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Imagine that you are blindfolded inside an unknown room. You
snap your fingers and listen to the room’s response. Can you hear
the shape of the room? Some people can do it naturally, but can
we design computer algorithms that hear rooms? We show how
to compute the shape of a convex polyhedral room from its re-
sponse to a known sound, recorded by a few microphones. Geo-
metric relationships between the arrival times of echoes enable us
to “blindfoldedly” estimate the room geometry. This is achieved
by exploiting the properties of Euclidean distance matrices. Fur-
thermore, we show that under mild conditions, first-order echoes
provide a unique description of convex polyhedral rooms. Our
algorithm starts from the recorded impulse responses and pro-
ceeds by learning the correct assignment of echoes to walls. In
contrast to earlier methods, the proposed algorithm reconstructs
the full 3D geometry of the room from a single sound emission,
and with an arbitrary geometry of the microphone array. As long
as the microphones can hear the echoes, we can position them as
we want. Besides answering a basic question about the inverse
problem of room acoustics, our results find applications in areas
such as architectural acoustics, indoor localization, virtual reality,
and audio forensics.
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In a famous paper (1), Mark Kac asks the question “Can one hear
the shape of a drum?” More concretely, he asks whether two

membranes of different shapes necessarily resonate at different
frequencies.* This problem is related to a question in astrophysics
(2), and the answer turns out to be negative: Using tools from group
representation theory, Gordon et al. (3, 4) presented several ele-
gantly constructed counterexamples, including the two polygonal
drum shapes shown in Fig. 1. Although geometrically distinct, the
two drums have the same resonant frequencies.†

In this work, we ask a similar question about rooms. Assume
you are blindfolded inside a room; you snap your fingers and
listen to echoes. Can you hear the shape of the room? Intuitively,
and for simple room shapes, we know that this is possible. A
shoebox room, for example, has well-defined modes, from which
we can derive its size. However, the question is challenging in
more general cases, even if we presume that the room impulse
response (RIR) contains an arbitrarily long set of echoes (as-
suming an ideal, noiseless measurement) that should specify the
room geometry.
It might appear that Kac’s problem and the question we pose

are equivalent. This is not the case, for the sound of a drum de-
pends on more than its set of resonant frequencies (eigenvalues)—
it also depends on its resonant modes (eigenvectors). In the paper
“Drums that sound the same” (5), Chapman explains how to
construct drums of different shapes with matching resonant fre-
quencies. Still, these drums would hardly sound the same if hit
with a drumstick. They share the resonant frequencies, but the
impulse responses are different. Even a single drum struck at
different points sounds differently. Fig. 1 shows this clearly.
Certain animals can indeed “hear” their environment. Bats,

dolphins, and some birds probe the environment by emitting
sounds and then use echoes to navigate. It is remarkable to note
that there are people that can do the same, or better. Daniel
Kish produces clicks with his mouth, and uses echoes to learn the

shape, distance, and density of objects around him (6). The main
cues for human echolocators are early reflections. Our computer
algorithms also use early reflections to calculate shapes of rooms.
Many applications benefit from knowing the room geometry.

Indoor sound-source localization is usually considered difficult,
because the reflections are difficult to predict and they masquer-
ade as sources. However, in rooms one can do localization more
accurately than in free-field if the room geometry (7–10) is known.
In teleconferencing, auralization, and virtual reality, one often
needs to compensate the room influence or create an illusion of
a specific room. The success of these tasks largely depends on the
accurate modeling of the early reflections (11), which in turn
requires the knowledge of the wall locations.
We show how to reconstruct a convex polyhedral room from a

few impulse responses. Our method relies on learning from which
wall a particular echo originates. There are two challenges with this
approach: First, it is difficult to extract echoes from RIRs; and
second, the microphones receive echoes from walls in different
orders. Our main contribution is an algorithm that selects the
“correct” combinations of echoes, specifically those that actually
correspond to walls. The need for assigning echoes to walls arises
from the omnidirectionality of the source and the receivers.
There have been several attempts in estimating the room ge-

