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ABSTRACT
This article presents a modular, flow-insensitive type-and-
effect system for purity with lightweight annotations. It
does not enforce a global programming discipline and allows
arbitrary effects to occur in impure parts of the program.
The system is designed to support higher-order languages
that mix functional and imperative code like Scala or C#.
We show that it can express purity of non-local programming
patterns which involve mutable state such as those used in
the Scala collections library. We formalize the type system
using a functional language with mutable records and define
type and effect soundness.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; F.3.3 [Studies of Program Constructs]:
Type structure

General Terms
Languages, Theory

Keywords
purity, type-and-effect systems

1. INTRODUCTION
In this article we present a type-and-effect system for

verifying purity in higher-order languages. Our system does
not enforce any global programming discipline: it can ensure
purity in certain parts of a program while allowing arbitrary
aliasing and side-effects to occur elsewhere.

Such a type system has many potential applications. Be-
sides providing valuable verified documentation, it can en-
force implicit purity constraints in parallel code or enable
safe parallel execution as shown in [2]. Purity information
can also be exploited in various ways to improve performance.
For instance in Scala, when inlining a method defined in a
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singleton object, the compiler still has to insert an access to
the object. The reason is that the object constructor, which
is executed on the first access, might have side-effects.

The type system we present builds on the ideas introduced
by Pearce in JPure [15], a purity system for Java. Like in
JPure effects are computed using a modular, intraprocedural
analysis based on effect annotations. We use the same con-
cept of locality to denote private state which is part of the
representation of an object. Our contributions are as follows:

• Our effect system is flow-insensitive which makes it
suitable for higher-order languages such as Scala or
C#. Flow-insensitivity also enables the effect system
to be integrated with existing frameworks for effect
checking ([10], [17]).

• We generalize the notion of freshness and allow annotat-
ing the precise locality a function’s return value. This
enables our system to correctly express the behavior of
getter methods which are ubiquitous in Scala.

• Our system allows effect annotations of nested methods
to refer to parameters and variables from the enclos-
ing scope, which is important for expressing effects in
higher-order code.

• We provide a formalization of the type system with
static and dynamic semantics and we discuss soundness
theorems for type safety and purity.

The next section gives an overview of the effect system
and shows that it can express purity of important non-local
programming patterns which involve mutable state.

2. OVERVIEW

2.1 Purity and Freshness
Our type-and-effect system is based on the observation that

a method which modifies only freshly allocated objects has no
observable effect for its clients and therefore can be considered
pure. However, a simple system which annotates methods as
pure or impure is unable to express some important side-effect
free programming patterns used in practice, for instance the
use of an iterator:

def contains(i: Int, l: List): Boolean = {

val it = l.iterator()

while (it.hasNext())

if (it.next() == i) return true

false

}
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We notice that the method contains does not have an observ-
able side-effect: l.iterator() returns a new object, hasNext()
is pure and next() only modifies fields of the fresh object it.
These updates are not observable for a caller of contains.

However, method next does have the side-effect of modify-
ing the iterator and therefore has to be annotated as impure.
Since contains invokes an impure method it also needs to be
be annotated as impure.

To overcome this limitation we introduce more precise
effect annotations which specify the parameters a method
can modify:

class Iterator[T] { def next(): T @mod(this) = { .. } }

In the body of contains, it is known to be a fresh, no-aliased
object. Therefore effects on it can be masked and contains

is considered pure.

2.2 Ownership and Locality
The system outlined so far fails to express the purity

of another common programming pattern which uses only
locally scoped effects. If an object holds internal state which
is never shared with other objects or instances, modifications
of that state can be encapsulated as modifications of the
object itself.

Such an example is the Builder class used in the Scala
collections library [13] which supports appending elements
and retrieving the resulting collection.

class Builder[T, Res] {

@local private var a: Array[T] = ..

def append(e: T): Unit @mod(this) = { .. }

def result: Res @mod() = { .. }

}

The builder implementation above uses an internal array to
store the appended elements. Like in the iterator example,
if a fresh builder is used within a method to add elements
and eventually obtain a collection, the effects on that builder
and its array are not observable from the outside.

