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Abstract: It is plausible to hypothesize that the spiking responses of certain neurons
represent functions of the spiking signals of other neurons. A natural ensuing question
concerns how to use experimental data to infer what kind of a function is being computed.
Model-based approaches typically require assumptions on how information is represented.
By contrast, information measures are sensitive only to relative behavior: information is
unchanged by applying arbitrary invertible transformations to the involved random variables.
This paper develops an approach based on the information bottleneck method that attempts
to find such functional relationships in a neuron population. Specifically, the information
bottleneck method is used to provide appropriate compact representations which can then be
parsed to infer functional relationships. In the present paper, the parsing step is specialized
to the case of remapped-linear functions. The approach is validated on artificial data and
then applied to recordings from the motor cortex of a macaque monkey performing an
arm-reaching task. Functional relationships are identified and shown to exhibit some degree
of persistence across multiple trials of the same experiment.
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1. Introduction

Information measures have been used frequently in neuroscience research mainly for answering
questions about neural coding. Neural coding is a fundamental aspect of neuroscience concerned with
the representation of sensory, motor, and other information in the brain by networks of neurons. It
characterizes the relationship between external sensory stimuli and the corresponding neural activity in
the form of time-dependent sequences of discrete action potentials known as spike trains [1]. Information
theory addresses issues similar to the ones posed in neural coding, such as: How is information encoded
and decoded? What does a response (output) tell us about a stimulus (input)? It is therefore used as a
general framework in neural coding for measuring how the neural responses vary with different stimuli
(see e.g., [2,3]). In classical neuroscience experiments, the responses of a single neuron to several stimuli
are recorded and information–theoretic tools are used to quantify neural code reliability by measuring
how much information about the stimuli is contained in neural responses.

New measurement techniques such as implanted tungsten micro-wire arrays lead to larger datasets.
They simultaneously measure the neural activity of multiple neurons. Consequently, on datasets of this
nature, additional questions pertaining to the network behavior of the neurons can be asked. Statistical
methods based on information measures such as mutual information and directed information have
been used to estimate fundamental properties from the data. For example, considerable research has
concerned the redundancy present in neural populations, see e.g., [4–8] and for the experimental data
setup considered in this paper, a redundancy study was presented in [9]. Another recent example is
the use of directed information to infer causal relationship between measured neurons (without any
physiological side information concerning, for example, monosynaptic connections), see [10]. For the
experimental data setup considered in this paper, a directed information study was presented in [11].

In this paper, we explore a novel application of information measures in neuroscience. Consider
the spiking signals of three neurons: we seek to explore whether one of those neurons might represent
a function of the other two neurons. Note that we are not assuming any knowledge or facts about
the synaptic connectivity of these neurons, such as direct monosynaptic connections. More abstractly
and generally, given samples from three processes, can we find evidence that one of these processes
represents a function of the other two? This question should not generally be expected to have a clear
answer since for repeated applications of the same input configuration, we would typically not expect
to observe the same output. Often, the question has to be posed in a relaxed setting: Does one of the
processes approximately represent a function of the others? If so, what function would this be? In the
present paper, we refer to this problem as function identification.

Many methods can be employed to find interesting solutions to the function identification problem.
For starters, we might restrict attention to a discrete and finite dictionary of functions and ask whether
one of these functions provides a good match. It is clear in this case, as long as we are not worried
about computational complexity, that we can simply try all functions in the dictionary. Then, using some
measure of distance, we can select the best match, and assess how close of a fit this represents. One
approach to measure distance could be to impose a parametric probabilistic model, where the parameters
would model the best function match as well as the characteristics of the disturbance (the “noise”). For
example, for neural responses, one could impose a so-called generalized linear model for the conditional
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distribution of the firing patterns of one neuron, given two (or more) other neurons. The parameters of the
model could then be selected via the usual maximum-likelihood approach, as done for example in [11].
Many other probabilistic models may be of interest. A related interesting approach to this problem has
been developed in [12].

A common property of all model-based approaches is that they require assumptions to be made
concerning how the observed signals represent information. To illustrate this issue, suppose that both
input processes as well as the output process take values in a discrete set, which we will refer to as their
representation alphabet. Let the ground truth be that the output process is simply a weighted sum of
the two input processes, subject to additive noise. Then, given samples of all three processes, it is easy
to find the weights of the sum by, for example, applying linear regression. Now, however, suppose that
the output process is subject to an arbitrary permutation of the representation alphabet. In this revised
setting, not knowing what permutation was applied, it is impossible for linear regression to identify the
weights of the sum. The deeper reason is that linear regression (and all related model-based approaches)
must assume a concrete meaning for the letters of the representation alphabet.

By contrast, if we look at this problem through the lens of information measures, we obtain a
different insight: the information between the input processes and the output process is unchanged by
the permutation operation, or in fact, by arbitrary invertible remappings. It is precisely this feature that
we aim to exploit in the present paper. Specifically, we tackle this problem through the lens of the
information bottleneck (IB) method, developed by Tishby et al. in [13]. We note that the IB method
has been used previously to study, understand, and interpret neural behavior, see e.g., [14,15]. At a high
level, the IB method produces a compact representation of the input processes with the property that as
much information as possible is retained about the output process. This compact representation depends
only on the relative (probabilistic) structure, rather than on the absolute representation alphabets. In this
sense, the IB method provides a non-parametric approach to the function identification problem.

