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Abstract—The design of high-performing robotic controllers
constitutes an example of expensive optimization in uncertain
environments due to the often large parameter space and noisy
performance metrics. There are several evaluative techniques
that can be employed for on-line controller design. Adequate
benchmarks help in the choice of the right algorithm in terms
of final performance and evaluation time. In this paper, we
use multi-robot obstacle avoidance as a benchmark to compare
two different evaluative learning techniques: Particle Swarm
Optimization and Q-learning. For Q-learning, we implement
two different approaches: one with discrete states and discrete
actions, and another one with discrete actions but a continuous
state space. We show that continuous PSO has the highest
fitness overall, and Q-learning with continuous states performs
significantly better than Q-learning with discrete states. We
also show that in the single robot case, PSO and Q-learning
with discrete states require a similar amount of total learning
time to converge, while the time required with Q-learning with
continuous states is significantly larger. In the multi-robot case,
both Q-learning approaches require a similar amount of time
as in the single robot case, but the time required by PSO can
be significantly reduced due to the distributed nature of the
algorithm.

I. INTRODUCTION

Human design of high-performing robotic controllers is
not a trivial task for a number of reasons. In the first place,
even the simplest of modern robots have a large number
of sensors and actuators, which implies a large number of
control parameters to optimize. Secondly, real systems often
present discontinuities and nonlinearities, making it difficult
to apply well-understood linear control techniques. Finally,
when applying a designed controller to real robots there might
be an unexpected drop in performance due to a number of
factors such as imperfections in fabrication, changes in the
environment, or modeling inaccuracies.

Machine-learning techniques provide an alternative to
human-guided design that can address the previously men-
tioned challenges. In particular, evaluative methods can auto-
matically synthesize robotic controllers in large search spaces,
coping with discontinuities and nonlinearities, and find innova-
tive solutions not foreseen by human designers. Furthermore,
the learning process can be implemented fully on-board, en-
abling automatic adaptation to the underlying hardware and
the environment.
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However, the main drawback of working in an on-line,
evaluative framework is the large amount of time needed to
characterize the performance of candidate controller solutions.
The noise in performance evaluation may arise from several
sources of uncertainty, such as sensor noise, manufacturing
tolerances, or lack of strict coordination in multi-robot settings.

In this paper we focus on two types of evaluative methods
that have been employed for robotic controller design: Particle
Swarm Optimization, a population-based metaheuristic, and Q-
learning, a Reinforcement Learning-type algorithm.

Particle Swarm Optimization can be used to implement the
adaptation process in multi-robot systems in a distributed fash-
ion, which reduces the required evaluation time through par-
allelization, but requires the evaluation of multiple candidate
solutions. Q-learning, on the other hand, can iteratively refine
a single policy, which may reduce the required evaluation time.

In order to quantitatively compare the two evaluative learn-
ing techniques, we use multi-robot obstacle avoidance as a
benchmark task. By carefully defining our testing scenario,
we can quantify the differences between the two algorithms in
terms of performance, total evaluation time, and their resulting
behaviors.

II. RELATED WORK

Optimization algorithms are typically evaluated on stan-
dardized numerical benchmark functions, such as DeJong’s test
suite [1]. The design of high-performing robotic controllers is
an instance of an optimization problem under uncertainties, yet
to our knowledge there is no agreed set of robotic benchmark
tasks. Obstacle avoidance was used in one of the earliest works
of evaluative adaptation with Genetic Algorithms applied to
real robots [2], and it has also been employed to test other
learning algorithms such as Particle Swarm Optimization [3]
and Reinforcement Learning [4]. However, due to different
environments and performance metrics, it is not possible to
establish direct comparisons among algorithms based on these
previous studies.

We choose to keep obstacle avoidance as a benchmark
task because it can be implemented with different number of
robots, requires basic sensors and actuators available in most
mobile robots, and the performance metric can be defined to
be fully evaluated with on-board resources. Thus, it can serve
as a benchmark for testing learning algorithms with real robots
in the same way that standard benchmark functions are used
in numerical optimization.
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Particle Swarm Optimization (PSO) is a relatively new
metaheuristic originally introduced by Kennedy and Eberhart
[5], which was inspired by the movement of flocks of birds and
schools of fish. Because of its simplicity and versatility, PSO
has been used in a wide range of applications such as antenna
design, communication networks, finance, power systems, and
scheduling. Within the robotics domain, popular topics are
robotic search, path planning, and odor source localization [6].