In order to support objects with internal data structures
the system is extended with a simple notion of ownership.
By marking a field of an object as @local, the programmer
defines the internal state of the object accessible through that
field to be owned by the outer object. A method annotated
with effect @mod(o) is not only allowed to modify the fields of
o, but also the fields of objects owned by o.

For every object its locality is defined as the transitive
closure of all objects reachable through fields annotated
@local. The type system ensures that an object type checks
as being fresh only if all objects in its locality are also fresh.

2.3 Tracking Localities
The effect annotation @mod(o) on a method ensures that if

the value passed for o in a specific invocation is known to be
fresh, then that invocation only modifies fresh state.

In our first example, purity of the method contains depends
on the fact that the iterator it is known to be fresh, so
modifying its fields does not modify any state that existed
before. But how does the type system know that an object is
fresh? The answer is a third kind of annotation, the locality
annotation @loc, which specifies the locality of the object
that a method returns.

If a method always returns a freshly allocated object whose
locality cannot be accessed through any previously existing
state, then that method is called fresh and is annotated with

the empty locality @loc(). The most prominent examples of
such methods are factory methods, but there are other im-
portant fresh methods such as List.iterator() which always
creates a new iterator.

There are also methods which sometimes return a fresh
object, depending on the parameters. The most common case
is getters of local fields, such as getCounter in the following
example:

class HasCounter {

@local var counter = new Counter()

def getCounter: Counter @loc(this) = counter

}

Remember that if an object type checks as fresh, all objects
in its locality are also fresh. Therefore a getter with locality
@loc(this) returns a fresh object if the receiver object is
known to be fresh:

def test: Int @mod() = {

val hc = new HasCounter // hc is fresh

val c = hc.getCounter // c is also fresh

c.inc() // modifies only fresh state

}

Note that at each call site, effects on parameters are trans-
lated by the type system according to the localities of the
corresponding arguments. In the following example, the ef-
fect @mod(this) of method inc in class HasCounter is translated
to @mod(hc):

def incHc(hc: HasCounter): Int @mod(hc) = {

val c = hc.getCounter // c has locality hc

c.inc() // modifies the locality of c

}

Getters are common in many languages, but even more
so in Scala where every field access is performed through an
accessor method [12]. When applying the type system in
practice, the ability to precisely express the return locality of
methods is therefore of fundamental importance. The effect
of a setter method is expressed using a @mod annotation:

def setC(hc: HasCounter, c: Counter): Unit @mod(hc, c) =

{ hc.counter = c }

Note that the effect annotation includes not only the modified
object hc, but also the stored object c. The reason is that
the counter c is captured in the locality of the other object hc.
The effect annotation states that an invocation of the setter
can be considered pure only if both involved objects are
fresh. This restriction is important to maintain the freshness
invariant: otherwise we could store some non-fresh counter c

inside the locality of a fresh object hc.
Our final example is a factory method that accepts an

initial value for the local field of the constructed object. It
returns a fresh object, but the argument object is stored in
the result:

def mkHC(c: Counter): HasCounter @mod(c) @loc() = {

val hc = new HasCounter()

hc.counter = c

hc

}

The assignment has effect @mod(hc, c) and the result locality
of the method body is @loc(hc). Once the local variable hc

gets out of scope, references to it are replaced by its initial
locality and we obtain the annotations in the code.

The freshness annotation @loc() seems surprising at first:



the returned object can only be typed as fresh if the param-
eter c is also fresh, otherwise it has non-fresh state in its
locality.

However, in combination with the @mod(c) annotation the
freshness annotation is safe. Intuitively, any term which
does have a side-effect can create aliases between the modi-
fied object and previously fresh state and hereby invalidate
freshness. Therefore objects are only known to be fresh in
pure contexts. In the example of mkHC, this means that the
resulting object can only be considered fresh if the argument
for c is also fresh, otherwise the effect on the argument might
have invalidated freshness.

Note that annotating the method mkHC with the result
locality @loc(c) is equivalent and does not introduce any
imprecision. One could say that the @loc() annotation of a
method implicitly contains all localities from the method’s
@mod effect.