To be more specific, the proposed method for function identification proceeds as follows: In the first
step, the data (e.g., the spiking sequences of the three neurons) is digested into probability distributions.
In this paper, we achieve this simply via histograms, but one could also use a parametric model for the
joint distribution and fit the model to the data. In the second step, the information bottleneck method
is used to produce a “compact” representation of two of the processes with respect to the third. In the
third step, this compact representation is parsed to identify functional behavior, if any. In the fourth and
final step, the closeness of the proposed fit is numerically assessed in order to establish whether there is
sufficient evidence to claim the identified function.

For the scope of the present paper, we consider simplified versions of the third step, the parsing of
the compact representation that was found by the IB method. Specifically, throughout the paper, we
consider what we refer to as remapped-linear functions. By this, we mean that we allow each of the
input processes to be arbitrarily remapped, but assume that the output process is a weighted sum of these
(possibly remapped) input processes, subject to a final remapping. A main contribution of the present
paper is the development of algorithms that take the compact representation provided by the IB method
and output good fits for the weights appearing in the sum. Our algorithms are of low complexity and
scale well to larger populations.
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When we apply our method to spiking data, we preprocess the spiking responses by partitioning the
time axis into bins of appropriate width, and merely retain the number of spikes for each bin. Hence,
the data in this special case takes values in the non-negative integers. Therefore, in this application, we
further restrict the weights appearing in the sum to be non-negative integers, too.

2. The Function Identification Problem

The function identification problem can be made precise in a number of ways. For the purpose of the
present paper, we phrase it in a probabilistic manner. We consider a multivariate distribution of (n + 1)

random variables, denoted by X = (X1, X2, . . . , Xn)T and Y. We denote the distribution by p(x, y),

and we think of X1, X2, . . . , Xn as the inputs, and of Y as the output. Then, the function identification
problem consists in finding a function f(X1, X2, . . . , Xn) such that

Y ≈ f(X) (1)

The key question, of course, concerns the approximation in this expression: How closely do Y and f(X)

agree with each other? Many approaches can be envisioned. For example, one could aim to find the
function f(X) that minimizes the mean-squared error E[(Y − f(X))2]. This is a classical problem from
estimation theory whose solution can be expressed as f(x) = E[Y |X = x]. It is not generally possible
to evaluate this expectation in a useful fashion, and it is also not clear whether the mean-squared error
is a meaningful criterion for the function identification problem. In the present paper, we will use an
information criterion to determine the goodness of the functional fit. That is, we aim to select the
function f(X) in such a way as to maximize I(f(X);Y ).

3. Approach via Information Measures

The problem of finding functional relationships encompassed by a set of random variables can be
tackled in different ways. In this paper, we attempt to solve the problem stated in Section 2 with the help
of information measures such as mutual information, see e.g., [16]. The mutual information I(f(X);Y )

between f(X) and Y can be perceived as a quantitative measure for evaluating the degree of closeness
between f(X) and Y . Therefore, I(f(X);Y ) can be set as an objective function to be maximized over
functions f.

By itself, this criterion is not useful—the trivial solution f(X) = X (i.e., the identity function)
maximizes the mutual information without revealing any functional structure. The key to making this
approach meaningful is to constrain the function to be as compact as possible. For the scope of the
present paper, we consider compactness also via the lens of information measures. A first, intuitively
pleasing measure of compactness is to simply impose an upper bound constraint on the cardinality of the
function f(X), i.e., the number of different output values the function has. If we denote this cardinality
by |f(X)| , we can express the function identification problem as

max
f :

|f(X)|≤Γ

I (f(X);Y ) (2)
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This problem does not appear to have a simple (algorithmic) solution. The key step enabling the
method proposed in this paper is to (temporarily) generalize the notion of a function. To this end, let us
identify the function value with a new random variable Z, defined as follows:

Z = f(X) (3)

At this point, it is natural to study the conditional probability distribution p(z|x). As long as we
have Z = f(X), this conditional probability distribution is degenerate—p(z|x) is equal to 1 whenever
z = f(x), and zero otherwise. Therefore, a tempting relaxation of the original problem is to optimize
over general conditional distributions p(z|x).

The next question is how to phrase the cardinality constraint in Equation (2) in this new setting.
Simply constraining the cardinality is not necessarily meaningful: it is acceptable for Z to assume many
different values, as long as most of them occur with small probability. Hence, an intuitively pleasing
option might be to constrain the entropy H(Z), but this does not appear to lead to a tractable solution.
Another option is to constrain the mutual information term

I(Z;X) = H(Z)−H(Z|X) (4)

which can also be interpreted as capturing the compactness of the mapping (see Remark 1 below) and is
sometimes referred to as the compression-information. Thus, we arrive at the following formulation:

max
p(z|x):

I(Z;X)≤Γ

I(Z;Y ) (5)

This formulation is precisely the problem known as the IB method. There exist several algorithms to
solve for the maximizing conditional distribution p(z|x), see e.g., [17].