PSO is well-suited for distributed/decentralized implemen-
tation due to its distinct individual and social components and
its use of the neighborhood concept. Most of the work on
distributed implementation has been focused on benchmark
functions running on computational clusters [7]–[9]. Imple-
mentations with mobile robots are mostly applied to odor
source localization [10], [11], and robotic search [12], where
the particles’ position is usually directly matched to the robots’
position in the arena. Thus, the search is conducted in two
dimensions and with few or even only one local minima, which
does not represent a complex optimization problem.

Most of the research on optimization in noisy environments
has focused on evolutionary algorithms [13]. The performance
of PSO under noise has not been studied as extensively.
Parsopoulos and Vrahatis showed that standard PSO was able
to cope with noisy and continuously changing environments,
and even suggested that noise may help to avoid local minima
[14]. Pan et al. proposed a hybrid PSO-Optimal Computing
Budget Allocation (OCBA) technique for function optimiza-
tion in noisy environments [15]. Pugh et al. showed that PSO
could outperform Genetic Algorithms on benchmark functions
and for certain scenarios of limited-time learning under the
presence of noise [3], [16].

In our previous work [17], we analyzed in simulation
how different algorithmic parameters in a distributed imple-
mentation of PSO affect the total evaluation time and the
resulting fitness. We proposed guidelines aiming to reduce
the total evaluation time so that it is feasible to implement
the adaptation process within the limits of the robots’ energy
autonomy without renouncing the benefits of a population-
based, evaluative learning algorithm.

Reinforcement Learning (RL) [18] is a learning method
which tries to maximize the expected cumulative reward for
an agent during its lifetime using the interaction with the
environment. RL attempts to learn the optimal policy, which
can be thought of as a mapping from the system’s perceptual
states to its actions, using the reward signal in each step. There
have been numerous works on applying RL methods to the
robotic domain. An extensive survey can be found in [19].

Mobile robots in particular have been the focus of study
for a number of researchers in this area. [20] presents a
framework for using RL on mobile robots with the ability to
incorporate human knowledge about the task. In the initial
phase, the RL system passively observes the states, actions
and rewards encountered by the robot until the policy is
good enough to control the robot. [21] introduces Bayesian-
discrimination-function-based Reinforcement Learning (BRL)
which adaptively segments the state and action spaces through
the learning process, eliminating the need for the state and
action spaces to be designed by a human. This method has
proven to be effective at handling problems in multi-robot

systems which operate in a dynamic environment. In [22]
RL has been formulated to solve the multi-robot obstacle
avoidance problem in a noisy and dynamic environment while
reducing the space of states and actions through the use of
conditions and behaviors.

Q-learning is a common RL method which learns the
utility of performing actions in particular states. In [4] a
neural network is used to store the Q-values for a continuous
state and discrete action problem. This formulation is shown
to enhance the learning ability of the agent for solving the
obstacle avoidance problem in a complicated and unpredictable
environment. In [23] a function approximation method based
on radial basis functions and Gaussian functions is used for
estimating the state value function in a biped robot control
problem. The learning algorithm proposed by the authors is
swarm reinforcement learning, which combines concepts from
population-based methods with reinforcement learning.

The continuous nature of the obstacle-avoidance task both
in terms of the states (sensory information) and actions (wheel
speeds) complicates the use of the conventional Q-learning
method. Therefore, we have chosen two different approaches
to manage the complexity in the size of state and action spaces.
In our first approach, state and action spaces are discretized
using a fixed number of intervals. In the second approach, a
neural network is used as a function approximator to store the
Q-values with a continuous state space, as proposed by [4].

III. MATERIALS AND METHODS

This paper discusses a case study of multi-robot obstacle
avoidance, a basic behavior in robotics. Robots navigate au-
tonomously in a square arena of 1 m2 in which walls and
other robots are the only obstacles. We use the same metric
of performance that Floreano and Mondada defined for their
homing experiment in an empty arena in [2]. The metric of
performance consists of two factors, both normalized to the
interval [0, 1] (Eq. 1)

f = fv · (1− fi) (1)

fv =
1

Neval

Neval
∑

k=1

|vl,k + vr,k|

2
(2)

fi =
1

Neval

Neval
∑

k=1

imax,k (3)

{vl,k, vr,k} are the normalized speeds of the left and right
wheels at time step k, imax,k is the normalized proximity
sensor activation value of the most active sensor at time step k,
and Neval is the number of time steps in the evaluation period.
This function rewards robots that move quickly forwards or
backwards and spend as little time as possible near obstacles.

