation error, a robust version of (57) is
used instead:

g
p,j

(ub) ≤ gp,j(ua) +

nu∑
i=1

max
(
κpji(ub,i − ua,i), κ

p
ji(ub,i − ua,i)

)
gp,j(ub) ≥ gp,j(ua) +

nu∑
i=1

min
(
κpji(ub,i − ua,i), κ

p
ji(ub,i − ua,i)

) , (58)
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as the failure to meet (58) implies the failure to meet (57). In case of such a failure, the Lipschitz
constants will be made more conservative by the following algorithm:

1. Set ka := 1.

2. If ka ≤ 9, then for i = 1, ..., nu, set κpji := 2κpji if κpji < 0 and κpji := 0.5κpji if κpji > 0.
Likewise, set κpji := 2κpji if κpji > 0 and κpji := 0.5κpji if κpji < 0. If ka > 9, set κpji :=

−(ka − 9)2(κpji)
∗ and κpji := (ka − 9)2(κpji)

∗, using the definition in (42).

3. If (58) is not satisfied with the new Lipschitz constants for all available input pairs, set
ka := ka + 1 and return to Step 2. Otherwise, terminate.

This algorithm essentially augments the conservatism of the Lipschitz constants in two stages,
with the augmentation being less drastic in the first (for ka ≤ 9), as the sign of the user-provided
constants is retained while their magnitudes are either increased or decreased by a factor of
two. If this fails to yield consistent constants, opposite signs are enforced in the second stage
(ka > 9), but the potential magnitude differences with respect to the different input directions are
maintained. To ensure that sufficiently conservative constantly are obtained without requiring
too much time, the growth in the second stage is squared (by squaring the multiplier).

It has been noted that issues can arise with this routine when ua and ub are too close together,
in that noise statistics that are not entirely robust may lead to differences between two measure-
ments that cannot be compensated purely by the noise and thus lead to the augmentation of the
Lipschitz constants. In the case of erroneous noise descriptions, such augmentations can become
drastic and lead to arbitrarily large constants the closer that ua and ub are to one another. To
avoid this scenario, which has been noted in practical application, we limit this routine to ua
and ub that do not satisfy the following:

−0.1
(
uU − uL

)
� ua − ub � 0.1

(
uU − uL

)
.

The same procedure is also carried out for the cost φp, provided that it is uncertain.
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4 Application Examples

The purpose of this section is to reinforce the material presented elsewhere in the guide via
concrete examples of problems where the SCFO may be applied. Unfortunately, almost all of
the examples at the moment are “artificial”, in that they deal with simulated RTO problems and
not experimental ones, the latter being the problems that the SCFO solver is actually intended
for. Some experimental results are available, but are currently in the process of being published
and so cannot be presented here (future versions of the guide will, of course, make references to
these results). We strongly encourage everyone who has applied the SCFO in the experimental
setting to let us know, as we will be more than happy to reference all such work here.

We do note that the simulated examples, though not as satisfying as actual experiments, are
nevertheless useful since they represent work that can be easily (in most cases) reproduced by
the user. They also allow for analysis of the SCFO performance, since one has knowledge of the
solution (the true optimum) in many of these cases and may see how close the SCFO come to
achieving it.

In the five application examples that follow, we will first show how the original problem may be
stated as an RTO one, how the SCFO solver may be configured to solve it, and, finally, provide
the results of the solver’s performance. Whenever possible, we also provide brief qualitative
descriptions of forthcoming experimental applications. By default, we will use the standard (as
opposed to fast) version of the solver, although we note that these examples have been tested
with the fast version and often give comparable results.

4.1 Two-Layer Steady-State Optimization

A context where RTO is particularly popular is that of process systems engineering, where the
RTO represents a layer in a hierarchy. Often, this hierarchy may be simplified to the two layers
of particular technical interest – the optimization layer and the control layer below it [2, 14, 24],
as shown in Figure 10. Here, some sort of “plant” is to be operated in a manner that ensures
its safety while maximizing profits. Usually, the operation is dynamic in nature, with a number
of controller schemes ensuring that specified steady-state setpoints are tracked and met. These
setpoints are in turn chosen by the optimizer in an economically optimal way, subject to the
stated user/market demand or targets that are in turn specified by a higher management layer.
Measurements from the plant are both used for the purposes of feedback control as well as for
optimization.

4.1.1 Formulation as an RTO Problem

The common practice in the two-layer scheme is to optimize only at steady state, i.e., to have the
optimizer output some setpoints, let the controller achieve those setpoints, and then wait for the
system to reach equilibrium, after which steady-state measurements are collected and used to re-
optimize the setpoints for the controllers. The benefit of this approach is that the dynamics are
largely removed. However, an important assumption on the existence of a steady-state mapping
is still required. In particular, one needs the guarantee that applying the same setpoints will
always lead to the same steady-state output values (plus or minus measurement noise), which
need not be the case in practice but may nevertheless hold in many applications.
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Figure 10: A basic illustration of the two-layer scheme with a dynamic control layer and a steady-state
optimization layer.

When this assumption does hold, the formulation of the RTO problem of form (1) is fairly
straightforward, as one simply defines u to be the setpoints for the controllers, φp as the negative
of the plant profit, and Gp and G as any safety or user-imposed constraints on the plant. A
particular characteristic of such problems is that a model of the uncertain functions φp and Gp

will usually be available, which, as will be shown in the simulated example, may ease the choice
of Lipschitz and quadratic bound constants significantly. Another important characteristic is the
existence of a large number of dynamic measurements, which make it easier both to characterize
the measurement noise w and Wg and to filter out a lot of the error at steady state with the
help of estimators.

4.1.2 Simulation Example: Williams-Otto Reactor

A common simulation example for the two-layer steady-state RTO is the Williams-Otto plant [30],
which may be described as an ideal continuous-stirred tank reactor (CSTR) with the following
reactions taking place:

A+B
k1−→C, k1 = 1.660× 106e−6666.7/(TR+273.15)

C +B
k2−→P + E, k2 = 7.212× 108e−8333.3/(TR+273.15)

C + P
k3−→G, k3 = 2.675× 1012e−11111/(TR+273.15)

, (59)

where reactants A and B are fed into the reactor with flows FA and FB . For this particular
example, we assume FA to be fixed at 1.8275 kg/s, the reactor to have a mass holdup of 2105
kg, and the operation to be isothermal at the temperature TR.

The goal of the RTO is to vary the setpoints u := [FB TR]T so as to optimize the steady-state
behavior of the dynamic system that results from (59), with the following steady-state profit
function maximized:
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Profit := 1143.38XP (FA + FB) + 25.92XE(FA + FB)− 76.23FA − 114.34FB

→ φp(u) = (−1143.38XP (u)− 25.92XE(u))(FA + u1) + 114.34u1

,

with X denoting the steady-state concentrations of the products/reactants (implicitly functions
of u).

A simpler two-reaction model of the real system is assumed to be available [16]:

A+ 2B
k∗1−→P + E, k∗1 = 2.189× 108e−8077.6/(TR+273.15)

A+B + P
k∗2−→G, k∗2 = 4.310× 1013e−12438/(TR+273.15)

,

which will not, due to plant-model error, yield the plant optimum if optimized but will never-
theless be useful for obtaining basic information about the process.

Choosing to vary FB between 3 and 6 kg/s and TR between 70 and 100◦C, we have the RTO
problem in standard form as:

minimize
u

(−1143.38XP (u)− 25.92XE(u))(FA + u1) + 114.34u1

subject to 3 ≤ u1 ≤ 6
70 ≤ u2 ≤ 100

}
φp(u)}
uL � u � uU

,

which is then scaled as:

φp(u) := φp(u)/300
u1 := u1/10
u2 := u2/100

.