Remark 1 (Intuitive Interpretation of I(Z;X) as Compactness). Using the Asymptotic Equipartition
Property (AEP) [16], the probability p(x) assigned to an observed input will be close to 2−H(X) and the
total number of (typical) inputs is ≈ 2H(X). In that sense, 2H(X) can be seen as the volume of X. Also,
for each (typical) value z of Z, there are 2H(X|Z) possible x input values which map to z, all of which
are equally likely. To ensure that no two input vectors map to the same z, the set of possible inputs x

has to be divided into subsets of size 2H(X|Z), where each subset corresponds to a different value of Z.
Thus, the average cardinality of the mapping (partition) of X is given by the ratio of the volume of X to
that of the mean partition:

2H(X)

2H(X|Z)
= 2I(Z;X) (6)

By this reasoning, the quantity I(Z;X) can be intuitively seen as a measure of compactness of Z.
Lower values of I(Z;X) correspond to a more compact Z and higher values for I(Z;X) correspond to
higher cardinalities of the functional mapping between X and Z.

Remark 2 (Limitation of Information Measures for Function Identification). Define Z ′ as follows:

Z ′ = G(γZ) (7)

where G is a uniquely invertible one-to-one mapping and γ ∈ R is a constant.
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For any Z ′ defined in such a way, I(Z;Y ) = I(Z ′;Y ). This result is trivial for the case where all
the involved variables are discrete as there would be a one-to-one mapping between Z (the support set
or alphabet of Z) and Z ′ (the alphabet of Z ′), making p(z, y) = p(z′, y) and thus I(Z;Y ) = I(Z ′;Y ).
This result also holds true for the continuous case due to the following argument:

If Z ′ is a homeomorphism (smooth and uniquely invertible map) of Z and JZ = ||∂Z/∂Z ′|| is the
Jacobian determinant of the transformation, then

p(z′) = JZ(z′)p(z) and p(z′, y) = JZ(z′)p(z, y) (8)

which gives

I(Z ′;Y ) =

∫ ∫
dz′dyp(z′, y) log

p(z′, y)

p(z′)p(y)

=

∫ ∫
dzdyp(z, y) log

p(z, y)

p(z)p(y)

= I(Z;Y ) (9)

This result implies that tackling the function estimation problem using an approach involving mutual
information cannot uniquely determine the function we are after. The solution we can expect to
obtain is a class of equivalent functions that can be transformed from one to another through uniquely
invertible maps.

4. Algorithm Using the Information Bottleneck Method

4.1. The IB Method

The basic idea of the Information Bottleneck (IB) method, originally introduced by Tishby et al. [13]
is as follows: assuming that the joint probability distribution p(x, y) of two random variables-X and Y
is known, we are interested in finding a compressed representation (or quantized codebook) for X , say
Z, which is as informative as possible about the random variable Y . In this paper, we use an extension
of the IB method for n input variables: X = (X1, ..., Xn)T instead of one input variable X .

This compressed representation Z of X is characterized through a conditional probability distribution
p(z|x) that gives a mapping between the values of X and Z. Each value of X is associated with all
the values taken by the random variable Z, according to this conditional probability. Intuitively, this
approach can be viewed as squeezing the information that the multivariate random variable X provides
about the random variable Y through a bottleneck formed by a limited set of codewords Z. The IB
method offers a fundamental trade-off between the complexity of a model and its precision which are
respectively reflected by the extent of compression of X and the amount of information the compressed
variable Z preserves about Y .

As mentioned in Equation (5), the IB method can be formulated as an optimization problem where
we maximize the relevant information I(Z;Y ) while constraining the compression-information I(Z;X)
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below some maximal value. Equivalently, the same problem can be formulated as a minimization
problem where we minimize I(Z;X) while preserving I(Z;Y ) above some minimal level as follows:

min
p(z|x):

I(Z;Y )≥Γ

I(Z;X) (10)

where Γ is a parameter which lower bounds the relevant information I(Z;Y ) while minimizing the
compression-information I(Z;X).

The IB objective function I(Z;X) is a concave function of p(x) for fixed p(z|x), and a convex
function of p(z|x) for a fixed p(x). Therefore, this is a constrained minimization problem of a
convex function over the convex set of all p(z|x) which satisfy the lower bound constraint on the
relevant information I(Z;Y ). This is a variational problem that can be solved by introducing Lagrange
multipliers, β for the relevant information constraint and λ(x) for the normalization of the conditional
distributions p(z|x) at each x. Proceeding along similar lines as in [13] we arrive at the following set of
self-consistent equations in order to solve for the mapping p(z|x):

p(z|x) =
p(z)

Z(x, β)
e−βDKL[p(y|x)||p(y|z)], ∀x,∀z (11)

p(z) =
∑
x

p(x)p(z|x) (12)

p(y|z) =
1

p(z)

∑
x

p(x, y, z) =
1

p(z)

∑
x

p(x, y)p(z|x) =
∑
x

p(y|x)p(x|z) (13)

This is a formal solution since p(z) and p(y|z) on the right hand side of Equation (11) are implicitly
determined using p(z|x) (Equations (12) and (13)). The final solution in Equation (11) along with
these two equations, self-consistently determine the optimal solution. An iterative algorithm can then be
used for obtaining p(z|x) using these three equations with the joint distribution p(x, y), the cardinality
of Z and the trade-off parameter β as inputs for the algorithm. A convenient application of this
iterative algorithm involves achieving the trade-off between precision and complexity by restricting
the cardinality of Z and choosing high values for β. The next subsection discusses few heuristics for
estimating the functional relationship between X and Y once we compute this mapping p(z|x).