2.4 Higher-order Code
Since effect annotations use variable and parameter names

as abstract locations, our effect system applies naturally to
nested methods and higher-order functions. For instance, a
nested method can update the state of a local variable in the
enclosing scope:

def t(): Int @mod() = {

val c = new Counter()

def up(): Unit @mod(c) { c.inc() }

up()

}

In order to support functions that act on their environment,
localities of variables are flow-insensitive. This restriction is
not limiting in practice because we use effects to record if a
variable gets stored in some other locality, as shown in the
mkHC example in the previous section. The advantage of a
flow-insensitive system is that in a sequence of statements
and subroutine invocations, effects can simply be joined,
there is no ordering between effects. A flow-sensitive system
would also require more complex effect annotations that can
express the sequence of effects on abstract locations.

Similar to nested methods, also higher-order functions can
have effects on their environment. Together with a language
that supports effect-polymorphism we obtain a powerful
system that can verify purity of higher-order code which uses
local state.

We implemented the purity type system in our frame-
work for effect checking in Scala1 which is based on the
effect-polymorphic type system described in [17]. In the
following example, the method foreach of class List is effect-
polymorphic: this means that the effect of invoking foreach

depends on the effect of its argument function.

def length(l: List): Int @mod() = {

val c = new Counter()

l.foreach(e => c.inc())

c.get

}

The function literal e => c.inc() has effect @mod(c), therefore
the call to foreach also has effect @mod(c). Since the object c is
known to be freshly allocated within length, the modification
effect can be masked and the method body is type checked
as pure.

1Available on https://github.com/lrytz/efftp

t ::= let x = p in t let binding
| x.l := y assignment
| x variable

p ::= (x : T )→ t abstraction
| x y application

| {[local] l = x} record construction
| x.l selection
| t term

T ::= (x : T )
e−→loc T function type

| {[local] l : T} record type
loc ::= x | any locality annotation
e ::= x | any effect annotation

Γ ::= x : T ◦ loc variable typing
Σ ::= r : T store typing

v ::= r reference
| [(x : T )→ t;V ] closure

H ::= ∅ | H, r 7→ {[local] l = v} heap
V ::= ∅ | V, x 7→ v stack
K ::= halt | [x;V ;K; p] continuation

Figure 1: Core language syntax

We have not formally studied the interaction between the
purity effect system and the framework for polymorphic
effect checking, but the empirical results we gained with the
implementation look promising.

3. FORMALIZATION
We formalize the type-and-effect system for purity in the

context of a lambda calculus with mutable records, presented
in Figure 1. The language is in A-normal form [6] so that
all intermediate terms are named. It does not feature ar-
bitrary mutable references (cf. [16], Chapter 13) but limits
assignments to the fields of records.

To define the locality of an object as presented in Section
2, the syntax for record literals allows fields to be optionally
annotated local. Likewise, record types register which fields
of an object are local.

Function types consist of a parameter name and type, a
latent effect e describing the localities the function might
modify, a locality annotation loc which designates the locality
of the returned value and a return type.

The effect and locality annotations are either a list of
variables x or the unknown locality “any”. We use ∅ to denote
the empty list: methods with an empty effect annotation are
pure, an empty locality annotation describes methods that
return fresh objects. A method with the “any” effect might
modify any existing object and create arbitrary aliases in the
heap. A locality annotation “any” says that the locality of
the returned object is unknown.

The following example creates a counter, increments it
and returns its value (it assumes integers to be part of the
language):

let c = {x = 1} in
let inc = ( : {})→

let v = c.x in
c.x := v + 1 in

let = inc {} in
let r = c.x in r



T ′ <: T . Reflexivity and transitivity are omitted.

l ⊆ l′ ∀i.l′i = li ⇒ T ′
i <: Ti ∧ Ti <: T ′

i ∧ local l′i = local li

{[local] l′ : T ′} <: {[local] l : T}
(S-Rec)

T1 <: T ′
1 [x/x′]T ′

2 <: T2

[x/x′] e′ v e [x/x′]loc′ ≤ loc

(x′ : T ′
1)

e′−→loc′ T
′
2 <: (x : T1)

e−→loc T2

(S-Fun)