ometry from RIRs (12–14). In (13), the problem is formulated in
2D, and the authors take advantage of multiple source locations to
estimate the geometry. In (14) the authors address the problem by
ℓ1-regularized templatematching with a premeasured dictionary of
impulse responses. Their approach requires measuring a very large
matrix of impulse responses for a fixed-source–receiver geometry.
The authors in (15) propose a 3D room reconstruction method by
assuming that the array is small enough so that there is no need to
assign echoes to walls. They use sparse RIRs obtained by directing
the loudspeaker to many orientations and processing the obtained
responses. In contrast, our method works with arbitrary mea-
surement geometries. Furthermore, we prove that the first-order
echoes provide a unique description of the room for almost all
setups. A subspace-based formulation allows us to use theminimal
number of microphones (four microphones in 3D). It is impossible
to further reduce the number of microphones, unless we consider
higher-order echoes, as attempted in (12). However, the arrival
times of higher-order echoes are often challenging to obtain and
delicate to use, both for theoretical and practical reasons.
Therefore, in the proposed method, we choose to use more than
one microphone, avoiding the need for higher-order echoes.
In addition to theoretical analysis, we validate the results ex-

perimentally by hearing rooms on Ecole Polytechnique Fédérale
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de Lausanne (EPFL) campus. Moreover, by running it in a portal
of the Lausanne cathedral, we show that the algorithm still gives
useful output even when the room thoroughly violates the as-
sumptions of it being a convex polyhedron.

Modeling
We consider the room to be a K-faced convex polyhedron. We
work in 3D, but the results extend to arbitrary dimensionalities
(2D is interesting for some applications). Sound propagation in
a room is described by a family of RIRs. An RIR models the
channel between a fixed source and a fixed receiver. It contains
the direct path and the reflections. Ideally, it is a train of pulses,
each corresponding to an echo. For the mth microphone it is
given by

hmðtÞ=
X
i

αm;iδ
�
t− τm;i

�
: [1]

Microphones hear the convolution of the emitted sound with the
corresponding RIR, ym = x * hm =

R
xðsÞhmð · − sÞds. By measur-

ing the impulse responses we access the propagation times τm;i,
and these can be linked to the room geometry by the image
source (IS) model (17, 18). According to the IS model, we can
replace reflections by virtual sources. As illustrated in Fig. 2,

virtual sources are mirror images of the true sources across the
corresponding reflecting walls. From the figure, the image ~si of
the source s with respect to the ith wall is computed as

~si = s+ 2hpi − s;niini; [2]

where ni is the unit normal, and pi any point belonging to the ith
wall. The time of arrival (TOA) of the echo from the ith wall is
ti = k~si − rk=c, where c is the speed of sound.
In a convex room with a known source, knowing the image

sources is equivalent to knowing the walls—we can search for
points instead of searching for walls. The challenge is that the
distances are unlabeled: It might happen that the kth peak in the
RIR from microphone 1 and the kth peak in the RIR from
microphone 2 come from different walls. This is illustrated in
Figs. 3 and 4. Thus, we have to address the problem of echo
labeling. The loudspeaker position need not be known. We can
estimate it from the direct sound using either TOA measure-
ments, or differences of TOAs if the loudspeaker is not syn-
chronized with the microphones (19–21).
In practice, having a method to find good combinations of

echoes is far more important than only sorting correctly selected
echoes. Impulse responses contain peaks that do not correspond
to any wall. These spurious peaks can be introduced by noise,
nonlinearities, and other imperfections in the measurement
system. We find that a good strategy is to select a number of
peaks greater than the number of walls and then to prune the
selection. Furthermore, some second-order echoes might arrive
before some first-order ones. The image sources corresponding
to second-order or higher-order echoes (e.g., Fig. 2) will be es-
timated as any other image source. However, because we can
express a second-order image source in terms of the first-order
ones as

~sij =~si + 2
�
pj −~si;nj

�
nj; [3]

and ��s−~sij
��=

��~si −~sj
��; [4]

we can eliminate it during postprocessing by testing the above
two expressions.

Echo Labeling
The purpose of echo labeling is twofold. First, it serves to remove
the “ghost” echoes (that do not correspond to walls) detected at
the peak-picking stage. Second, it determines the correct assign-
ment between the remaining echoes and the walls.We propose two
methods for recognizing correct echo combinations. The first one
is based on the properties of Euclidean distance matricesðEDMÞ,
and the second one on a simple linear subspace condition.