4.2. Parsing p(z|x) for Function Identification

Given an input random vector X and an output variable Y , Section 4.1 outlines a procedure using
the information bottleneck method for finding a variable Z that is a compact representation of X and
retains as much information as possible about Y . This variable Z is represented using the probabilities
p(z|x), p(z) and p(y|z) which are the outputs of the iterative IB algorithm. The next step is to parse the
conditional probability distribution p(z|x) in such a way as to infer a function f(X) that explains the
relationship between X and Y in the best possible way.

In the ideal case, the conditional distribution p(z|x) found by the IB algorithm represents exactly a
function, meaning that p(z|x) only assumes the values 0 and 1. In this case, p(z|x) characterizes the
function directly and no further work is necessary. Now, if we deviate slightly from this ideal scenario,
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there is the case where p(z|x) only assumes values that are either very close to one or very close to zero.
In that case, a natural way to extract the functional relationship is simply to suppose that the function
value f(x) for the particular input configuration x is given by

z∗(x) = max
z∈{z1...zM}

p(z|x) (14)

This leads to a lookup table representation of the function.
More generally, however, the conditional distribution p(z|x) found by the IB algorithm has arbitrary

values. Even in these cases, there may still exist a function f(x) that reasonably and meaningfully
matches the observed data. However, to extract this function from p(z|x) will now require an additional
effort. Typically, this will involve making some assumptions about the structure of the function. For the
scope of the present paper, we restrict attention to a class of functions we will refer to as remapped-linear
functions, which we discuss in detail in the following subsections.

4.2.1. The Case of Remapped-Linear Functions

In the present paper, we restrict attention to remapped-linear functions, by which we mean that the
function f(X) appearing in Equation (1) takes the form

F

(
n∑
i=1

αiφi(Xi)

)
(15)

where F(·) is an unknown one-to-one function, and φi(·) are arbitrary functions. The most challenging
part of this formula is to determine the coefficients αi. We note that once these coefficients are
determined, it is a simple exercise to extract the mapping F(·).

The problem of finding the function f(X) now amounts to evaluating these coefficients αi ∈
R, for i ∈ [1...n]. We assume these coefficients to be real-valued. Following the discussion in Remark 2,
since we proceed via information measures, the coefficients αi cannot be uniquely determined and can
only be estimated up to a scale factor γ. As a result, there will be ambiguity in the scale γ of these
estimates. It should be noted that this is not a limitation caused by using the IB method, but is an
inherent limitation of using only information measures for solving this problem. One can only expect to
estimate the ratios α1

αk
, α2

αk
, ..., αn

αk
, for all k ∈ {1, ..., n}, αk 6= 0.

We now propose the following three heuristic methods for estimating the coefficients αi using z∗(x)

as identified according to Equation (14).

Method 1

This method does not make any assumptions on the support of Z for estimating the coefficients and
uses only the labels z∗(x) for which each input value x has a mapping. Furthermore, using this method,
we try to directly estimate the coefficients scaled with respect to one of the coefficients.
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Consider a pair of inputs x and x′ which map to the same z label, that is z∗(x) = z∗(x′). We can
dispose of the z label by taking the difference of the two resulting equations as indicated below:

n∑
i=1

αiφi(xi) =
n∑
i=1

αiφi(x
′
i) (16)

=⇒
n∑
i=1

αi
αk
φi(xi)−

n∑
i=1

αi
αk
φi(x

′
i) = 0 (17)

We obtain a system of linear equations if we proceed in a similar way for all pairs of inputs which lead
to the same mapping to the compressed variable. We can then solve for α1

αk
, α2

αk
, ..., αn

αk
from the resulting

system of equations given below:

n∑
i=1

αi
αk
φi(xi)−

n∑
i=1

αi
αk
φi(x

′
i) = 0, ∀x and x′such that z∗(x) = z∗(x′) (18)

Method 2

Method 1 described above could be computationally expensive even though solving a system of linear
equations can be performed in polynomial time. This is because we look at all pairs of inputs which map
to the same z. Furthermore, if there is only one input mapped to all of the compressed variable values,
this method for identifying the coefficients cannot be applied.

An alternative way to estimate these αis could be to adopt some heuristics for assigning some values
for z. In this method, we assign the support Z of the variable Z using the support Y of the output
variable Y . In order to do so, we make use of the probability p(y|z) which is also an output of the IB
algorithm along with p(z|x) and p(z). We associate the value of the cluster centroid E [Y |z∗(x)] to each
z∗(x). Accordingly, we now solve the resulting overdetermined system of linear equations given below
in a least squares sense for (α1, ..., αn).

n∑
i=1

αiφi(xi) = E [Y |z∗(x)] , ∀x (19)

Method 3

Method 3 proceeds along similar lines to Method 2 by assigning values to z using the values of y.
Instead of setting the expected value of y for each z∗(x) like in Method 2, we now associate z∗(x) with
the value of Y which has the maximum value for p(y|z∗(x)). Accordingly, we can solve the below set
of linear equations in a least square sense for (α1, ..., αn).

n∑
i=1

αiφi(xi) = max
y
{p(y|z∗(x))}, ∀x (20)