[loc/x]T [locx/x]{[local] l : T} = {[local] l : [locx/x]T}

T = (y : T1)
e−→loc T2 y 6= x

[locx/x]T = (y : [locx/x]T1)
[locx/x]e−−−−−−→[locx/x]loc [locx/x]T2

loc′ ≤ loc
loc′ ≤ any

x′ ⊆ x

x′ ≤ x

[locx/x]loc
loc = any ∨ x /∈ loc

[locx/x]loc = loc

x ∈ x

[any/x]x = any

x ∈ x

[x′/x]x = (x \ x), x′

e′ v e , [x/x′]e similar to loc′ ≤ loc, [x/x′]loc

Figure 2: Subtyping

Function inc has type ( : {}) c−→c {x : Int} with latent
effect c and also return locality c (assignments evaluate to
the assignee). The invocation of inc has therefore effect
c which is masked once c gets out of scope, making the
overall expression pure. The details of typing are explained
in Section 3.2.

3.1 Subtyping
The subtyping rules are presented in Figure 2. For function

types, the subtype needs to have a smaller effect and a more
precise locality. Using a pure function in places where an
effectful function is expected is safe, and similarly, a function
returning fresh objects can be safely used when a function
returning arbitrary objects is expected.

Effects and localities form a lattice with “any” as the top
element.

Since the fields of records are mutable, record subtyping
needs to be invariant (cf. [16], Chapter 15-5). Note that the
types need to agree on the “local” annotations on their fields.

3.2 Typing Rules
The typing statement in Figure 3 assigns a type T , a

locality loc and an effect e to an expression p. An effect x
can be understood as a requirement for the expression to
be pure: if all variables in x hold fresh objects, then the
expression can only modify fresh state and does not have
an observable effect. Similarly, a locality x says that the
expression evaluates to a fresh value if all variables in x are
fresh.

We now explore the typing rules using an example.

newHC = ( : {})→ // ( : {}) ∅−→∅ {local c : {x : Int}}
let k = {x = 0} in let r = {local c = k} in r

Function newHC returns a fresh object containing a counter.
For the literal {local c = k}, rule T-Rec assigns locality

k. T-Let of let binding k substitutes [∅/k] in that locality,
therefore the body of newHC type checks with locality ∅.

For brevity we introduce two type aliases in the next
example:

type K = {x : Int} type H = {local c : K}
setC = (hc : H)→ let g = (k : K)→ hc.c := k in g

The setter setC has type (hc : H)
∅−→any (k : K)

hc,k−−−→hc H.
We analyze a program which creates a counter, changes its
value and finally resets it:

let h = newHC {} in
let z = h.c in let = z.x := 2 in
let s = setC h in let = s {x = 0} in h

The effect of the assignment z.x := 2 is z. In the last line,
when applying the curried function setC to a first argument,
the parameter symbol is substituted as [h/hc] in the result

type. Therefore s has type (k : K)
h,k−−→h H. Applying s

to a fresh record now has effect h, so the body of the let
binding for z has a total effect z, h. The T-Let rule will
first substitute [∅/z](z, h) for the let binding of z, and finally
[∅/h]h for the let binding of h. Therefore the example type
checks as pure.

Care must be taken for functions that capture local vari-
ables from their environment:

let f = let c = {x = 0} in let g = ( : {})→ c in g

The function f returns a reference to the same object on
every invocation, so it cannot be considered fresh. This
problem is addressed by the meta-function “elim” in typing
rule T-Let which substitutes references to the local variable
in effect and localities by “any” (∅ in contravariant positions).

So f has type ( : {}) ∅−→any {x : Int}, it has no effect and
returns an object of unknown locality.

3.3 Dynamic Semantics
We define the semantics of our language using a CESK

machine ([5], [11]) in Figure 4. A machine state 〈H;V ;K; p〉
consists of a heap H, a stack V , a continuation K and an ex-
pression p. The relation −→ defines a small-step operational
semantics as transitions between machine states.

As described in Figure 1, a stack maps variables to values
where values are either heap references or closures. A heap
maps references to record literals where each label in the
record points to a value.

The function V maps expressions to variables using envi-
ronment V , and records changes to the heap H.