The following solver configurations are used.

Initialization

The initial point is taken as u0 := [4.8 77]T as this corresponds, roughly, to the model-based
optimum of the problem (Figure 11). It is generally advised to initialize the SCFO solver with
at least nu + 1 data points to have proper functionality (at least nu + 1 data points are needed
to obtain an estimate of the local gradient), and so the following “smart initialization” is used
to generate the remaining nu points following the application of u0:

1. Initialize S ∈ Rnu×nu as a diagonal matrix with S11 := 1 and all other elements set to 0.
Set k := 1.

2. Define uk := u0 + S∆umax and calculate the following matrix:

∆U :=


(u0 − u1)T

(u1 − u2)T

...
(uk−1 − uk)T

 .
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If the condition number of ∆U is above 50, re-define uk as uk := uk−1 + Sk∆umax, where
Sk is a diagonal matrix of zeros with the sole kth diagonal element equal to 1.

3. Obtain the corresponding φ̂p(uk) by applying uk to the system at hand. Define:

∆Φ :=


φ̂p(u0)− φ̂p(u1)

φ̂p(u1)− φ̂p(u2)
...

φ̂p(uk−1)− φ̂p(uk)

 ,
and calculate:

∇φ̂p := (∆U)
†

∆Φ,

with † denoting the Moore-Penrose pseudoinverse.

4. Re-define S as a diagonal matrix with the diagonals set as:

Sii :=


1 ∇φ̂p,i ≤ 0 and i ≤ k
−1 ∇φ̂p,i > 0 and i ≤ k
1 i = k + 1
0 i > k + 1

.

5. Set k := k + 1. If k > nu, terminate. Otherwise, return to Step 2.

The motivation behind this initialization is the idea that one can begin to optimize while building
the initial data set. This is done by augmenting the perturbations one input at a time so as
to isolate the contributions of the different inputs and to guide future perturbations in those
directions that seem more promising with respect to the cost. The perturbation steps of ∆umax
are chosen so as to help reject the noise in the estimate of ∇φp. An additional step is used
to control that the perturbation matrix ∆U does not become ill-conditioned, which could blow
up the estimation error significantly when the problem is of modest size (say, nu > 5) and the
measurement error is not negligible.

We note that we choose ∆umax := [0.3 3] ([0.03 0.03] after scaling) in this example, as
these correspond to 10% of the input domain for the two inputs. The costs φp are obtained
by simulating the system of ODEs (the mole balances) that result from (59), as this yields the
steady-state concentration values for the given u. A measurement error of wφ ∼ N (0, 0.25) is

added to obtain the φ̂p values.

Nominal RTO Target

The nominal RTO target, u∗k+1, is chosen by implementing a simple gradient-descent step (with
a diminishing step size):

u∗k+1 := uk −
1

k
∇φ̂p(uk),

where the estimate ∇φ̂p(uk) is obtained by the method of Section 3.5.3.
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Figure 11: Profit contour plot generated by the model of the Williams-Otto process, with the model
optimum shown in green.

Noise Models

The noise model for the (scaled) cost is assumed to be known, and is specified asN (0, 0.25/3002).

Lipschitz Constants of the Scaled Cost Function

The Lipschits constants for the scaled cost are estimated as follows:

1. Calculate the Lipschitz constants of the model by gridding, using finite differences to com-
pute the derivatives at each point, and then taking their minimal and maximal values (this
is shown in Figure 12, where the minimal and maximal derivatives are −0.3 and 0.2 with
respect to u1 and −0.04 and 0.04 with respect to u2).

2. Account for input scaling by multiplying the obtained derivatives by the scaling magnitude
used. This leads to −3 and 2 with respect to u1 and −4 and 4 with respect to u2.

3. Add conservatism to these estimates (to account for plant-model mismatch) by doubling
the lower Lipschitz constants if they are negative and cutting them in half if they are
positive, and doubling the upper Lipschitz constants if they are positive and cutting them
in half if they are negative. This leads to:

κφ,1 := −6, κφ,1 := 4, κφ,2 := −8, κφ,2 := 8.
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Figure 12: The surface plots for the derivatives of the (scaled) cost model.

Quadratic Bound Constants

The quadratic bound constants are estimated in a similar fashion:

1. Calculate the second-order derivative bounds of the model by gridding, using finite differ-
ences to compute the second derivatives at each point, and then taking their minimal and
maximal values (this is shown in Figure 13, where the minimal and maximal derivatives
are −0.05 and 0.2 with respect to u2

1, −0.06 and 0.02 with respect to u1u2, and −0.001
and 0.004 with respect to u2

2).

2. Account for input scaling by multiplying the obtained derivatives by the scaling magnitude
used squared (or by the two magnitudes multiplied for the mixed term). This leads to −5
and 20 with respect to u2

1, −60 and 20 with respect to u1u2, and −10 and 40 with respect
to u2

2.

3. Add conservatism to these estimates as done for the Lipschitz constants. This leads to:

M11 := −10, M11 := 40, M12 = M21 := −120, M12 = M21 := 40, M22 := −20, M22 := 80.

Global Minimum Cost and Convergence Tolerance

The global minimum cost was set as φ := −2/3 (−200 pre-scaling). A tolerance of εφ := 0 was
used for simplicity (i.e., we preferred to let the algorithm run indefinitely without a stopping
criterion).

The problem is solved and the results are reported in Figure 14. We see that the solver reliably
brings the operating conditions to a reasonably tight neighborhood of the optimum and keeps
them there.
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Figure 13: The surface plots for the second derivatives of the (scaled) cost model.

4.1.3 Experimental Example: Fuel Cell Efficiency (Description Only)

Plans to apply the SCFO solver to a solid-oxide fuel cell system are currently underway. Here,
the problem involves maximizing the steady-state efficiency of the fuel cell system while meeting
a user-specified power demand and satisfying an upper limit on cell potential so as to avoid major
degradative effects [11]. Doing this for a simple system where the inputs consists of the fuel and
air fluxes, as well as a control on the current of electrons from the anode to the cathode (see
Figure 15), leads to the following problem:
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Figure 14: Performance of the SCFO solver for the Williams-Otto simulated problem.

maximize
ṅH2

,ṅO2
,I

η(u)

subject to Ucell(ṅH2 , ṅO2 , I) ≥ 0.75V, ∀cells

pel(ṅH2 , ṅO2 , I) ≥ pSel
ν(ṅH2 , ṅO2 , I) ≤ 0.75

4 ≤ 2
ṅO2

ṅH2

≤ 7

3.14ml/(min · cm2) ≤ ṅH2
≤ ṅUH2

6.28ml/(min · cm2) ≤ ṅO2
≤ 2ṅUH2

0A ≤ I ≤ 30A

, (60)

with ṅH2
being the hydrogen flux, ṅO2

the oxygen flux, and I the current. η denotes the efficiency
of the fuel cell system and is an unknown (though modeled) function of the inputs. Ucell is the
intercell potential that must be kept above a certain threshold (0.75 volts) so as not to promote
cell degradation, while pel is the power produced by the cell, which must be at least the amount
specified by the user, pSel. It is noted that both Ucell and pel are unknown (though modeled)
inequality constraints. ν is the fuel utilization ratio, and must be kept below a certain value
to avoid cell starvation (which could easily destroy the cell) – it is an algebraic relation and is
known with certainty. The oxygen-to-hydrogen ratio is constrained to be between 4 and 7 for
this system so as to avoid major thermal gradients, and the hydrogen flux is to be kept above
a certain lower limit (so as not to risk starvation), with an upper limit that is not crucial and
should be user defined depending on the particular system. The oxygen-to-hydrogen ratio then
leads to implicit lower and upper bounds on the oxygen flux, and the current is constraint to be
less than 30A so as to avoid overheating the stack, with the lower constraint of 0A implicit.