Although methods 2 and 3 solve explicitly for (α1, ..., αn), it is only the ratios
(
α1

αk
, α2

αk
, ..., αn

αk

)
which

have to be considered as those are the best one could expect to be able to retrieve in this setup. These
two methods only give an appropriate scaling for the possible values of Z. Figure 1 gives a pictorial
representation explaining these three methods.
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Figure 1. Methods 1, 2 and 3 for estimating the coefficients αi in Z =
∑n

i=1 αiφi(Xi) from
the output p(z|x) of the IB algorithm. Method 1 looks at all {x,x′} such that z∗(x) = z∗(x′),
Method 2 sets z∗(x) = E [Y |z∗(x)] and Method 3 sets z∗(x) = maxy{p(y|z∗(x))}.
(a) Method 1; (b) Method 2; (c) Method 3.

(a) (b) (c)

The above three methods are constructed in such a way that they always output some coefficients
to explain Y as a function of the inputs, irrespective of whether a functional relationship really exists
between the input and observed random variables. Therefore, an additional final check needs to be
performed to ensure that the coefficients obtained from these three methods actually correspond to a
compact function. The next section describes how this final test can be performed.

4.3. Sufficient Evidence

Given any joint distribution between the input and output random variables p(x, y), our algorithms
will always output some collection of coefficients {α1, α2, ..., αn}. But in some cases, these coefficients
may be spurious. Therefore, we now develop a criterion to decide whether there is sufficient evidence
that the claimed coefficient indeed represent true behavior. In keeping with the information measures
used throughout the present paper, it is natural to introduce the new random variable

Ỹ =
n∑
i=1

αiφi(Xi) (21)

This random variable represents the hypothesized function (without the remapping F(·), which has no
bearing on the involved information measures) and its joint distribution with Y can be easily computed
according to

p(ỹ, y) =
∑
x

p(x, y, ỹ) ∀ỹ : ỹ = α1φ1(x1) + ...+ αnφn(xn) (22)

We will say that there is sufficient evidence if the random variable Ỹ captures a significant portion of the
entire mutual information between X and Y, that is, if the quantity

I(Ỹ ;Y )

I(X;Y )
(23)

is large. Note that by the data processing inequality, this quantity cannot exceed one, and it is
trivially non-negative.
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Now, it is obvious that if the claimed function is very compact, then we cannot expect it to
capture a significant portion of the entire mutual information between X and Y, and thus, the quantity
I(Ỹ ;Y )/I(X;Y ) would be small. Hence, just considering I(Ỹ ;Y )/I(X;Y ) by itself would not lead to a
useful criterion. Rather, we need to compare this quantity to the compactness of the claimed function: If
the function is very compact, then even if I(Ỹ ;Y )/I(X;Y ) is small, there might be sufficient evidence.
Thus, we want to also normalize by the compression-information term I(Ỹ ;X). Specifically, we will
consider the ratio I(Ỹ ;X)/H(X) and introduce the following score function:

Θ =
I(Ỹ ;Y )/I(X;Y )

I(Ỹ ;X)/H(X)
(24)

This score function has the desired behavior: if a function is very compact, I(Ỹ ;Y )/I(X;Y ) might be
small, but I(Ỹ ;X)/H(X) would also be small, making the score Θ large. Thus, for the purported
function f(·), the larger the score Θ, the more significant the evidence that the considered p(x, y)

represents the claimed functional behavior. Therefore, we will accept the claimed coefficients whenever
Θ is greater than some threshold θ (i.e., if Θ > θ). A typical value for this threshold could be 1,
as this indicates that the coefficients represent a compact random variable which has more normalized
information about Y than the normalized information about X .

4.4. Normal Variables and Linear Functions

To gain some insight into the information measures introduced so far (and hence, into the workings of
the proposed algorithm), we consider a very simple special case in this section. Namely, we suppose that
the joint distribution p(x, y) is a multivariate normal (Gaussian) distribution where all the input random
variables Xi are independent of each other, with mean zero and variance P. Without loss of generality
we can the write

Y =
n∑
i=1

αiXi +W (25)

where W is also a normal random variable of mean zero and variance N.
Now, let us define the random variable V in the following form:

V =
n∑
i=1

α̂iXi (26)

and point out that this random variable represents the desired function (in the general context of
Section 4.3, we called this random variable Ỹ , but to avoid confusion, we use a different symbol here).

To understand how the method discussed in this paper proceeds, the crucial quantity is the amount of
information that the function captures, as discussed about in Equation (23). Therefore, we introduce the
quantity ρ(V ) as follows:

ρ(V ) =
I(V ;Y )

I(X;Y )
(27)
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Due to the data processing inequality, this quantity ρ(V ) is upper bounded by 1 which is attained
when V = X. If we denote the vectors [α1...α2]

T and [α̂1...α̂2]
T by α and α̂ respectively, then we have

(a derivation is given in the Appendix):

I(X;Y ) =
1

2
ln

[
1 + ||α||2 P

N

]
(28)

I(V ;Y ) =
1

2
ln

 1 + ||α||2 P
N

1 +
||α||2||α̂||2 − 〈α̂,α〉2

||α̂||2
P

N

 (29)

From the above two equations we get,

ρ(V ) = 1−
ln

[
1 +
||α||2||α̂||2 − 〈α̂,α〉2

||α̂||2
P

N

]
ln

[
1 + ||α||2 P

N

] (30)

This expression attains its maximum value of 1, when

||α||2||α̂||2 − 〈α̂,α〉2 = 0

i.e.,α̂ = γα, for some γ (31)

From this equation we see that I(V ;Y ) becomes equal to I(X;Y ) for all estimates α̂ that are
multiples of the original coefficients α. This result is consistent with the discussion in Remark 2 where
we argued that the coefficients cannot be uniquely determined using information measures.