Our experimental platform is the Khepera III mobile robot,
a differential wheeled vehicle with a diameter of 12 cm. The
Khepera III is equipped with nine infra-red sensors as well as
five ultrasound sensors for short and medium range obstacle
detection. The experiments were carried out in simulation
using Webots [24], a physics-based simulator that models
dynamical effects such as friction and inertia, and individual
sensors and actuators (Figure 1).



Fig. 1. Simulation of 4 Khepera III robots navigating in a square arena.

Since the response of the Khepera III proximity sensors
is not a linear function of the distance to the obstacle, the
proximity values were linearized and normalized using mea-
surements of the real robot sensor’s response as a function
of distance. This linearization and normalization results in a
proximity value of 1 when touching an obstacle, and a value
of 0 when the distance to the obstacle is equal or larger than
10 cm.

The multi-robot obstacle avoidance task as described
presents four distinct sources of uncertainties in the perfor-
mance evaluations: the proximity sensors’ noise, the robots’
wheel slip, the initial pose for each evaluation, and the be-
havior of other robots in the arena (which constitute moving
obstacles).

The controller architecture for PSO is a linear Braitenberg
controller (Equation 4). The wheel speeds {vl, vr} depend
on the normalized proximity sensor values {i1, · · · , i9}, and
the 20 weight parameters {w0, · · · , w19} (one weight per
proximity sensor per wheel, and the two wheel speed biases).

vl = w0 +

9
∑

k=1

ik · wk

vr = w10 +

9
∑

k=1

ik · wk+10 (4)

The optimization problem for PSO then becomes choosing
the set of weights {w0, · · · , w19} such that the fitness function
f as defined in Equation 1 is maximized. It should be noted
that even thought the wheel speed is a linear function of
the proximity sensor values, there is no explicit mathematical
expression of the fitness as a function of the weight parameters
of the controller. This mapping could result in a more or
less nonlinear, discontinuous landscape, which depends on the
direct interactions between the robot and the environment,
which are not known in advance. This justifies the use of a
black-box optimization metaheuristic such as PSO.

In addition to the continuous Braitenberg controller, two
discrete controller versions were implemented to analyze the
impact of discretization on the final performance and to com-
pare with the two Q-learning approaches. In the first case, the

1: Intialize particles
2: for Ni iterations do
3: for ⌈Np/Nrob⌉ particles do
4: Update particle position
5: Evaluate particle
6: Re-evaluate personal best
7: Share personal best
8: end for
9: end for

Fig. 2. Noise-resistant PSO algorithm

input proximity sensor values are discretized to binary values
using a threshold of 0.5, which corresponds to half of the
proximity senors’ range (10 cm), and the output speeds are dis-
cretized to the closest of the 5 values {±vmax,±vmax/2, 0}.
In the second case, the proximity sensor values remain con-
tinuous and the output speeds are discretized to the closest of
the 3 values {±vmax, 0}.

The PSO algorithm is the noise-resistant variation intro-
duced by Pugh et al. [16], which consists in re-evaluating
personal best positions and aggregating them with the previous
evaluations (in our case a regular average performed at each
iteration of the algorithm). The pseudocode for the algorithm
is shown in Figure 2.

The movement of particle i in dimension j depends on
three components: the velocity at the previous step weighted by
an inertia coefficient wI , a randomized attraction to its personal
best x∗

i,j weighted by wp, and a randomized attraction to the

neighborhood’s best x∗
i′,j weighted by wn (Eq. 5). rand() is

a random number drawn from a uniform distribution between
0 and 1.

Vi,j := wI · Vi,j + wp · rand() · (x
∗
i,j − xi,j)

+wn · rand() · (x∗
i′,j − xi,j) (5)

xi,j := xi,j + Vi,j (6)

The neighborhood presents a ring topology with one
neighbor on each side. Particles’ positions and velocities are
initialized randomly with a uniform distribution in the [-20,
20] interval, and their maximum velocity is also limited to
that interval. At the beginning of each evaluation, the robots’
pose is randomized to reduce the influence of the previous
evaluations. At the end of each optimization run, the best
solution is tested with 40 evaluations of 20 s, and the final
performance is the average of these final evaluations.