Defining u := [ṅH2 ṅO2 I]T and rearranging allows us to pose (60) as an RTO problem in
standard form:
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Figure 15: The schematic of a simple solid-oxide fuel cell system.

minimize
u

−η(u)

subject to −Ucell(u) + 0.75 ≤ 0, ∀cells

−pel(u) + pSel ≤ 0

ν(u)− 0.75 ≤ 0

2u2 − 7u1 ≤ 0

4u1 − 2u2 ≤ 0

3.14 ≤ u1 ≤ ṅUH2

6.28 ≤ u2 ≤ 2ṅUH2

0 ≤ u3 ≤ 30

}
φp(u)}
Gp(u) � 0G(u) � 0uL � u � uU

.

4.2 Run-to-Run Dynamic Optimization of Batch Processes

An interesting RTO problem arises in the finite-parameter reformulation of a dynamic optimiza-
tion problem, where the goal is to find an optimal dynamic profile over a finite-time batch subject
to certain (equally dynamic) constraints. In the most general case, this is usually stated as an
optimal control problem having the form:

minimize
x(t),u(t),tf

Φ (x(t0), t0,x(tf ), tf ) +

∫ tf

t0

L (x(t),ud(t), t) dt

subject to ẋ(t) = gdyn (x(t),ud(t), t)
gpath (x(t),ud(t), t) � 0
gbound (x(t0), t0,x(tf ), tf ) = 0

, (61)

where Φ and L are the endpoint cost and Lagrangian, x denotes the states of the problem, ud
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the dynamic input, and gdyn, gpath, and gbound the dynamic constraints, the path constraints,
and the boundary conditions, respectively.

Such problems are known to be difficult to solve even numerically, and are naturally even harder
when the functions involved are unknown, as is generally the case in the optimization of experi-
mental batch processes. However, it is possible to approximate such problems by parameterizing
the inputs ud(t) in some finite manner and optimizing over the parameters, as the batch will
often be run many times and so one may adapt the parameters from batch to batch based on
the quality of the product obtained from each batch.

4.2.1 Reformulation as an RTO Problem

There exist multiple ways to parameterize a given ud(t) by a finite set of parameters. In this
section, we will consider three such approaches. To illustrate them concretely, we will apply the
parameterizations to the dynamic problem of minimizing the batch time of a batch polymerization
(taken from [17]), where the temperature profile of the jacketed reactor, T (t), is to be optimized
together with the batch time, tf , subject to certain safety and performance constraints. As an
optimal control problem, this is stated as:

minimize
T (t),tf

tf

subject to mass, molar, and energy balances (ODEs)
TL ≤ T (t) ≤ TU , ∀t ∈ [0, tf ]
TLj ≤ Tj(t), ∀t ∈ [0, tf ]
X(tf ) ≥ Xd

Mn(tf ) ≥Mn,d

, (62)

where Tj denotes the jacket temperature, X denotes the conversion, and Mn the molecular
weight, the latter two needing to be above certain desired quantities (subscripted by d) at the
end of the batch.

Prior to parameterizing the problem, we make some simplifications. We first note that the
dynamic balances and the setup of the problem (where Tj(t) is used to control T (t)) imply
a relationship between T (t) and Tj(t), which we will denote as Tj(t) = fT (T (t)). Both the
concentration X and the molecular weight Mn at the final time tf also depend, implicitly, on
these balances and on both T (t) and tf , leading us to define the implicit functions X(tf ) =
Xtf (T (t), tf ) and Mn(tf ) = Mn,tf (T (t), tf ). Having done this, we may rewrite the problem
as:

minimize
T (t),tf

tf

subject to TL ≤ T (t) ≤ TU , ∀t ∈ [0, tf ]
TLj ≤ fT (T (t)), ∀t ∈ [0, tf ]
Xtf (T (t), tf ) ≥ Xd

Mn,tf (T (t), tf ) ≥Mn,d

,

As the temperature limits are semi-infinite in nature and have to be satisfied ∀t ∈ [0, tf ], we
carry out a finite reformulation as follows:
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minimize
T (t),tf

tf

subject to TL ≤ min
t∈[0,tf ]

T (t)

max
t∈[0,tf ]

T (t) ≤ TU

TLj ≤ min
t∈[0,tf ]

fT (T (t))

Xtf (T (t), tf ) ≥ Xd

Mn,tf (T (t), tf ) ≥Mn,d

,

and, noting that the minimum and maximum operators are functions of both T (t) and tf , adopt
the notation:

T (T (t), tf ) = min
t∈[0,tf ]

T (t)

T (T (t), tf ) = max
t∈[0,tf ]

T (t)

f
T

(T (t), tf ) = min
t∈[0,tf ]

fT (T (t))

,

which leads to:

minimize
T (t),tf

tf

subject to TL ≤ T (T (t), tf )
T (T (t), tf ) ≤ TU
TLj ≤ fT (T (t), tf )

Xtf (T (t), tf ) ≥ Xd

Mn,tf (T (t), tf ) ≥Mn,d

. (63)

We now have the task of parameterizing T (t) so as to solve (63) as an RTO problem. The most
basic parameterization, though not necessarily the most effective, is the approximation of T (t) by
a piecewise constant profile. For the case of just two pieces, this could be done as follows:

T (t) =

{
T1, 0 ≤ t < tf/2
T2, tf/2 ≤ t ≤ tf

.

As T (t) is now fully parameterized by T1, T2, and tf , this allows us to restate (63) as:

minimize
T1,T2,tf

tf

subject to TL ≤ T (T1, T2, tf )
T (T1, T2, tf ) ≤ TU
TLj ≤ fT (T1, T2, tf )

Xtf (T1, T2, tf ) ≥ Xd

Mn,tf (T1, T2, tf ) ≥Mn,d

.

or, having defined u := [T1 T2 tf ]T , in standard RTO form as:
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Figure 16: Solution model for the batch polymerization profile of [17].

minimize
u

u3

subject to −f
T

(u) + TLj ≤ 0

−Xtf (u) +Xd ≤ 0
−Mn,tf (u) +Mn,d ≤ 0
TL ≤ u1 ≤ TU
TL ≤ u2 ≤ TU
0 ≤ u3 ≤ tf

}
φ(u)Gp(u) � 0uL � u � uU

,

where the added box constraints imply the satisfaction of TL ≤ T (t) ≤ TU and where tf may
simply be taken as some large number (or the final time of the initial batch, since optimization
can only lower it).

An alternative parameterization is that of NCO (“necessary conditions of optimality”) tracking
[26, 25], which involves breaking T (t) into a sequence of arcs based on engineering knowledge
or prior model-based simulations [20]. The authors of [17] did this for Problem (62) by noting
that the “best” batch operation for this process first involved keeping the batch at the maxi-
mum temperature, followed by cooling as quickly as possible, and then followed by keeping the
temperature constant, before finishing with a temperature ramp (see [17] for the proper justi-
fications). As shown in Figure 16, this essentially breaks the problem into four arcs, with the
variables to optimize being the lengths of the arcs and the slope of the ramp at the end. Defining
u := [∆t1 ∆t2 ∆t3 ∆t4 α]T , we may, without much effort, state the resulting RTO problem
as:
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minimize
u

u1 + u2 + u3 + u4

subject to −T (u) + TL ≤ 0
T (u)− TU ≤ 0
−f

T
(u) + TLj ≤ 0

−Xtf (u) +Xd ≤ 0
−Mn,tf (u) +Mn,d ≤ 0
0 ≤ u1 ≤ tf
0 ≤ u2 ≤ tf
0 ≤ u3 ≤ tf
0 ≤ u4 ≤ tf
0 ≤ u5 ≤ α

}
φ(u)Gp(u) � 0

uL � u � uU

,

where both tf and α need to be sufficiently large.