Each machine state holds a stack of continuations rooted
in the “halt” continuation which terminates execution. A
non-terminating continuation consist of a variable x, a stack
VK and an expression pK . Continuations are invoked in rule
E-Expr: once the current term p evaluates to a value v,
variable x is bound to v and execution resumes using VK

and pK . Evaluating a “let” term creates a new continuation
for the let body and continues by evaluating the variable
initializer.

The advantage of basing the semantics on environment
passing and continuations instead of substitution is that it
simplifies reasoning about localities. In a traditional seman-
tics a record literal would evaluate to a reference, which might
get replicated when substituting a function parameter. This



Γ ` p : T ◦ loc ! e

x : T ◦ loc ∈ Γ

Γ ` x : T ◦ loc ! ∅
(T-Param)

Γ ` p : T1 ◦ loc1 ! e1 Γ, x : T1 ◦ x ` t : T2 ◦ loc2 ! e2

Γ ` let x = p in t : elim(x, T2) ◦ [loc1/x]loc2 ! e1 ∪ [loc1/x]e2
(T-Let)

Γ, x : T1 ◦ x ` t : T ◦ loc ! e

Γ ` (x : T1)→ t : (x : T1)
e−→loc T ◦ any ! ∅

(T-Abs)

Γ ` p : T ′ ◦ loc′ ! e′

T ′ <: T loc′ ≤ loc e′ v e

Γ ` p : T ◦ loc ! e
(T-Sub)

Γ ` x : T ◦ loc ! ∅ locr =
⋃

i

{
loci if local li
∅ otherwise

Γ ` {[local] l = x} : {[local] l : T} ◦ locr ! ∅
(T-Rec)

Γ ` f : (x : T1)
e−→loc T2 ◦ any ! ∅

Γ ` a : T1 ◦ loca ! ∅
Γ ` f a : [loca/x]T2 ◦ [loca/x]loc ! [loca/x]e

(T-App)

Γ ` x : {[local] l : T} ◦ locx ! ∅ loc =

{
locx if local li
any otherwise

Γ ` x.li : Ti ◦ loc ! ∅
(T-Select)

Γ ` x : {[local] l : T} ◦ locx ! ∅
Γ ` y : Ti ◦ locy ! ∅ e =

{
locx ∪ locy if local li
locx otherwise

Γ ` x.li := y : {[local] l : T} ◦ locx ! e
(T-Assign)

elim(x, T ) = elim(x, T, any)

T = {[local] l : T ′}
elim(x, T, loc) = {[local] l : elim(x, T ′, loc)}

T = (y : T1)
e−→loc T2 y 6= x loc′x = if (locx = any) ∅, else any

elim(x, T, locx) = (y : elim(x, T1, loc
′
x))

[locx/x]e−−−−−−→[locx/x]loc elim(x, T2, locx)

Figure 3: Typing rules

V(p, V,H) = v;H′ V(y, V,H) = V (y);H

V((x : T )→ t, V,H) = [(x : T )→ t;V ];H

V({[local] l = y}, V,H) = r;H, r 7→ {[local] l = V (y)}

V (y) = r H(r) = {[local] l = v}
V(y.li, V,H) = vi;H

〈H;V ;K; p〉 −→ 〈H′;V ′;K′; p′〉

V(p, V,H) = v;H′

〈H;V ; [x;VK ;K; pK ]; p〉 −→ 〈H′;VK , x 7→ v;K; pK〉
(E-Expr)

V (f) = [(y : T )→ t1;Vf ] V (a) = va

〈H;V ;K; f a〉 −→
〈
H;Vf , y 7→ va;K; t1

〉 (E-App)

〈H;V ;K; let x = p in t〉 −→ 〈H;V ; [x;V ;K; t]; p〉
(E-Let)

V (x) = r H(r) = {[local] l = v}

〈H;V ;K;x.li := y〉 −→
〈

[r 7→ [V (y)/vi]{[local] l = v}]H;V ;K;x
〉

(E-Assign)

Figure 4: Dynamic Semantics

renders the preservation proof difficult because the typing
rules would need to keep track of the localities of references.

4. TOWARDS SOUNDNESS
We define soundness for our type-and-effect system using

a standard type safety theorem and an additional purity
theorem. In short, type safety states that a well-formed
machine state is either final, or it transitions into another
well-formed state of the same type. The purity theorem
ensures that if a term type checks as pure, then its evaluation
cannot modify any existing state. Due to limited space we
omit most formal definitions.