Figure 2. ρ
(
α̂1

α̂2

)
and ρ

(
α̂2

α̂1

)
for 2 Gaussian inputs at different SNR levels. We see sharp

peaks where the coefficients of V are equal to the actual coefficients of Y up to a scale factor.
(a) ρ

(
α̂1

α̂2

)
; (b) ρ

(
α̂2

α̂1

)
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For the two input Gaussian case (n = 2), Figure 2 depicts ρ(V ) computed according to Equation (30)
as a function of the ratios of the estimated coefficients α̂1/α̂2 and α̂2/α̂1. From these plots we see that
if the computed α̂ are such that, I(V ;Y ) is close to I(X1, ..., Xn;Y ), then these estimated coefficients
are also close to the original coefficients α up to a scale factor, due to the sharp peaks in the plots at
these points.

Therefore, by using the information bottleneck if we are able to find a compact V such that I(V ;Y ) is
as close a possible to I(X;Y ), then the computed coefficients from this V reflect the original functional
relationship between X and Y up to a scale factor.

5. Results on Artificial Data: Remapped-Linear Functions

In this section, we apply the proposed algorithms to artificial data. In order to set the stage for the
application to experimental data, presented in Section 6 below, we consider an example where the data
is integer-valued, and where we look for functions that are integer linear combinations. Specifically, we
consider the following joint probability mass function p(x, y) : We let the inputs Xi be independent of
each other and uniformly distributed with support Xi = {−M, ..., 0, ...,M}, where M ∈ Z. Moreover,
we let the output Y be

Y = π

(
n∑
i=1

αiXi +W

)
(32)

where W is an additive independent noise following the same distribution as the Xis. Here π(.) is an
arbitrary permutation function on the support set (which we refer to as alphabet in this paper, matching
the standard terminology in the information-theoretic literature). We chose this complex model to test
our method because other methods such as linear regression will also be able to identify the coefficients
when it is a simple linear model without any outer unknown function.

In this modified linear function setting of randomly generated data, we investigate whether the
algorithm outlined in Section 4 can recover these coefficients αi. While doing so, we set the cardinality
|Z| of the compressed variable required for the iterative IB algorithm, to be much smaller than the true
cardinality |Y| of Y so as to retrieve a compact function.

For example, consider the case when we have two inputs (n = 2) with M = 5 and the actual
coefficients α1 = 1 and α2 = 2. Then the support of X1 and X2 becomes {−5, ..., 0, ..., 5}. In this
scenario the true cardinality |Y| = 31. We then run our algorithm for estimating the coefficients by
setting |Z| = 5. As Methods 2 and 3 are more computationally efficient than Method 1, we focus on
these two methods in the rest of the report. Figure 3 plots the estimated normalized coefficients α̂1 and α̂2

for two inputs using both Method 2 and Method 3 at different values of the trade-off parameter β. Similar
plots are also depicted in Figure 4 for three inputs with the same support and the actual coefficients set
as α1 = 1, α2 = 5 and α3 = −2. In this case, the true cardinality |Y| = 81 and the cardinality set in the
IB algorithm |Z| = 10.
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Figure 3. Estimating coefficients α̂1 and α̂2 using Methods 2 and 3 on artificial data with 2
inputs of support {−5, ..., 5} at different values of the β parameter used in the IB algorithm.
Here [α1 = 1;α2 = 2], |Y| = 31 and |Z| = 5. (a) Using Method 2; (b) Using Method 3.
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Figure 4. Estimating coefficients α̂1, α̂2 and α̂3 using Methods 2 and 3 on artificial data
with 3 inputs of support {−5, ..., 5} at different values of the β parameter used in the IB
algorithm. Here [α1 = 1;α2 = 5;α3 = −2], |Y| = 81 and |Z| = 10. (a) Using Method 2;
(b) Using Method 3.
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From these plots (Figures 3 and 4) we observe that at relatively small β values, the estimated α̂is
converge to the actual coefficients αis even when the cardinality is set such that |Z| � |Y|. Moreover,
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Method 2 and Method 3 converge to the actual coefficients in different ways. Method 2 fluctuates greatly
at very small β values before it converges to the actual coefficient values. On the other hand, Method 3
is stable at small β values and at a particular β value, it converges to the actual coefficients.

Furthermore, the Θ values computed at different values of β correspond to the recovery of the original
coefficients. At the values of β where the estimated coefficients become close to the original coefficients,
we obtain high values for Θ. We observe a gradual increase of Θ value for increasing values of β. For
example, in the 2 input case, using method 2, at β = 10, the computed Θ value is 1.347 which is high
enough to accept the estimated coefficients from our algorithm. Similar high values for Θ are obtained
for the 3 input case as well.