Finally, one may use a polynomial parameterization as proposed in [18]. For a quadratic, this
would yield:

T (t) = a2t
2 + a1t+ a0,

which lets T (t) be entirely defined by a2, a1, and a0. Setting u := [a2 a1 a0 tf ]T leads to:

minimize
u

u4

subject to −T (u) + TL ≤ 0
T (u)− TU ≤ 0
−f

T
(u) + TLj ≤ 0

−Xtf (u) +Xd ≤ 0
−Mn,tf (u) +Mn,d ≤ 0
a2 ≤ u1 ≤ a2

a1 ≤ u2 ≤ a1

a0 ≤ u3 ≤ a0

0 ≤ u4 ≤ tf

}
φ(u)Gp(u) � 0

uL � u � uU

,

where the lower and upper bounds on the a coefficients need to be sufficiently far apart so as to
allow the optimization sufficient room to produce a feasible solution and to optimize.

4.2.2 Simulation Example: Batch Reactor with Reversible Reaction

We consider the following reversible reaction taking place in a batch reactor, as proposed in
[18]:

A
k1←→
k2

B, r = k1CA − k2CB

k1 = k1,0e
− E1
RT , k2 = k2,0e

− E2
RT

, (64)

with the constants k1,0 = 1.32 · 107hr−1, k2,0 = 5.24 · 1013hr−1, E1 = 10, 000 cal
g·mol , and E2 =

20, 000 cal
g·mol , and the initial concentrations CA,0 = 1.0 and CB,0 = 0. The goal is to find the
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optimal temperature profile T (t) so as to maximize the conversion of A to B after 2.5 hours. A
path constraint forces T (t) to be between 20◦C and 50◦C at all times.

In this example, we use a simple two-parameter parameterization proposed in [18] to express the
profile as:

T (τ) = 35 + 15w(τ)
w(τ) = a1 + a2(1− 2τ)

, (65)

where τ ∈ [0, 1] is the normalized time and a1 and a2 are the optimization variables that param-
eterize w(τ), the dynamic portion of T (τ). By enforcing the (four) constraints:

−1 ≤ a1 ± a2 ≤ 1

the author forces the resulting temperature profile to satisfy the upper and lower temperature
limits.

Defining u := [a1 a2]T , the resulting RTO problem may be stated as:

minimize
u

CA,tf (u)

subject to u1 + u2 − 1 ≤ 0
u1 − u2 − 1 ≤ 0
−u1 − u2 − 1 ≤ 0
−u1 + u2 − 1 ≤ 0
−1 ≤ u1 ≤ 1
−1 ≤ u2 ≤ 1

}
φp(u)G(u) � 0

}
uL � u � uU

, (66)

where we note that the final two constraints are redundant and implied by the others, but are
nevertheless required for the standard RTO form and the solver. In this problem, conversion is
maximized by minimizing the concentration of A at the final time, with the implicit function
CA,tf (u) denoting this value.

Noting that the problem is already well-scaled, we solve this problem with the SCFO solver as
follows:

Initialization

To initialize the solver, we follow the methodology in [18] and conduct a 32 rotated factorial
design of experiments over the reduced space given by:

−0.98 ≤ u1 ± u2 ≤ 0.98,

where the reduction is done so as to ensure that all of the tested points will be feasible for the
RTO problem once back-offs have been added to allow sufficient excitation. Specifically, the
initial input set that follows from the design is:
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U0 =



−0.98 0
−0.49 0.49
0.49 0.49
0.98 0
0.49 −0.49

0 −0.98
−0.49 −0.49

0 0
0 0.98


.

Using the data obtained from these nine experiments, with the concentration values corrupted
by additive noise from the distribution N (0, 10−4), a quadratic response surface model is fit-
ted:

CA,tf (u) ≈ β11u
2
1 + β22u

2
2 + β12u1u2 + β1u1 + β2u2 + β0,

and is then optimized to find the predicted optimum, which is applied as the tenth point,
u9:

u9 := arg minimize
u

β11u
2
1 + β22u

2
2 + β12u1u2 + β1u1 + β2u2 + β0

subject to u1 + u2 − 0.98 ≤ 0
u1 − u2 − 0.98 ≤ 0
−u1 − u2 − 0.98 ≤ 0
−u1 + u2 − 0.98 ≤ 0

.

The SCFO solver is launched thereafter.

Noise Models

The noise model of the cost is assumed known as N (0, 10−4).

Lipschitz and Quadratic Bound Constants

We use the same procedure as for the Williams-Otto example earlier (Section 4.1.2), and employ
the response surface model to calculate the minimal and maximal derivatives over the constrained
input space. In this case, this does not require gridding and is easily done via linear programming.
For example, to obtain the minimal Lipschitz constant estimate with respect to u1, we simply
solve the following:

minimize
u

2β11u1 + β12u2 + β1

subject to u1 + u2 − 1 ≤ 0
u1 − u2 − 1 ≤ 0
−u1 − u2 − 1 ≤ 0
−u1 + u2 − 1 ≤ 0

,

and then add conservatism by either doubling or halving, as described before.

As the second derivatives of the quadratic model are constant, with the Hessian
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H =

[
2β11 β12

β12 2β22

]
,

a certain degree of robustness against the uncertainty of this model is added by defining the M
constants as follows:

M ij := Hij − |Hij |, M ij := Hij + |Hij |,

which is, admittedly, a heuristic choice, but one that has worked well for us.

The Lipschitz constants for the certain constraints are easily defined as:

K :=


0.99 0.99
0.99 −1.01
−1.01 −1.01
−1.01 0.99

 , K :=


1.01 1.01
1.01 −0.99
−0.99 −0.99
−0.99 1.01

 .

Lower Scaling Bounds

It is easily shown that the lowest value achievable by all of the four constraints is −2, and so
choose G := [−2 − 2 − 2 − 2].

Global Minimum Cost and Convergence Tolerance

We do not attempt to use this option here and so set φ := 0 (which is very unlikely to be reached,
as this corresponds to full conversion) and εφ := 0.

Maximum Input Step Size

∆umax is defined as [0.20 0.20], which corresponds to 10% of the input domain for both in-
puts.

The results are presented in Figure 17, where one sees that one of the initial experiments is able
to hit the optimum almost exactly, after which the SCFO solver takes this point and uses it
as the reference, staying in the neighborhood of the optimum despite significant measurement
errors due to noise.

4.3 Iterative Controller Tuning

In certain applications, a controller is tasked with the job of following the same reference trajec-
tory from one run/batch/cycle to another [29]. Since the way in which the controller is tuned
(i.e., what controller parameters, ρ, are specified) affects its performance (e.g., its ability to track
the trajectory), it is possible to adapt the controller parameters iteratively from run to run so
as to find the locally optimal set of parameters (Figure 18).
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Figure 17: The SCFO solver applied to a parameterized dynamic optimization problem, following a
design-of-experiments initialization. The dashed lines on the left-hand-side figure denote the inequality
constraints that fix the optimization domain.

4.3.1 Formulation as an RTO Problem

Denoting by Jk the observed performance of the controller at run (iteration) k, one may solve
this as an RTO problem by making the following repeatability assumption [4]:

Jk = J(ρk) + δk, (67)

where J is an unknown but deterministic relation between the controller parameters ρ and the
performance, while δk is a stochastic “noise” element. This assumption is in line with what would
normally be expected – applying the same controller for the same trajectory in two different
runs should yield similar or close to identical performance, with the degree of similarity inversely
proportion to the magnitude of the noise term.