The type safety theorem ensures that a well-formed ma-
chine state steps to a well-formed machine state. A machine is
well-formed if it satisfies the judgment Γ; Σ ` 〈H;V ;K; p〉 :
T ◦ loc ! e. This judgment ensures a valid typing of expression
p and various well-formedness conditions for the configura-
tion, including the freshness invariant freshSeparate which
will be discussed below.

The typing for expression p has the form Γ ` p : Tp ◦
locp ! ep. However, p is only an intermediate expression of
the entire program, the rest of the program is represented

by the continuation K. Since the program has type T , the
continuation is required to map a value of type Tp to the
final type T , which is ensured by well-formedness of the
continuation stack: Σ ` K : Tp ◦ locp ! ep ⇒ T ◦ loc ! e.

Theorem 1. Type Safety: if Γ; Σ ` 〈H;V ;K; p〉 : T ◦
loc ! e then either the state is final, or 〈H;V ;K; p〉 −→
〈H ′;V ′;K′; p′〉 and Γ′; Σ′ ` 〈H ′;V ′;K′; p′〉 : T ◦ loc ! e for
some Γ′ and Σ′ ⊇ Σ.

Note that the environment Γ′ which describes the resulting
stack V ′ is unconstrained: in the case of E-App and E-Expr,
V ′ origins in the invoked closure or continuation and is
therefore not directly related to V .

To motivate the purity theorem we look at an example:

let c = {x = 1} in c.x := 2

This program transitions through the following states:

〈∅; ∅; halt; let c = . . .〉 −→
〈∅; ∅; [c; ∅; halt; c.x := 2]; {x = 1}〉 −→
〈rc 7→ {x = 1}; c 7→ rc; halt; c.x := 2〉 −→
〈rc 7→ {x = 2}; c 7→ rc; halt; c〉



Even though the initial program type checks as pure, the last
transition clearly modifies the heap. However, type safety
requires that each of the machine states type checks with
the initial type, locality and effect. Therefore we need a way
to type check the expression c.x := 2 as pure, which is only
possible if the variable x is fresh in the typing environment,
i.e. (x : {c : Int} ◦ ∅) ∈ Γ.

This raises the question of how purity is defined in the
presence of expressions which do modify the heap. The idea
is that a pure expression is allowed to modify the localities
of variables which are fresh in the typing environment Γ. In
order to delimit the scope of these effects and to ensure that
only fresh state can be modified, we define the freshness in-
variant freshSeparate which every well-formed machine state
has to satisfy.

Definition 1. freshSeparate(Γ, H, V ) holds if the localities
of fresh variables in Γ are not reachable through other vari-
ables in the environment. The formal definition is omitted.

Definition 2. The locality of a reference r in heap H in-
cludes r and the localities of all local fields in the record
H(r).

H(r) = {[local] l = v} lc =
⋃

{i|local li=ri} locality(ri, H)

locality(r,H) = r ∪ lc

In our example, the only fresh variable is c with locality rc.
Since there are no paths to rc starting at non-fresh variables,
the separation invariant holds.

The purity theorem states that if the expression of a well-
formed state type checks as pure, then a transition can only
modify localities of fresh variables.

Theorem 2. Purity: if Γ; Σ ` 〈H;V ;K; p〉 : T ◦ loc ! e
and Γ ` p : Tp◦locp ! ∅ and 〈H;V ;K; p〉 −→ 〈H ′;V ′;K′; p′〉,
then all references r such that H ′(r) 6= H(r) belong to the
locality of some fresh variable in Γ.

Note that the pure term p appears within a larger, possibly
impure program: the continuation K has an unknown effect
e. This shows that the effect system can express purity of
parts of a program while allowing arbitrary effects to occur
elsewhere.

In order to show that a subterm p does not modify any
existing state, we need to show that it can be typed in
an environment a Γ with no fresh variables. If we then
construct a machine state 〈H;V ; halt; p〉 by just inserting
the “halt” continuation, this state trivially type checks as
pure. Therefore, by type safety, also its successor states
have to be pure and the evaluation of p can not modify any
existing state.