EDM-Based Approach. Consider a room with a loudspeaker and an
array ofMmicrophones positioned so that they hear the first-order
echoes (we typically use M = 5). Denote the receiver positions by
r1; . . . ; rM , rm ∈R3 and the source position by s∈R3. The de-
scribed setup is illustrated in Fig. 5. We explain the EDM-based
echo sorting with reference to this figure. Let D∈RM ×M be a
matrix whose entries are squared distances between microphones,
D½i; j�= kri−rjk22, 1≤ i; j≤M. Here, D is an EDM corresponding to
the microphone setup. It is symmetric with a zero diagonal and
positive off-diagonal entries.
If the loudspeaker emits a sound, each microphone receives

the direct sound and K first-order echoes corresponding to the
K walls. The arrival times of the received echoes are proportional
to the distances between image sources and microphones. As

Nodal line: a drum hit here 
will not ring this mode

Anti-node: a drum hit here 
will ring strongly with 

Fig. 1. Figure shows two isospectral drums (16). Although geometrically
distinct, these drums have the same resonant frequencies. The standing
waves corresponding to the eigenvalue λ6 are shown for both drums. It is
clear that this mode will be excited with different amplitudes, depending on
where we hit the drum. Extremes are nodes and anti-nodes.

Wall i 

Wall j 

Fig. 2. Illustration of the image source model for first- and second-order
echoes. Vector ni is the outward-pointing unit normal associated with the ith
wall. Stars denote the image sources, and ~sij is the image source corre-
sponding to the second-order echo. Sound rays corresponding to first re-
flections are shown in blue, and the ray corresponding to the second-order
reflection is shown in red.
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already discussed, we face a labeling problem as we do not know
which wall generated which echo. This problem is illustrated in
Fig. 3 for two walls and in Fig. 4 for the whole room. Simple
heuristics, such as grouping the closest pulses or using the or-
dinal number of a pulse, have limited applicability, especially
with larger distances between microphones. That these criteria
fail is evident from Fig. 4.
We propose a solution based on the properties of EDMs. The

loudspeaker and the microphones are—to a good approximation—
points in space, so their pairwise distances form an EDM. We can
exploit the rank property: An EDM corresponding to a point set
in Rn has rank at most ðn+ 2Þ (22). Thus, in 3D, its rank is at most
5. We start from a known point set (the microphones) and want to
add another point—an image source. This requires adding a row and
a column to D, listing squared distances between the microphones
and the image source. We extract the list of candidate distances
from theRIRs, but some of themmight not correspond to an image
source; and for those that do correspond, we do not know to which
one. Consider again the setup in Fig. 5. Microphone 1 hears echoes
from all of the walls, and we augment D by choosing different echo
combinations. Two possible augmentations are shown. Here,Daug;1
is a plausible augmentation of D because all of the distances cor-
respond to a single image source, and they appear in the correct
order. This matrix passes the rank test, or more specifically, it is an
EDM. The second matrix, Daug;2, is a result of an incorrect echo
assignment, as it contains entries coming from different walls. A
priori, we cannot tell whether the red echo comes from wall 1 or

from wall 2. It is simply an unlabeled peak in the RIR recorded by
microphone 1. However, the augmentedmatrixDaug;2 does not pass
the rank test, so we conclude that the corresponding combination of
echoes is not correct.
To summarize, wrong assignments lead to augmentations of D

that are notEDMs. In particular, these augmentations do not have
the correct rank. As it is very unlikely (as will be made precise
later) for incorrect combinations of echoes to form an EDM, we
have designed a tool to detect correct echo combinations.
More formally, let em list the candidate distances computed

from the RIR recorded by the mth microphone. We proceed by
augmenting the matrix D with a combination of M unlabeled
squared distances dði1;...;iM Þ to get Daug,

Daug
�
dði1 ;...;iM Þ

�
=
�

D dði1;...;iM Þ
d⊤ði1;...;iM Þ 0

�
: [5]

The column vector dði1;...;iM Þ is constructed as

dði1 ;...;iM Þ½m�= e2m½im�; [6]

with im ∈ f1; . . . ; lengthðemÞg. In words, we construct a candidate
combination of echoes d by selecting one echo from each micro-
phone. Note that lengthðemÞ≠ lengthðenÞ for m≠ n in general.
That is, we can pick a different number of echoes from different
microphones. We interpret Daug as an object encoding a partic-
ular selection of echoes d.
One might think of EDM as a mold. It is very much like

Cinderella’s glass slipper: If you can snugly fit a tuple of echoes
in it, then they must be the right echoes. This is the key obser-
vation: If rankðDaugÞ< 6 or more specifically Daug verifies the
EDM property, then the selected combination of echoes corre-
sponds to an image source, or equivalently to a wall. Even if this
approach requires testing all of the echo combinations, in prac-
tical cases the number of combinations is small enough that this
does not present a problem.