With this assumption and the definition u := ρ, the observed performance may be optimized by
simply solving:

minimize
u

J(u)

subject to Gout(u) � 0
Gdes(u) � 0
ρL � u � ρU

}
φp(u)}
Gp(u) � 0}
G(u) � 0}
uL � u � uU

, (68)

where Gout denotes potential output constraints, Gdes denotes design constraints that are con-
trolled directly by the user (e.g., a constraint on controller stability), and ρL and ρU define the
domain over which the parameters will be tuned.

A potential difficulty in this problem is the abstract “noise” term δk, for which obtaining an
accurate PDF may be difficult, with crude estimations having to suffice. In some cases, the nature
of δk may also vary with parameter values (thereby violating the repeatability assumption),
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which may mean that the PDF assumed for one set of parameters may not be a valid PDF for
another.

Another danger is that closed-loop stability cannot be guaranteed and is only encouraged – by
enforcing that the performance improve continuously and that any important safety constraints
be met, the SCFO tends to indirectly avoid the kind of instability that would make for dangerous
operation.

4.3.2 Simulation Example: PID Tuning for a Step Setpoint Change

We consider the three-parameter PID controller scheme given in Figure 19, for which similar
studies have been carried out in the context of iterative-feedback [22] and extremum-seeking-
based [21] tuning, and where:

Cr(s) = Kp

(
1 +

1

Tis

)
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Cy(s) = Kp

(
1 +

1

Tis
+ Tds

)
,

with ρ = [Kp Ti Td]
T the three parameters to be tuned.

The system considered in this example is:

G(s) =
3

s3 + 2s2 + s+ 2
,

with the goal of minimizing the tracking error of the response over a specified time horizon:

J(ρ) :=

∫ 40

5

[yr(t)− y(t,ρ)]
2
dt,

when a unit step is applied to change the output setpoint from 0 to 1, and where we note that
the observed response y(t,ρ) is essentially a black-box function of the controller parameters.
Adopting the proposition in [22], a “mask” of 5 time units is applied so as not to judge con-
troller performance during the very beginning of the response where large tracking errors will be
inevitable due to the abrupt nature of the setpoint change.

Additionally, it is desired that the output never overshoot the setpoint by more than 0.1, with
the constraint

y(t,ρ) ≤ 1.1, ∀t ∈ [0, 40]

enforced as a hard output constraint. By applying the repeatibility assumption on this constraint,
we may define:

ymax(ρ) := max
t∈[0,40]

y(t,ρ),

and then write this constraint in finite form as:

ymax(ρ) ≤ 1.1.

Based on experience with similar problems [22, 21], we expect Ti and Td to vary more (about
a magnitude more) than Kp, and so we choose to apply the scaling Ti := Ti/10, Td := Td/10.
Since the exact lower and upper limits on the three parameters are unknown (apart from the
fact that Ti and Td should be positive), adaptive limits are used, with:

Kp,k − 0.5 ≤ Kp ≤ Kp,k + 0.5
max(0, Ti,k − 5) ≤ Ti ≤ Ti,k + 5
max(0, Td,k − 5) ≤ Td ≤ Td,k + 5

,

which lead to an input domain of no more than 1 for all parameters at a given iteration k post
scaling (the limits above being unscaled for Ti and Td). Note that these domains are artificial
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and are almost never limiting, as they always move with the parameters – however, they provide
a convenient and well-scaled choice for the solver, which requires the limits.

With u := ρ, we may now define the RTO problem as:

minimize
u

∫ 40

5

[yr(t)− y(t,u)]
2
dt

subject to ymax(u)− 1.1 ≤ 0
KL
p (k) ≤ u1 ≤ KU

p (k)
TLi (k) ≤ u2 ≤ TUi (k)
TLd (k) ≤ u3 ≤ TUd (k)

}
φp(u)}
Gp(u) � 0uL � u � uU

,

The cost is scaled by division by its initial value, and the problem is solved with the SCFO solver
as follows:

Initialization

An initial parameter set of u0 := [2 10 2]T (pre-scaling) is chosen as this achieves reasonable
(though suboptimal) performance while satisfying the output constraint by a significant margin.
The smart perturbation algorithm described in Section 4.1.2 is then applied to generate u1, u2,
u3 with ∆umax := [0.1 0.1 0.1] post-scaling. A noise of δk ∼ N (0, 2.5 · 10−4) is added to the
scaled performance metric following each evaluation, with a noise of N (0, 10−4) added to the
output constraint measurement.

Nominal RTO Target

The nominal RTO target, u∗k+1, is chosen by implementing a gradient-descent step scaled by the
Hessian of the quadratic model fitted to the data (see the discussion on the choice of quadratic
bound constants below):

u∗k+1 = uk −H†∇φ̂p(uk),

where the estimate ∇φ̂p(uk) is obtained as the gradient of the fitted quadratic model. A pseu-
doinverse is used in case the Hessian happens to be very badly conditioned or not invertible.
Although a step to ensure that the Hessian is positive definite should normally be carried out, we
do not do so here, believing the RTO target as given above to be a sufficiently good guide.

Noise Models

We assume that the noise models for the cost and constraint are known in this example.

Lipschitz and Quadratic Bound Constants

We assume to work in a model-free setting, and so the Lipschitz and quadratic bound constants
must be chosen by heuristic means. A heuristic that we propose here, and that has, so far,
worked well for us, is the following.

To obtain a (very conservative) estimate of the Lipschitz constants for the cost, take the initial
data set and fit it with a linear model, the coefficients of which are then the initial gradient
estimate:
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[
∇φ̂p(u0)

a0

]
=


uT0 1
uT1 1
uT2 1
uT3 1


−1 

φ̂p(u0)

φ̂p(u1)

φ̂p(u2)

φ̂p(u3)

 .
The Lipschitz constants are then defined as:

κφ,i, κφ,i := ±2
∥∥∥∇φ̂p(u0)

∥∥∥
∞
, i = 1, ..., nu.

For the quadratic bounds, an adaptive choice is used, with the basic idea of using the Hessian
of the quadratic model that is fit to all of the measurements at every new iteration as a guide.
Since not enough measurements are available initially to estimate a full quadratic, the following
scheme is adopted:

• When the number of measurements is less than 7, define H as a diagonal matrix with:

Hii := 5
∥∥∥∇φ̂p(u0)

∥∥∥
∞
, i = 1, ..., nu.

• When the number of measurements is greater than 7 but less than 10, fit a quadratic model
without interaction terms for all of the data:

φp(u) ≈ β11u
2
1 + β22u

2
2 + β33u

2
3 + β1u1 + β2u2 + β3u3 + β0,

with H the (diagonal) Hessian of this model. Apply the following trimming if necessary
(as a safeguard):

Hij > 5
∥∥∥∇φ̂p(u0)

∥∥∥
∞
→ Hij := 5

∥∥∥∇φ̂p(u0)
∥∥∥
∞

Hij < −5
∥∥∥∇φ̂p(u0)

∥∥∥
∞
→ Hij := −5

∥∥∥∇φ̂p(u0)
∥∥∥
∞

.

• When the number of measurements is 10 or more, fit a full quadratic model to all of the
data:

φp(u) ≈ β11u
2
1 + β22u

2
2 + β33u

2
3 + β12u1u2 + β13u1u3 + β23u2u3 + β1u1 + β2u2 + β3u3 + β0

with H the Hessian of this model. Apply the same trimming as above, if needed.

Due to model uncertainty, the actual M constants are defined as:

M ij ,M ij := Hij ± σs|Hij |,

where σs is a safety factor that is initialized at 1 and then updated iteratively as follows for all
iterations where sufficient excitation is not enforced (when δexit = 0):

• If J(uk)− 4σδ ≥ min
i=0,...,k−1

J(ui), then set σs := σs + 1,
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• otherwise, set σs := σs − 0.5, with σs < 0→ σs := 0,

where σδ is the standard deviation of the noise term δk.