5.1. Comparison with Linear Regression and Related Model-Based Approaches

When parsing the compact representation Z to an actual function exhibiting simple mathematical
structure, we restricted attending to linear functions in the present paper. It is therefore tempting to
compare to methods that start out with a linear model from scratch (rather than bringing it in at the end,
as we are doing in the proposed method). For example, consider linear regression: Given data from the
considered three neurons, x1, x2, y, we could simply run linear regression for y based on x1 and x2, and
this would provide us with the regression coefficients. This appears to be a much more direct and simpler
approach to the function identification problem.

However, there is a significant downside to this approach: it requires one to separately impose how
information is represented in absolute terms, with respect to the real numbers and mean-squared error.
This information is crucially exploited by linear regression, though such a feature appears to violate the
spirit of the function identification problem: functional behavior should be relative, not connected to
absolute representations.

To illustrate this issue more concretely, the remapped-linear case is instructive. That is, suppose that
the underlying ground truth is given by

Y = 2X1+2X2+W (33)

It should be immediately obvious that linear regression will fail when applied directly to this data.
Indeed, using the probability distribution leading to Figure 3 and generating data from that distribution,
linear regression returns the coefficients 912 and 1,045, which are very far from the true coefficients, 1
and 2 (not surprisingly).

6. Results on Experimental Data: Linear Function

6.1. Data Description

In this experiment, an adult male rhesus monkey (Macaca mulatta) performs a behavioral task for a
duration of about 15 minutes (1,080,353 milliseconds, to be precise), while the resulting voltage traces
are simultaneously measured in the primary motor cortex (M1) region of the brain using 64 Teflon-
coated tungsten multielectrodes (35 µm diameter, 500 µm electrode spacing, in 8 by 8 configuration:
CD Neural Engineering, Durham, NC, USA). The arrays were implanted bilaterally in the hand/arm
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area of M1, positioned at a depth of 3 mm targeting five pyramidal neurons. Localization of target areas
was performed using stereotactic coordinates of the rhesus brain. We then use a low-pass filtered version
of these voltage traces to obtain the neural responses from 184 neurons.

The monkey was trained to perform a delayed center-out reaching task using his right arm. The task
involved cursor movements from the center toward one of eight targets distributed evenly on a 14-cm
diameter circle. Target radius was set at 0.75 cm. Each trial began with a brief hold period at the center
target, followed by a GO cue (center changed color) to signal the reach toward the target. The monkey
was then required to reach and hold briefly (0.2–0.5 s) at the target in order to receive a liquid reward.
Reaching was performed using a Kinarm (BKIN Technologies, Kingston, ON, Canada) exoskeleton
where the monkey’s shoulder and elbow were constrained to move the device on a 2D plane. Over the
course of the entire experiment, the reaching task is performed in different directions: 0◦, 45◦, 90◦, 180◦,
etc. Moreover, the reaching task in a particular direction is repeated several times; for example, the 180◦

reaching task is repeated 36 times at different starting points in the entire duration of 15 minutes.
All procedures were conducted in compliance with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals and were approved by the University of California at Berkeley
Institutional Animal Care and Use Committee.

6.2. Applying the Proposed Algorithm on Data

The functional identification algorithm outlined in Section 4 is applied on this dataset to infer some
structure present in the data. Before doing that, we first need to decide how to estimate the required
probability distributions p(x, y) from the data. Additionally, we also need to decide a way to deal with
the temporal aspect of the neural spike trains from different neurons.

Let Sti (∆) denote the spike train of neuron i starting from time t and lasting for ∆ milliseconds, i.e.,
we are looking at the neural response of neuron with id i from time tms to (t+∆) ms with a millisecond
precision. Sti (∆) can be seen as a vector of length ∆ comprising of 0s and 1s where 0 represents no
spike and 1 represents a spike. The number of spikes we have in this time window is denoted by |Sti (∆)|.

Then a random variable. denoted by Rt
i(∆, b), is estimated from Sti (∆) in the following way (b here,

is a binning parameter): c the histogram of the realizations rti(∆, b) given by:

rti(∆, b) = |St′i (b)|, ∀t′ ∈ {t, ...,∆− b} (34)

and normalize this histogram to get the probability distribution p(Rt
i(∆, b) = rti(∆, b)). In other words,

this procedure maintains a sliding window of length b ms starting from the beginning of the spike train
Sti (∆), counts the number of spikes in this window while stepping this window to the right until we
reach the end of the spike train Sti (∆) and normalizes this binned histogram to obtain the probability
distribution of the random variableRt

i(∆, b) (Figure 5). Accordingly, the support of this random variable
is the number of spikes observed in any contiguous segment of length b ms of the spike train Sti (∆).