The total evaluation time for PSO depends on four factors:
population size (Np), individual candidate evaluation time (te),
number of iterations of the algorithm (Ni), and number of re-
evaluations of the personal best position associated with each
candidate solution (Nre), as shown in Eq. 7. This equation
does not take into account the time required for the final
performance evaluations.

ttot = te ·Np ·Ni · (Nre + 1) (7)

In a parallelized or distributed implementation, fitness
evaluations are distributed among Nrob robots, and the wall-



TABLE I. PSO PARAMETER VALUES

Parameter Value

Population size Np 20

Iterations Ni 30

Evaluation span te 20 s

Re-evaluations Nre 1

Personal weight wp 2.0

Neighborhood weight wn 2.0

Dimension D 20

Inertia wI 0.8

Vmax 20

clock time twc required to evaluate candidate solutions is
reduced (Eq. 8).

twc = te ·

⌈

Np

Nrob

⌉

·Ni · (Nre + 1) (8)

The PSO algorithmic parameters are set following the
guidelines for limited-time adaptation we presented in our
previous work [17] and are shown in Table I.

To solve the problem of obstacle avoidance with Rein-
forcement Learning we have used the Q-learning method.
Q-learning attempts to learn the quality of a state-action
combination Q(st, at) using the update formula shown in
Equation 9. α is the learning rate, r is the reward at each
time step, and γ is the discount factor. The states are given by
the proximity sensor values at each time step, and the actions
are the possible wheel speeds. st is the current state of the
robot, at is the current action of the robot in st, st+1 is the
next state that the robot will encounter after performing at in
st and at+1 stands for all possible actions that the robot can
perform in its next state.

Q(st, at) := (1− α)Q(st, at) + α[r + γmax
at+1

Q(st+1, at+1)]

(9)

The problem of perceptual aliasing occurs when different
states in the world appear to be similar from the perception of
the robot but require different responses. This aliasing is due to
the partial observation of the world in our problem. Since the
robot is not aware of its absolute position in the arena and all
of its surroundings including other obstacles out of its range,
it can receive identical sensory information in different parts
of the arena. Imagine a position A in the arena where there
is no obstacle sensed by the robot but if the robot moves one
step forward it would sense an obstacle also imagine another
position B where there are no obstacles sensed but if the robot
moves one step back it would sense an obstacle. Positions A
and B are mapped to the same state from the perception of the
robot whereas they require different actions.

Because of partial observation, we have chosen a softMax
probabilistic actions selection policy that allows better actions
to be chosen according to how high their Q-value is, balancing
exploration and exploitation (Equation 10). The temperature T
is set so that it gradually decreases and remains a small but
positive value to allow the actions that are nearly as good to
have a chance to be selected.

p(s, a) =
eQ(s,a)/T

∑

a′

eQ(s,a′)/T
(10)

TABLE II. Q-LEARNING PARAMETER VALUES FOR THE FIRST

APPROACH

Parameter Value

α0 = 1
Learning Rate α αk+1 = αk/1.0001

α ≥ 0.3
Discount Factor γ 0.5

T0 = 20
Temperature T Tk+1 = Tk/1.0008

T ≥ 0.05
Binary Threshold 0.5

The reward signal used at each time step is the same as the
fitness function that we are aiming to optimize using PSO,
given in Equation 1. Unlike most RL problems, in this problem
there is not a concrete final goal. Instead, we are concerned
with achieving a high fitness and maintaining it throughout the
lifetime of the robot.

One key feature of RL methods which is not present in our
problem formulation is the use of intermediate rewards in order
to reach a goal or find a solution. Incorporating appropriate
intermediate rewards can significantly speed up the learning
process. However, we have chosen not to alter the reward
signal from the fitness function due to two reasons. Firstly,
not modifying the reward enables us to directly compare the
progress of the learning in terms of fitness as a function of
time with PSO. Secondly, the role of intermediate rewards in
shaping the behavior of the robot makes defining an appro-
priate intermediate reward signal without creating misleading
biases a challenging problem.

In our first Q-learning approach, the state and action space
have been discretized to overcome the complexity arising from
continuous state and action spaces when dealing with RL
methods. Discretization decreases the size of state and action
spaces, thus speeding up the learning, but also results in a
performance drop in terms of fitness. We have discretized the
sensory information using a predefined threshold to indicate
safe and unsafe zones in terms of the chance of collision. This
thresholding implies that we will have a binary coding of each
sensors information and all sensors together will form the state
of the robot in every step. We have set five possible speed
levels for each wheel: {±vmax,±vmax/2, 0}. There are two
wheels and nine distance sensors on each robot, resulting in a
total number of 52 different possible actions and 92 possible
states. The learning parameter values for the first Q-learning
approach are shown in Table II.