Such an update law essentially acts, in a very informal sense, as a control scheme, so that the
safety factor is augmented whenever a decrease in the cost is not achieved (which, in the presence
of good gradient estimates, would be due to a poor estimate of the quadratic bound constants),
and decreased when a cost decrease is noted (so as to reduce potential conservatism and speed
up convergence). Having the decrease at half the value of the increase (0.5 compared to 1) is a
heuristic choice and is intended to err on the side of conservatism, thereby encouraging a larger,
and safer, quadratic upper bound.

For the Lipschitz constants of the output constraint gp(u) := ymax(u) − 1.1, the same initial
procedure is used:

κpi , κ
p
i := ±2 ‖∇ĝp(u0)‖∞ , i = 1, ..., nu,

Additional safeguards should also be taken to account for the possibility of ‖∇ĝp(u0)‖∞ ≈ 0.
If this is the case (which would suggest that the initialization takes place in a zero-sensitivity
region for the constraint), a brute non-zero estimate for the Lipschitz constants may be:

κpi , κ
p
i := ±

−g
p

uUi − uLi
, i = 1, ..., nu,

where g
p

is simply an element of Gp.

Lower Scaling Bounds

As the maximum output value should be no less than 1 if the controller does its job, we set
Gp := −0.1.

Global Minimum Cost and Convergence Tolerance

Since the criterion is to minimize the tracking error, we can do no better than to lower it to
φ := 0, and should not attempt to do any better. In this example, we will assume that meeting
this minimum value with a tolerance of εφ := 0.1 is sufficient.

Concavity Matrix

The concavity matrix is defined as C := [0 0 0], as there is no basis for any concave relationships
between the output constraints and the parameters.

Constraint Relaxations

No relaxation is allowed for the hard output constraint, and so we set d := dT := 0.

The results for this problem are presented in Figure 20, where we see that the solver is able to
obtain a significantly better controller fairly quickly (less than 20 iterations) without violating
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Figure 20: Application of the SCFO solver to the PID tuning problem.

the output constraint. After reaching a sufficiently optimal performance, no further adaptation
is done.

4.3.3 Experimental Examples: MPC and General Fixed-Order Controller Tuning
(Description Only)

Some promising results have been obtained in two different experimental settings, but as they are
currently in the process of being published [6], we can unfortunately only provide a qualitative
description of the problems.

The first problem involves tuning a model-predictive controller (MPC) for the setup previously
described in [10], where a stirred water tank is heated/cooled by the water in the surrounding
jacket, with the MPC setting the temperature of the jacket inlet so as to track a setpoint profile
for the water inside the tank (for a simplified schematic, see Figure 21).

As is required for the iterative controller tuning problem, the temperature setpoint profile is kept
the same from batch to batch, with the performance criterion chosen as the minimization of the
squared tracking error over the batch time tb:

J(ρ) :=

∫ tb

0

[
T setr (t)− Tr(t,ρ)

]2
dt,

where ρ represent the tuning parameters of the MPC and may be any of the following: the
weights of the MPC penalty function, the prediction and control horizons, or the bias update
filter gain [4]. Casting this as an RTO problem and applying the SCFO solver is straightforward
and may be done in the same manner as for the simulation example above.

In another tuning problem, a much faster mechanical torsional system was considered (Figure
22), where the motor torque was used to control the angular position of the top disk in a three-
disk setup. In contrast to the batch reactor case, what constituted a single iteration here was not
a single “batch” but a period in a repetitive setpoint trajectory, with the latter given by:
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Figure 21: Qualitative schematic of MPC temperature control in a jacketed stirred tank.

yr(t, A) = A sign

(
sin

πt

6

)
,

i.e., a square wave with a period of 12 seconds and an amplitude of A.

The performance metric in this case was chosen as a more general weighted combination of
tracking error, controller aggressiveness, and the smoothness of the output profile:

Jk :=

200(k+1)−1∑
T=200k

[yr(0.06T,A)− y(0.06T,ρk)]
2

+λ1

200(k+1)−1∑
T=200k

[u(0.06T,ρk)− u(0.06T − 0.06,ρk)]
2

+λ2

200(k+1)−1∑
T=200k

[y(0.06T,ρk)− y(0.06T − 0.06,ρk)]
2

,

with λ > 0 denoting the weights and T the discrete sample counter.

The controller used in this study was a discrete fixed-order controller of the form:

G(ρ) =
ρ1z

2 + ρ2z + ρ3

z2 + ρ4z + ρ5
,

with the coefficients of the controller numerator and denominator being the tuned parame-
ters.
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Figure 22: The torsional system where the motor torque is used to control the angular position of the
top disk.

4.4 Optimization by Response-Surface Methods

A very large number of practical optimization problems come without a model and are solved by
response-surface methods (we refer the user to [23] and the numerous examples therein), where a
certain set of experiments is carried out so as to construct an approximate first- or second-order
data-driven model, which is then optimized to find the best design or operating conditions for the
problem at hand. Such problems require, in general, no special reformulation to fit into our RTO
framework, as they are innately posed as RTO problems with clearly defined input variables u,
a criterion to be optimized φp, and the constraints Gp and G, as well as the design space given
by uL and uU . As such, they may be solved directly using the SCFO solver, with perhaps the
only differences being in how the data set is initialized.

We propose two initialization candidates here and use the previously presented example of Section
4.2.2 as an illustration.

4.4.1 Design of Experiments Followed by SCFO

As already illustrated in Section 4.2.2, one may use the SCFO solver after an initial design-of-
experiments phase. This is particularly nice with respect to the choice of Lipschitz and quadratic
bound constants, as the response-surface model may be used to easily approximate these val-
ues. The results in Figure 17 show that the SCFO solver can successfully act as the follow-up
step.

4.4.2 Initialization at the Center Followed by SCFO

An alternative is to skip the response-surface modeling step and to launch the SCFO solver
straight away, following a basic initialization from the very center of the design space.
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Figure 23: The SCFO solver applied to a parameterized dynamic optimization problem directly after
a basic initialization from the center of the input space (skipping the response-surface model building
step). A comparison is made with the “classical” response-surface optimization scheme, with the blue
dots on the left denoting the experiments carried out to construct the response-surface model, followed
by an additional experiment that corresponds to the predicted optimum. The figure on the right shows
the performance of the SCFO (in red) compared to the classical scheme, where the first ten iterations
are used for model-building and optimization and the remaining 90 are kept at the best point found by
this method.

Here, we define u0 as [0 0]T and perturb by the maximal allowable amount ∆umax via the
“smart” perturbation scheme outlined in the simulation example of Section 4.1.2. Once u1 and
u2 are obtained this way, we define the Lipschitz constants and the (adapted) quadratic bounds
by the same heuristic rules as in Section 4.3.2. We note that ∆umax is chosen as 20% of the
feasible domain in this example (as opposed to 10%).

There are two immediately obvious disadvantages to this alternative. First, since the SCFO
solver is designed to converge to the local optimum in the neighborhood of the best available
data point that is provided to it, there is a chance that very good points will be missed by starting
at the center, which is less likely to occur when a response-surface model is built first, as the
latter does a sort of global sampling of the design space. Additionally, the rules for choosing the
Lipschitz and quadratic bound constants are “more heuristic” in nature than those used when a
data-driven model is built first.