There is however one major issue which we have not re-
solved yet: we do not have a way to ensure consistency of
typing environments across context switches. As explained
before, the resulting Γ′ in the type safety theorem is uncon-
strained. Assume an initial state s0 types as pure using a
Γ0 in which x is not fresh. After a number of transitions,
by type safety we know that the state si also types as pure
with respect to some environment Γi. Since there are no
constraints on the environments, x might be fresh in Γi. In
this case the next transition would be allowed to modify the
locality of x, which contradicts our intention given the initial
typing.

We are still investigating how the necessary consistency
requirements can be integrated in the well-formedness prop-
erties, in order to relate typing environments across context
switches.

5. RELATED WORK
The type system presented in this article is strongly in-

fluenced by JPure, a purity system for Java by Pearce [15].
Our notions of locality and freshness are equivalent to theirs.

In contrast to our system, JPure tracks the freshness of
local variables in a flow-sensitive manner. While being more
precise in some situation, a flow-sensitive system is difficult
to integrate into a language with nested methods and higher-
order code. Our observations in Scala let us believe that the
additional precision is not essential in practice.

Another difference which is essential for integration in
higher-order languages is that our system allows effect and
locality annotations to refer to parameters and variables from
the enclosing scope. Effect annotations in JPure can only
refer to the method’s parameters.

A method annotated @Fresh in JPure will always return
a freshly allocated object, while all other methods return
objects with an unknown locality (annotated @loc(any) in
our system). Our type system allows defining the locality
of the returned object more precisely, which enables us for
instance to correctly express the behavior of getters for local
fields. If an object is known to be fresh, then the values
stored in its local fields are guaranteed to be fresh as well.
Therefore the getter of a local field returns a fresh object if
the owner object is fresh, which is expressed as @loc(this)

in our system. In JPure the getter is annotated non-fresh,
therefore modifying a local field of a fresh object has the
unknown effect if the field is accessed through its getter.

In addition to defining the purity type system, Pearce
implemented an inference system and shows purity of a
significant portion of the Java library.

Ownership and universe type systems ([3], [4]) delimit the
scope of side effects by controlling aliasing. They enforce
disjointness of effects using a global programming discipline:
state modifications are restricted to certain access patterns,
programs which violate these patterns cannot be expressed.
Our type system on the other hand can only identify purity
of certain functions, but it allows programs with arbitrary
effects by type checking them with the unknown effect.

Sălcianu and Rinard use a pointer and escape analysis
to track side-effects [18]. The system performs a whole-
program analysis, like most systems based on points-to in-
formation. The focus of our work is on modularity and
providing lightweight effect annotations.

Huang el al. present a purity type system based on reference
immutability [7]. Their inference system scales to large
programs and is able to discover a significant amount of pure
methods in existing Java libraries. Integrating their type
system into a higher-order language would require further
research and is not immediately obvious.

State monads [8] can encapsulate local state within the
implementation of an externally pure algorithm, effects are
represented as value types. The Koka language [9] supports
inference for usages of local state and masks them by auto-
matically inserting runST commands.

DPJ [2] can ensure non-interference of parallel tasks using
an effect system built on the tradition of region-based effect
analysis. One of the goals of our work is to provide an effect



system with more lightweight effect annotations than typical
region-based systems.

There is a large body of related work in the area of program
verification. For instance, regional logic [1] uses a similar
notion of freshness and expresses framing conditions as effects.
Parkinson and Bierman apply separation logic to languages
with inheritance [14].

6. CONCLUSION
We presented an effect system for purity based on the

common definition that a method is pure if it only modifies
freshly allocated state. For example, finding an element in a
list using an iterator is a pure procedure, even though the
iterator modifies some state when it advances. Our system is
flow-insensitive and modular, yet precise enough to capture
common patterns of programming in Scala, which mixes
higher-order functional and imperative code. We achieve pre-
cision through lightweight annotations of effects on function
types and of ownership on fields.

In the future we will continue to work on the soundness
proofs for the type system. We will also continue to study
the interaction between the purity type system and our
framework for polymorphic effect checking [17], and we will
evaluate the practicality and scalability of our approach by
applying the implementation to larger bodies of code such
as the Scala standard library.
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