Subspace-Based Approach. An alternative method to obtain cor-
rect echo combinations is based on a simple linear condition.
Note that we can always choose the origin of the coordinate
system so that

XM
m= 1

rm = 0: [7]

Let ~sk be the location vector of the image source with respect to
wall k. Then, up to a permutation, we receive at the mth micro-
phone the squared distance information,

yk;m =
def ��~sk − rm

��2 = ��~sk��2 − 2  ~s⊤krm + krmk2: [8]

Define further ~yk;m =def − 1
2 ðyk;m − krmk2Þ= r⊤m~sk − 1

2k~skk2. We have
in vector form

2
6664
~yk;1
~yk;2
⋮

~yk;M

3
7775=

2
6666666664

r⊤1 −
1
2

r⊤2 −
1
2

⋮ ⋮

r⊤M −
1
2

3
7777777775

"
~sk��~sk��2

#
;   or  ~yk =R~uk: [9]

Thanks to the condition 7, we have that

Microphone 1

Microphone 2

1
2

A

B

Fig. 3. Illustration of echo swapping. Microphone 1 hears the echo from the
red wall before hearing the echo from the blue wall, because path A is
shorter than path B. The opposite happens for microphone 2.
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Fig. 4. Actual room impulses responses acquired in a room sketched on the
Left (see experiments for more details). First peak corresponds to direct
propagation. Detected echoes are highlighted in green. Annotations above
the peaks indicate the ordinal number of the peak, and the wall to which
it corresponds (south, north, east, west, floor, and ceiling). We can see that
the ordinal number of the W-peak changes from one impulse response to
another (similarly for E and S). For larger microphone arrays this effect
becomes more dramatic. We also see that some peaks do not correspond to
walls. Our algorithm successfully groups peaks corresponding to the same
wall, and disregards irrelevant peaks.
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1⊤~yk = −
M
2

��~sk��2  or  
��~sk��2 = −

2
M

XM
m= 1

~yk;m: [10]

The image source is found as

~sk =S~yk; [11]

where S is a matrix satisfying

SR=

2
4 1 0 0 0
0 1 0 0
0 0 1 0

3
5: [12]

These two conditions characterize the distance information. In
practice, it is sufficient to verify the linear constraint

~yk ∈ rangeðRÞ; [13]

where rangeðRÞ is a proper subspace when M ≥ 5. However, note
that we can use the nonlinear condition 10 even if M = 4.

Uniqueness. Can we guarantee that only one room corresponds
to the collected first-order echoes? To answer this, we first define
the set of “good” rooms in which our algorithm can be applied.
The algorithm relies on the knowledge of first-order echoes, so
we require that the microphones hear them. This defines a good
room, which is in fact a combination of the room geometry and
the microphone array/loudspeaker location.

Definition 1: (Feasibility). Given a room R and a loudspeaker po-
sition s, we say that the point x∈R is feasible if amicrophone placed
at x receives all the first-order echoes of a pulse emitted from s.
Our argument is probabilistic: The set of vectors d such that

rank Daug = 5 has measure zero in R5. Analogously, in the sub-
space formulation, rangeðRÞ is a proper subspace of R5 thus
having measure zero. To use four microphones, observe that the
same is true for the set of vectors satisfying [10] in R4. These
observations, along with some technical details, enable us to
state the uniqueness result.‡

Theorem 1. Consider a room with a loudspeaker and M ≥ 4 micro-
phones placed uniformly at random inside the feasible region. Then
the unlabeled set of first-order echoes uniquely specifies the room

with probability 1. In other words, almost surely exactly one as-
signment of first-order echoes to walls describes a room.
This means that we can reconstruct any convex polyhedral

room if the microphones are in the feasible region. A similar
result could be stated by randomizing the room instead of the
microphone setup, but that would require us to go through the
inconvenience of generating a random convex room. In the fol-
lowing, we concentrate on the EDM criterion, as it performs
better in experiments.