However, a very powerful practical advantage of this alternative is in that, for cases when the
local optimum in the neighborhood of the center point is a very good one, the optimality losses
attained during the suboptimal iterations are significantly less, as particularly “bad” experiments
that would be done to construct the response-surface model are avoided. Figure 23 illustrates
this, where it is seen that, although the response-surface methodology finds something very close
to the optimum, the SCFO solver initialized from the center is able to achieve comparable results
without having to carry out particularly suboptimal experiments.
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4.5 Numerical Optimization with Expensive Function Evaluations

While the SCFO solver could, in principle, be applied to numerical optimization problems as well
as RTO ones, in the vast majority of cases this is not practical, as the full chain of subroutines
used in the solver is quite time-consuming and itself involves solving many numerical optimization
problems. As such, while the iteration trajectory might be more efficient than that achieved by
many numerical solvers (since the satisfaction of constraints and cost improvement is not ensured
by a line search), the actual effort between iterations far overwhelms the simple calculations used
in most numerical schemes.

However, there do exist purely numerical optimization problems where function evaluations are
expensive (i.e., time consuming) and where typical optimization routines like, for example, cal-
culating a gradient by finite difference perturbations and then doing a line search in the gradient
descent direction, are simply too slow. Two examples of problems where such issues might arise
are:

• problems where evaluating a function requires the lengthy simulation of a large/complex
model,

• multi-level optimization problems, where evaluating a cost or constraint function involves
solving another (potentially difficult) optimization problem.

A popular class of methods for solving such problems belongs to the derivative-free branch of
numerical optimization [12], which includes methods like the direct search, the simplex, and
trust-region algorithms. However, the SCFO solver may also be applied to successfully solve
such problems as they are, in many ways, identical to RTO problems in that the functions,
though known analytically, are expensive to evaluate in the same way that experiments are
expensive to run.

4.5.1 Example: Bi-Level Optimization Problem

We consider the following (purely contrived) bi-level optimization problem:

minimize
u1,u2

f(u1)(5− u2
2)

subject to −2 ≤ u1 ≤ 2
−2 ≤ u2 ≤ 2

}
φp(u)}
uL � u � uU

,

where f(u1) denotes the globally minimal cost value of the following nonconvex problem:

minimize
x1,...,x10

xTQx + c(u1)Tx

subject to Alx � bl
xi ∈ [0, 1], i = 1, ..., 10

,

where Al and bl are defined as:
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Al =


2 −6 −1 0 −3 −3 −2 −6 −2 −2
6 −5 8 −3 0 1 3 8 9 −3
−5 6 5 3 8 −8 9 2 0 −9
9 5 0 −9 1 −8 3 −9 −9 −3
−8 7 −4 −5 −9 1 −7 −1 3 −2

 , bl =


−4
22
−6
−23
−12

 ,

and where Q = −50I, while the linear portion varies as a function of u1:

c(u1) = [48u1 42u2
1 − 48u1

45

3 + u1
44u1 − 41u1 47u2

1 42− 20u1 45
√

3 + u1 46u1]T .

We note that this problem, apart from the dependence of c on u1, is identical to Test Problem
2.6 from [15].

Various global optimization methods may be used to solve the problem to evaluate f(u1) –
here, we use the reverse-convex programming method utilized to solve a very similar problem in
[3].

As φp has values on the magnitude of 103, we scale the cost as φp(u) := φp(u)/1000. The
problem is solved using the SCFO solver by applying the following configurations:

Initialization

The initial point is chosen as u0 = [0 0]T , and the “smart” initialization scheme given in Section
4.1.2, with ∆umax := [0.4 0.4], is applied to generate u1 and u2, after which the SCFO solver is
launched.

Nominal RTO Target

The nominal RTO target, u∗k+1, is chosen by fitting a quadratic model to all of the data and
optimizing this model over the relevant input space.

Lipschitz and Quadratic Bound Constants

The Lipschitz and (adapted) quadratic bound constants are chosen by the heuristic laws used in
Section 4.3.2.

Global Minimum Cost and Convergence Tolerance

We do not know a priori how low the scaled cost function can go, and so set φ := −5 as an
estimated desired (and likely unreachable) target. For simplicity, we do not attempt to employ
the convergence option here and so set εφ := 0.

The results are presented in Figure 24 and show that the solver is able to converge fairly quickly
to the neighborhood of the local optimum and to remain there.

A potentially interesting extension of this example is the case where real-time constraints do
not allow the global optimization problem to be solved in the time allotted. As many global
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Figure 24: The SCFO solver applied to a numerical bi-level optimization problem.

optimization solvers – the one used here nonexempt – put upper and lower bounds on the cost
during the solution process, one could terminate the solver early to yield the bounds obtained in
the time allotted, rather than the exact cost value, which may require too much time to compute.
In the SCFO framework, this essentially becomes identical to uniformly distributed measurement
noise, and could therefore be treated as such – thereby allowing the user to work with very
approximate solutions rather than exact global ones, and potentially achieving significant gains
in speed.
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5 Troubleshooting

This section attempts to address the main (and, when possible, minor) issues that may be
encountered while trying to run the SCFO solver. Unfortunately, we can only address issues
that we ourselves are aware of, and there will undoubtedly be bugs and other problems that
we have not foreseen. If you encounter any problems that are not discussed here, please do not
hesitate to let us know, as we will do our best to fix these.

5.1 Errors While Trying to Run SCFO.m/SCFO_oct.m

If you encounter a MATLAB/Octave error while trying to launch the SCFO.m/SCFO_oct.m file
and are not sure what is causing it, there is a good chance that it is due to dimensionality issues
in the inputs of SCFO.m/SCFO_oct.m. Please have a look at the list in Section 2.2 and make sure
that all the dimensions of the file inputs are correct, that the domains used are not in violation
with what is specified (e.g., a negative number for a setting that only accepts positive ones), and
that you have not forgotten any inputs. Future versions will likely automate this check for you,
but please do the verification yourself for the time being.

If you receive the error

Error: Provided data should include at least one strictly feasible point.

then please make sure that your data has at least one point for which you are certain that
all of the constraints (both Gp and G, as well as the box constraints) are met robustly while
accounting for back-off due to the sufficient-excitation parameter δe. Some common cases where
this could be an issue are:

• Large variance specified for the noise in the constraint measurements/estimates, with the
constraint close to active for all points in the data set. Here, the PDF of the corresponding
noise would be very wide and have a large variance, thereby making it impossible to say
that the constraint is really met with sufficiently high confidence. Either lower the variance
of the PDF (if the initial choice is too conservative) or attempt to find data points that are
“deeper” in the feasible set via additional experiments.

• Very conservative Lipschitz constants, thereby creating large back-offs in the RTO problem
(see Section 3.6.1 for why this would occur) and making it more likely that the provided
data does not possess a point satisfying these back-offs. In this case, try to lower the
Lipschitz constants if this is justifiable.

We also note that the optimization solvers used in the subroutines of the SCFO solvers are not
perfect and may fail from time to time. The current workarounds for these issues are heuristic
and generally perform acceptably, although there may be issues that we are unaware of. In
future versions, we will attempt to address these problems more rigorously and to robustify the
optimization subroutines.

5.2 Very Slow (Or No) Improvement Observed

It may occur that you run the SCFO solver only to find that you are not doing any better than
you were without it – we do not promise success for all cases, although we often expect it.
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Failure to see improvement may occur due to several reasons:

• You are already at, or very close to, a local minimum (this is the good case!).

• The measurement noise is very large, therefore making the task of gradient estimation very
difficult. When the solver is not able to obtain tight gradient bounds due to significant
noise, it often tends to take smaller steps for robustness reasons. Large measurement noise
in the constraints also slows down the algorithm since it may be difficult for it to guarantee
robust feasibility in this case for large input steps.

• Either the Lipschitz or quadratic bound constants, or both, are overly conservative, thereby
forcing the solver to take very small steps so as to ensure that the constraints are not
violated and that the cost is lower at the next iteration. As mentioned in Section 2.4.2, it
is good practice to make these bounds as tight as allowable, and doing this will speed up
convergence. If the values must be conservative to be valid, then it may just be that one
has to accept slow convergence.