In our second approach, continuous state and discrete
action space Q-learning, the Q-values are stored in a neural
network to allow a more compact representation of the states
and also interpolation for the unvisited state-action pairs. In
every step of the simulation, the robot senses the environment
through its sensors, which are the input nodes of the neural
network. The outputs of the network specify the Q-values
for that state with each output corresponding to one state-
action pair. Unlike [4], a softMax selection policy is used to
select an action to be performed. The reward perceived from
the environment is used to calculate the new value for the
selected state-action pair using the Q-learning update formula
(Equation 9).

The weights of the neural network are adjusted every step
of the simulation using the back propagation algorithm (BP).



TABLE III. Q-LEARNING PARAMETER VALUES FOR THE SECOND

APPROACH

Parameter Value

α0 = 1
Learning Rate α αk+1 = αk/1.000001

α = 0 after episode 1000

Discount Factor γ 0.5

T0 = 20
Temperature T Tk+1 = Tk/1.000007

The error signal used for the adjustment is the difference
between the new and old Q-values for the selected state-action
pair. All other output nodes will have target values equal to
their Q-values in the previous step, and therefore the error
signal will be zero for all unselected actions.

In order to reduce the complexity of the neural network,
the number of possible actions was reduced with respect to the
first approach. There are three action levels to choose from,
{±vmax, 0} for each wheel, which makes the total number
of possible actions for every state to be 32. The number of
inputs is the same as the number of sensors which is nine.
There are 18 nodes in the hidden layer, and nine output nodes,
corresponding to the Q-values of the nine possible actions.
The activation function used for the hidden and output layer
is sigmoid. After the error signal is specified, the network
weights are tuned k = 4 times with the same input and output
for better adjustment. Table III contains the parameters used
for this approach.

We have conducted 2 sets of experiments for each Q-
learning approach. The first experiment involves a single robot
moving in the arena, and the second experiment involves 4
robots moving in the arena at the same time. When there
are 4 robots learning at the same time, there is no direct
communication to assist in solving the problem. The robots
play the role of dynamic obstacles for one another, creating
a harder more complex dynamic instance of the obstacle
avoidance problem. In the distributed implementation of PSO,
on the other hand, there is solution sharing between neighbors
which speeds up the learning process.

For the first RL approach each robot performs 1000 learn-
ing episodes of 20 s. The final performance of each robot is the
average of the rewards during the last 200 episodes. We have
tested every experiment 20 times and the results are the average
of all runs. For the second approach, each experiment was
conducted 100 times for 1500 episodes of 20 s. The evaluation
phase goes from episode 1000 to 1500.

IV. RESULTS AND DISCUSSION

The results of this paper are presented as follows: Sec-
tion IV-A shows the performance of PSO in terms of fitness
and evaluation time. Section IV-B presents a similar analysis
with Q-learning and discusses the differences between the two
approaches. Finally, Section V concludes the paper with a
summary of our findings and presents an outlook of our future
work.

A. PSO Results

Figure 3 shows the final performance obtained by applying
PSO under six different experimental conditions: 3 different
discretization levels each tested with 2 different number of
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Fig. 3. Final performance for 100 runs of PSO for three different discretiza-
tion levels, each implemented using 1 and 4 robots. CC stands for continuous
sensors and continuous speeds, CD continuous sensors and discrete speeds,
and DD discrete sensors and discrete speeds. The box represents the upper and
lower quartiles, the line across the middle marks the median, and the crosses
show outliers.

robots. The 3 different discretization levels are abbreviated
as follows: CC stands for continuous sensors and continuous
speeds, CD continuous sensors and discrete speeds (3 possible
output speeds), and DD discrete sensors and discrete speeds
(binary sensors and 5 possible output speeds). Each discretiza-
tion level was tested with 1 and 4 robots.