Practical Algorithm
In practice, we face different sources of uncertainty. One such
source is the way we measure the distances between microphones.
We can try to reduce this error by calibrating the array, but we find
the proposed schemes to be very stable with respect to uncer-
tainties in array calibration. Additional sources of error are the
finite sampling rate and the limited precision of peak-picking
algorithms. These are partly caused by unknown loudspeaker and
microphone impulse responses, and general imperfections in RIR
measurement. They can be mitigated with higher sampling fre-
quencies and more sophisticated time-of-arrival estimation algo-
rithms. At any rate, testing the rank ofDaug is not a way to go in the
presence of measurement uncertainties. The solution is to mea-
sure how close Daug is to an EDM. We can consider different
constructions:

(i) Heuristics based on the singular values of Daug;

(ii) distance of ~yk from rangeðRÞ (Eq. 13);
(iii) nonlinear norm condition 10; and

(iv) distance between Daug and the closest EDM.

The approach based on the singular values ofDaug captures only
the rank requirement on the matrix. However, the requirement
that Daug be an EDM brings in many additional subtle depen-
dencies between its elements. For instance, we have that (23)

Daug ∈EDM⇔

	
I−

1
M + 1

11⊤


Daug

	
I−

1
M + 1

11⊤



� 0: [14]

Unfortunately [14], does not allow us to specify the ambient
dimension of the point set. Imposing this constraint leads to even
more dependencies between the matrix elements, and the result-
ing set of matrices is no longer a cone (it is actually not convex
anymore). Nevertheless, we can apply the family of algorithms
used in multidimensional scaling (MDS) (23) to find the closest
EDM between the points in a fixed ambient dimension.

Multidimensional Scaling. As discussed, in the presence of noise
the rank test on Daug is inadequate. A good way of dealing with
this nuisance (as verified through experiments) is to measure
how close Daug is to an EDM. To this end we use MDS to con-
struct the point set in a given dimension (3D) that produces the
EDM “closest” to Daug. MDS was originally proposed in psy-
chometrics (24) for data visualization. Many adaptations of the
method have been proposed for sensor localization. We use the
so-called “s-stress” criterion (25). Given an observed noisy matrix
~Daug, s-stressð~DaugÞ is the value of the following optimization
program,

min: 
X
i; j

�
Daug½i; j�− ~Daug½i; j�

�2
  s:t: Daug ∈EDM3: [15]

By EDM3 we denote the set of EDMs generated by point sets in
R3. We say that s-stressð~DaugÞ is the score of the matrix ~Daug, and
use it to assess the likelihood that a combination of echoes

1

23

4

Wall 1
W

al
l 2

(Microphone distances)

Fig. 5. Illustration of EDM-based echo sorting. Microphones receive the
echoes from all of the walls, and we aim to identify echoes coming from a
single wall. We select one echo from each microphone and use these echoes
to augment the EDM of the microphone setup, D. If all of the selected echoes
come from the same wall, the augmented matrix is an EDM as well. In the
figure, Daug;1 is an EDM because it contains the distances to a single point ~s1;
Daug;2 contains a wrong distance (shown in red) for microphone 1, so it is not
an EDM. For aesthetic reasons the distances are specified to a single decimal
place. Full precision entries are given in the SI Text.

‡Proof is given in SI Text.
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corresponds to a wall. A method for solving [15] is described in
the SI Text.

Reconstruction Algorithm. Combining the described ingredients,
we design an algorithm for estimating the shape of a room. The
algorithm takes as input the arrival times of echoes at different
microphones (computed from RIRs). For every combination of
echoes, it computes the score using the criterion of choice. We
specialize to constructing the matrix Daug as in (5) and computing
the s-stress score. For the highest ranked combinations of ech-
oes, it computes the image-source locations. We use an addi-
tional step to eliminate ghost echoes, second-order image
sources, and other impossible solutions. Note that we do not
discuss peak picking (selecting peaks from RIRs) in this work.
The algorithm is summarized as

i) For every dði1;...;iM Þ, score½dði1;...;iM Þ�← s-stressðDaugÞ;
ii) sort the scores collected in score;

iii) compute the image source locations;

iv) remove image sources that do not correspond to walls (higher-
order by using step iii, ghost sources by heuristics); and

v) reconstruct the room.

Step iv is described in more detail in the SI Text. It is not
necessary to test all echo combinations. An echo from a fixed
wall will arrive at all of the microphones within the time given by
the largest intermicrophone distance. Therefore, it suffices to
combine echoes within a temporal window corresponding to the
array diameter. This substantially reduces the running time of
the algorithm. As a consequence, we can be less conservative
in the peak-picking stage. A discussion of the influence of errors
in the image-source estimates on the estimated plane parameters
is provided in (15).