• The reference input point is very close to one of the unknown inequality constraints Gp,
which forces the algorithm to take very small steps so as to guarantee that these constraints
are not violated.

5.3 Important Safety Constraints are Violated

Safety constraints that are defined in the RTO problem in the set Gp but are violated during
operation (when this is not desired/acceptable) suggest one of the following:

• The Lipschitz constants are poorly chosen and should be more conservative (the lower
constant is too high or the upper constant is too low, or both).

• The noise PDFs for the constraints are not correct and predict the noise/error to be smaller
than it really is.

• A concavity relaxation is made (Section 3.8.2) when it is not valid.

5.4 It Takes a Very Long Time to Get an Answer

For large data sets (e.g., more than 200 data points), it may take a very long time (i.e., more than
a few minutes, or even hours) for the SCFO solver to produce an answer. This may be caused
by several factors, and will generally be worse when the RTO problem has a lot of uncertain
constraint functions and a greater number of inputs. Sometimes this may also occur due to issues
with the optimization subroutines. The only advice that we have for you at the moment is to
use the fast version of the solver if/when speed becomes an issue.

Future versions will attempt to treat this more elegantly by incorporating real-time constraints,
thereby allowing for the user to control how long the SCFO solver takes, with certain subroutines
being sacrificed – in order of importance – to meet the time constraints imposed by the user.
Naturally, we will also work to make the code as computationally efficient as possible. For the
time being, however, we advise the user to find how many data points the SCFO solver can
comfortably handle in the time allotted for their particular problem, and to make that the cutoff
point for the amount of data that may be fed to the solver.
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5.5 The Solver Does Not Converge

If the solver has been operating for an extended number of iterations and continues to take large
steps without making apparent progress or settling in a neighborhood, the most likely cause is
that the quadratic bound constants M are poorly chosen – the lower ones should be pushed lower
and the upper ones should be pushed higher.
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6 Miscellaneous

6.1 Legal and Licensing Issues

This solver and all of its contents (i.e., those in the .rar archive) are free to use, free to distribute,
and free to modify as you find suitable to your personal needs or application. We invite users
to experiment and write their own extensions/improvements to the solver or its subroutines.
Any derivative works must make reference to this original document, however, either in the
documentation that accompanies them or in the preamble of the code. Neither the intellectual
content nor the code of this solver may be reproduced in commercial form.

You are not required to cite this document if you use our solver in any applications the results
of which are later reported orally or in writing. In the case of academic papers, we do encourage
you to do so, as this provides us with an easy way of keeping track of the solver’s applicability
and its successes and failures.

There is no warranty that comes with this solver. We genuinely hope that it serves you well
and works for your application, but cannot promise this and will not take any responsibility if it
fails in any particular case, nor be held responsible for any other consequences of its implemen-
tation.

6.2 Version History

The following is a log to all of the changes that have been implemented in the solver since its
initial release, and should be of interest to users of previous versions as upgrading may lead to
compatability issues. All of the older versions of the solver (as well as of this guide) should be
available online together with the current version – however, users are warned that older versions
are no longer supported and are encouraged to use the most recent version available. We highly
recommend that the user do a clean removal of the files corresponding to a previous version if
a new version is downloaded so as to avoid potential mix-ups in which files MATLAB/Octave
uses.

• Version 0.9 (May 22, 2013 to June 18, 2013): Initial release.

• Version 0.9.1 (June 18, 2013 to July 5, 2013):

– Support for GNU Octave was added.

– The way in which sufficient excitation (formerly called “minimal excitation”) is im-
plemented was changed, with the current implementation considering a metric of
well-poisedness for linear regression (an expected improvement over the past metric
of minimal excitation in each individual direction). Unlike in the initial release, the
parameter δe is no longer an input but is chosen adaptively by the solver, which, based
on our experience, has led to improvements in convergence speed when compared to
the initial version.

• Version 0.9.2 (July 5, 2013 to August 2, 2013):

– The log-concave approximation algorithm was replaced by a faster version that does
not need to solve an optimization problem to build an approximation. Instead, a
convex envelope for the noise data is constructed using the algorithm proposed in
[3]. Instead of using 20 pieces to approximate the penalty function, which was, in
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many cases, inefficient and sometimes led to numerical issues, only 5 pieces are used
now. These are chosen by an iterative algorithm that attempts to achieve the best
approximation possible with only 5 pieces (i.e., by starting with one piece, noting
where the approximation error is largest, adding the next piece there, and so on).

– The user no longer needs to provide structural assumptions to the solver, as these are
now automatically chosen as linear, diagonal-quadratic, or full-quadratic depending
on how many measurements are available.

– The level of display provided by the solver can now be chosen by the user.

– Some important changes were made to the way in which sufficient excitation is imple-
mented. As it was noted that the SCFO was often unable to provide a good amount
of excitation in problems with active constraints, the definition of δe was changed
to not account for the inequality constraints – instead of trying to guarantee that a
ball of radius δe lie inside the feasible set, δe is first chosen to be as large as needed
and numerous excitation points are tested and retained if they can be proven fea-
sible. This allows for less conservatism and for larger excitation steps being taken
in general, which aids significantly in the gradient estimation subroutines. However,
since the resulting excitation steps now tend to be larger, we have decided to reduce
the frequency and size of these excitations by (a) using 5 instead of 3 as the number
of consecutive iterations for which the insufficient-excitation criteria should be satis-
fied to force excitation, and (b) choosing the desired δe as the step that results in a
predicted signal-to-noise ratio of 0.5 (instead of 1.0, as was done earlier). We have
found these choices to lead to notable improvements for several problems. Back-offs
on the box constraints, which led to worse performance for problems where these were
active, have been removed since they are not really needed (an orthant with sufficient
excitation in all directions will always exist with respect to the box constraints).

• Version 0.9.3 (August 2, 2013 to August 18, 2013):

– An automatic consistency check for the Lipschitz constants was added to the solver’s
subroutines. While we still encourage users to be careful with their choices of Lipschitz
constants, this check should nevertheless be a major step forward towards easing the
configuration burden of the solver and in robustifying its performance in applications.
This is only implemented for the uncertain (“p”) functions at the moment, as we
expect the user to be capable of computing valid Lipschitz constants for the certain
constraints G.

– The option of the solver automatically stopping adaptation of the inputs when a suffi-
ciently optimal input set has been found has been made available. This is expected to
be practical for those applications where the user has good knowledge of the minimum
cost that they would like to achieve, and are willing to accept a certain amount of
suboptimality upon convergence.

• Version 0.9.4 (August 18, 2013 to present):

– The “fast” version of the solver was introduced, with the gradient estimation op-
timization routines replaced by faster (albeit less rigorous) least-squares regression
methods. Whether the standard version or the fast version is used may be set by the
user through an additional configuration parameter (Section 2.2.14).

– An additional regularization subroutine has been added to aid with the choice of
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reference point (Section 3.9).

– Some additional safeguards have been added when doing the consistency check for
the Lipschitz constants, and the way in which the constants are augmented has been
modified (Section 3.10).

6.3 Contact Us

We are always glad to hear from you regarding your experiences with this solver. This cov-
ers a number of points, from simple questions that were not clearly answered here, to sugges-
tions/criticisms/(praise?), to reports of the solver’s success or failure in a certain application, to
a desire to seriously contribute to further development. We are open to just about anything, so
please do not hesitate to write.

For all technical queries, please contact Gene Bunin at either gene.bunin@epfl.ch (preferred
but temporary) or eugene.bunin@gmail.com (less preferred but more permanent). For all other
queries, please contact either Dr. Grégory François (gregory.francois @epfl.ch) or Professor
Dominique Bonvin (dominique.bonvin@epfl.ch).
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