The purpose of the discretized Braitenberg PSO optimiza-
tion runs is to differentiate the impact of discretization from
the learning when comparing with Q-learning, which works
with discrete state and actions and therefore requires the
discretization of proximity sensor inputs and wheel speed
outputs. Discretizing only the output speeds (CD controllers)
has no statistically significant impact on the final fitness when
compared with the fully continuous controllers (CC), both
in the single and in the multi-robot case (Mann-Whitney U
test, p = 0.32 and p = 0.34 respectively). Discretizing
also the proximity sensors (DD controllers), however, has a
noticeable impact on the fitness. For the single robot case,
the mean drops from 0.82 to 0.72, a statistically significant
performance difference (Mann-Whitney U test, p = 2.7e−34).
For the multi-robot case, the mean drops from 0.73 to 0.65
(p = 9.9e− 29).

Figure 4 shows the progress of the PSO optimization
as a function of evaluation time for continuous (CC) and
discretized (DD) Braitenberg controllers with 1 robot in the
arena. For all temporal progress graphs, the horizontal axis
was converted from iterations to evaluation time in seconds
to enable comparisons among algorithms regardless of how
evaluation time is assigned (i.e. length of episodes, iterations,
etc.) For both controllers, the fitness of the best solution found
by the swarm increases rapidly during the initial 10000 s, and
then continues to increase although at a much lower pace. Also,
the standard deviation between runs decreases with time as
the optimization process converges towards a high-performing
solution. The discretization lowers the final fitness but it does
not seem to affect the convergence time of the algorithm.

Figure 5 shows the progress of PSO as a function of
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Fig. 4. PSO best fitness as a function of time for continuous and discretized
Braitenberg controllers with 1 robot in the arena. The curves are the average
of 100 independent PSO runs, markers are placed at each iteration, error bars
represent one standard deviation.
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Fig. 5. PSO best fitness as a function of time for continuous and discretized
Braitenberg controllers with 4 robots in the arena.

evaluation time with 4 robots in the arena, again for continuous
(CC) and discretized (DD) Braitenberg controllers. When
comparing between 1 and 4 robots, it can be noted that
in the multi-robot case the fitness is not only lower but
also much noisier due to the effect of other uncoordinated
robots in the arena. Additionally, due to the distributed PSO
implementation, the total evaluation time employed is reduced
by a factor of 4 in the multi-robot case.

In order to separate the effect of the learning from the
number of robots in the arena, we performed an additional
control experiment using continuous controllers (CC) with 4
robots in the arena, where one robot is learning and the other
3 robots are avoiding obstacles with a previously optimized
controller. Figure 6 compares the final performance obtained
with one robot learning (single robot in the arena), one robot
learning and 3 other robots avoiding, and 4 robots learning
in the arena. The performance in both cases with 4 robots
in the arena is significantly lower than the case with 1 robot
due to the fact that the added robots represent more obstacles
in the same area. However, there is no significant difference
in the final fitness between one robot learning and 3 avoiding,
and 4 robots learning (Mann-Whitney U test, p = 0.44), which
shows that distributing the adaptation process has no significant
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Fig. 6. Performance of final evaluations for 100 independent runs of PSO
with 1 robot learning, 1 learning and 3 avoiding, and 4 robots learning, using
continuous controllers (CC).

TABLE IV. MEAN AND STANDARD DEVIATION OF THE FINAL

PERFORMANCE FOR THE DIFFERENT EXPERIMENTS.

Algorithm Sensors Speeds Nrob Mean Std

PSO discrete discrete 1 0.72 0.04

PSO continuous discrete 1 0.81 0.02

PSO continuous continuous 1 0.82 0.02

PSO discrete discrete 4 0.65 0.03

PSO continuous discrete 4 0.72 0.03

PSO continuous continuous 4 0.73 0.03

Q-learning discrete discrete 1 0.72 0.15

Q-learning continuous discrete 1 0.73 0.25

Q-learning discrete discrete 4 0.55 0.17

Q-learning continuous discrete 4 0.72 0.22

impact on the final fitness even though it reduces the required
total evaluation time by a factor equal to the number of robots.
The results of the final performance for PSO under the different
experimental conditions are summarized in Table IV. The next
section presents the Q-learning results and compares them with
the PSO results discussed in this section.

B. Q-learning Results

Figures 7 and 8 show the mean reward as a function of
time for 20 runs of the Q-learning algorithm for single and
multi-robot learning for the first RL approach. In the case of
multi-robot learning, the average performance of the 4 robots
is depicted. In the single robot case, we can see that the al-
gorithm converges at around 8000 seconds which corresponds
to episode 400. In the 4 robot case, the performance keeps
improving after 8000 seconds until the end of the experiment,
although at a much slower pace than during the initial episodes.