Experiments
We ran the experiments in two distinctly different environments. One set was
conducted in a lecture room at EPFL, where our modeling assumptions are
approximately satisfied. Another experiment was conducted in a portal of the
Lausanne cathedral. The portal is nonconvex, with numerous nonplanar
reflecting objects. It essentially violates the modeling assumptions, and the
objectivewas to seewhether the algorithm still gives useful information. In all
experiments, microphones were arranged in an arbitrary geometry, and we
measured the distances between themicrophones approximately with a tape

measure. We did not use any specialized equipment or microphone arrays.
Nevertheless, the obtained results are remarkably accurate and robust.

The lecture room is depicted in Fig. 6A. Two walls are glass windows, and
two are gypsum-board partitions. The room is equipped with a perforated
metal-plate ceiling suspended below a concrete ceiling. To make the ge-
ometry of the room more interesting, we replaced one wall by a wall made
of tables. Results are shown for two positions of the table wall and two
different source types. We used an off-the-shelf directional loudspeaker, an
omnidirectional loudspeaker, and five nonmatched omnidirectional micro-
phones. RIRs were estimated by the sine sweep technique (26). In the first
experiment, we used an omnidirectional loudspeaker to excite the room,
and the algorithm reconstructed all six walls correctly, as shown in Fig. 6B.
Note that the floor and the ceiling are estimated near perfectly. In the
second experiment, we used a directional loudspeaker. As the power radi-
ated to the rear by this loudspeaker is small, we placed it against the north
wall, thus avoiding the need to reconstruct it. Surprisingly, even though the
loudspeaker is directional, the proposed algorithm reconstructs all of the
remaining walls accurately, including the floor and the ceiling.

Fig. 6D and F shows a panoramic view and thefloor plan of the portal of the
Lausanne cathedral. The central part is a pit reached by two stairs. The side and
back walls are closed by glass windows, with their lower parts in concrete. In
front of each side wall, there are two columns, and the walls are joined by
column rows indicated in the figure. The ceiling is a dome ∼9 m high. We used
a directional loudspeaker placed at the point L in Fig. 6F. Microphones were
placed around the center of the portal. Alas, in this case we do not have a way
to remove unwanted image sources, as the portal is poorly approximated by
a convex polyhedron. The glass front, numeral 1 in Fig. 6F, and the floor be-
neath themicrophone array can be considered flat surfaces. For all of the other
boundaries of the room, this assumption does not hold. The arched roof cannot
be represented by a single height estimate. The sidewindows, numerals 2 and 3
in Fig. 6F, with pillars in front of them and erratic structural elements at the
height of the microphones, the rear wall, and the angled corners with large
pillars and large statues, all present irregular surfaces creating diffuse reflec-
tions. Despite the complex room structure with obstacles in front of the walls
and numerous small objects resulting in many small-amplitude, temporally
spread echoes, the proposed algorithm correctly groups the echoes corre-
sponding to the three glass walls and the floor. This certifies the robustness of
the method. More details about the experiments are given in the SI Text.

Discussion
We presented an algorithm for reconstructing the 3D geometry of
a convex polyhedral room from a few acoustic measurements. It
requires a single sound emission and uses a minimal number of
microphones. The proposed algorithm has essentially no constraints
on the microphone setup. Thus, we can arbitrarily reposition the
microphones, as long as we know their pairwise distances (in our
experiments we did not “design” the geometry of the microphone
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Fig. 6. (A) Illustration of the room used in the experiment with a movable wall. (B and C) Two reconstruction results. Real values are indicated in red, and the
estimated values are indicated in black. (D) Panoramic photo of the portal of the Lausanne cathedral. (E) A close up of the microphone array used in cathedral
experiments. (F) Floor plan of the portal.
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setup). Further, we proved that the first-order echoes collected by
a few microphones indeed describe a room uniquely. Taking the
image source point of view enabled us to derive clean criteria for
echo sorting.
Our algorithm opens the way for different applications in virtual

reality, auralization, architectural acoustics, and audio forensics.
For example, we can use it to design acoustic spaces with desired
characteristics or to change the auditory perception of existing
spaces. The proposed echo-sorting solution is useful beyond
hearing rooms. Examples are omnidirectional radar, multiple-
input–multiple-output channel estimation, and indoor localiza-

tion to name a few. As an extension of our method, a person
walking around the room and talking into a cellphone could en-
able us to both hear the room and find the person’s location.
Future research will aim at exploring these various applications.
Results presented in this article are reproducible. The code for

echo sorting is available at http://rr.epfl.ch.
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