Both the single and the multi-robot case show a larger
standard deviation between runs than PSO (see Table IV). This
increase may be due to the probabilistic nature of the softMax
policy, as other sources of uncertainties were kept constant
between the different experiments.

Figure 9 shows the performance of the single robot using
the second approach: continuous state Q-learning. We can
see a convergence in the performance of the robot after the
first 25000 seconds of the simulation, which shows a lower
learning speed comparing to the first approach. This is partly
due to the higher exploration and more gradual decrease of
the temperature for the softMax Policy in the second RL
approach. The standard deviation increases with time, but the
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Fig. 7. Mean and standard deviation of fitness for a single robot using the
first RL approach.
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Fig. 8. Mean and standard deviation of fitness for 4 robots using the first
RL approach.
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Fig. 9. Mean and standard deviation of fitness for a single robot using the
second RL approach.

coefficient of variation (ratio of the standard deviation to the
mean) remains constant at a value of 0.34. The behavior seen
is avoiding the obstacles and moving about but mainly in
the center of the arena. For the single robot case, the final
performance obtained with both Q-learning approaches is very
similar to the one obtained with PSO with discrete sensors and
speeds, around 0.72 (see Table IV).
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Fig. 10. Mean and standard deviation of fitness for 4 robots using the second
RL approach.

Figure 10 shows the performance of the second Q-learning
approach in the 4 robot scenario. The fitness and the conver-
gence time are nearly the same as in the single robot case
(compare with Figure 9). The final fitness of 0.72 is very
similar to the one obtained with PSO with continuous sensors
and discrete wheel speeds, and it is significantly higher than
the one obtained with the first Q-learning approach.

It is noteworthy to mention that Q-learning tries to find
a probabilistic mapping from states to actions, whereas the
Braitenberg controller calculates the output as a linear function
of the inputs. Thus, the smoother behaviors seen with PSO
are partly due to the nature of the controller, whereas it is
easier to see behaviors with discontinuous movements like
going back and forth with Q-learning. It is therefore difficult to
decouple the effects of the learning from the influence of the
underlying control structure. The second Q-learning approach
reduces these differences with the use of a continuous state
space, but the outputs of the neural network are the Q-values
of every action, and not the action itself. Therefore, the neural
network should not be interpreted as the robots’ controller,
as the output speeds are still determined with a probabilistic
state-to-action mapping.

V. CONCLUSION

We have presented multi-robot obstacle avoidance as a
benchmark robotic task for optimization in the presence of
uncertainties. The four sources of uncertainties for the given
performance metric were the proximity sensors’ noise, the
robots’ wheel slip, the initial pose, and the behavior of other
robots in the arena.

We have applied two different evaluative learning tech-
niques to solve this task: a noise-resistant variation of PSO
and Q-learning. PSO was used to optimize 20 parameters of
a linear Braitenberg controller. Three levels of discretization
were implemented to compare with the Q-learning approaches:
continuous sensors and speeds, continuous sensors and discrete
speeds, and discrete sensors and speeds. In the case of Q-
learning, two different approaches were presented. In the first
approach, a probabilistic policy that maps discrete states to
actions was learned. For the second approach, a neural network
enabled us to store the Q-values for continuous states and



use the conventional Q-learning method to find an appropriate
policy.

We showed that the discretization of the proximity sensors
had the highest impact on the fitness for both learning algo-
rithms. Continuous PSO had the highest fitness overall, and
Q-learning with continuous states significantly outperformed
Q-learning with discrete states.

Regarding the learning time, PSO and Q-learning with
discrete states required a similar amount of total evaluation
time for the single robot case. Both techniques converged
to a solution in less than 10000 seconds. Q-learning with
continuous states required more time to converge, but achieved
a higher final fitness than Q-learning with discrete states. In
the multi-robot case, both Q-learning approaches converged in
a similar amount of time as in the single robot case but the
time required by PSO was significantly reduced due to the
distributed nature of the algorithm.

As future work, we intend to expand the set of robotic
benchmarks with new tasks of differing complexity and to
employ different controller architectures. We are also interested
in testing distributed Q-learning implementations along with
algorithmic variations and hybridizations of PSO and Q-
learning that can be implemented in a distributed fashion.
Finally, we would like to evaluate different techniques for
handling uncertainties in the scenarios discussed in this paper.
Our final goal is to devise a set of general guidelines for fast,
robust adaptation of high-performing robotic controllers.
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