The above procedure can be extended for estimating the joint probability distribution from multiple
spike trains. In this project, we restrict ourselves to the case where given two spike train segments St1a (∆)

and St2b (∆), we want to know if there exists a linear functional relationship between these two spike train
segments in order to explain a third spike train segment St3c (∆). Therefore, we need to estimate the joint
probability distribution of the three random variables Rt1

a (∆, b), Rt1
a (∆, b) and Rt1

c (∆, b) associated with
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these three spike train segments. To do this, we ensure that the sliding window is appropriately aligned
across all these three spike trains while obtaining the joint histogram. This procedure is illustrated in
Figure 5. Once we have this joint histogram we can use the procedure outlined earlier in this chapter to
estimate α1 and α2 such that the below functional relationship holds:

α1R
t1
a (∆, b) + α2R

t2
b (∆, b) = Rt3

c (∆, b) (35)

Rt1
a (∆, b) and Rt2

b (∆, b) are the input random variables (X1, X2, as in the notation used in Section 3)
and Rt3

c (∆, b) is the output random variable (Y ). It should be noted that we should expect to be able
to identify such a relationship only occasionally from the data, as neurons generally do not behave in a
predictable and deterministic way. We need to perform an exhaustive search to find the right neurons
(a, b, c), the time frames (t1, t2, t3) when these neurons have interesting behaviors and also the suitable
parameters ∆ and b for which such relationships exist and can be identified by our method. Accordingly,
in order to reduce the search space, we assume that the two inputs neuron spike trains are aligned and
start at the same time, i.e., t1 = t2. We then try different delays δ in the output neuron spike train, i.e.,
t3 > t1 = t2 and δ = t3 − t1.

Figure 5. Estimating joint histograms from spike trains, where we consider overlapping bins
using a sliding window.

6.3. Functions Identified in Data

Consider a particular trial of the 180◦ experiment which lasts from time 40,718 ms to
time = 43,457 ms. The two input neuron spike trains are set to start at the advent of different events
(like: center appears, hand enters center, go cue, hand enters target, etc.) and the output neuron spike
train is set to start at different delay values with respect to the input neurons with a maximum delay
of 800 ms. We set the parameters for obtaining the joint histograms as ∆ = 200 ms, b = 10 ms
and the threshold θ is set to 1.25. Below are a few functions obtained at the event when hand enters
center at time t = 41, 080 of this experimental trial. For the sake of simplicity, we drop the superscript
for the random variables corresponding to the input neurons with the understanding that both the input
neuron spike trains start at t = 41, 080. Also, in the superscript of the output neuron’s random variable,
we indicate only the delay δ with respect to the input neurons. As it turned out, all the functions we
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found were direct, unweighted sums. The functions are sorted in the descending order of the confidence
parameter Θ.

1. R139 +R114 = R250
98 with Θ = 1.456.

2. R28 +R114 = R370
98 with Θ = 1.321.

3. R139 +R98 = R310
28 with Θ = 1.278.

4. R139 +R28 = R750
114 with Θ = 1.273.

5. R114 +R28 = R450
63 with Θ = 1.267.

We observe that most of the normalized linear coefficients estimated by our method on this dataset
are equal to 1, with rare occurrences of 2, and no values greater than 2. An example of such a weighted
function was found between neurons 63, 114, and 28 in the case where we set the input spike trains to
start at the event when the hand enters the target (at time 42,705 ms) as given below:

R42705
63 + 2R42705

114 = R42705+570
28 (36)

However, such weighted functions were not frequently identified. This can be explained by looking at
the support of the different random variables estimated from the spike trains. These supports are compact
and concentrated in a particular range for most of the spike trains. Therefore, we do not observe higher
normalized coefficient estimates such as 3 or 4. Functions at different events for different experimental
trials can be identified in a similar way.

In order to better validate the results obtained using our proposed algorithm, we need to verify whether
the functional relationships listed above are replicated in different trials of the same experiment. The next
paragraph goes through a particular case study where the functional relationships between a particular
triplet of neurons are analyzed over different trails of the same experiment.

Consider the following three neurons: 28, 114 and 98, with neurons 28 and 114 as the input neurons
and neuron 98 as the output neuron. We want to observe the behavior of these three neurons across
all 36 trials of the 180◦ reaching tasks. Out of these 36 trials, only 26 are as successful and the rest
are considered unsuccessful as the monkey’s hand leaves the center before the go cue is given. The
functional relationships obtained from one of the 26 successful trials that lasts from t = 40, 718 ms to
t = 43, 457 ms were listed above. Let us look at one particular function, namely, the second item on the
previous list:

R41080
28 +R41080

114 = R41080+370
98 (37)

The functional relationship in this equation implies that the sum of neuron 28 and neuron 114 at time
41,080 (which corresponds to the action of the hand entering center) is equal to neuron 98 after a delay
of 370 ms. If we consider this as a reference trial, we are interested in knowing if a similar function
exists between these neurons during other trials at this delay of 370 ms (which corresponds to when the
hand enters center).

Accordingly, we apply this above function obtained between neurons (28,114,98) during this
reference trial, at identical stages of the different trials of the 180◦ reaching task. There are 36
such trials in the same direction. We then plot I(Ỹ k(370);Y k(370))/I(Xk

1 , X
k
2 ;Y k(370)) versus

(I(Ỹ k(370);Xk
1 , X

k
2 )/H(Xk

1 , X
k
2 )), for all these scenarios (Figure 6). Here Xk

1 ≡ Rt
28(200, 10),
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Xk
2 ≡ Rt

114(200, 10) are the 2 input neurons (28 and 114) starting at time t where the hand enters
the center for trial k and Y k(370) ≡ Rt+370

98 (200, 10) is the variable corresponding to the output neuron
(98) in trial k after a delay of 370 ms w.r.t the input neurons. Here, Ỹ k(370) is computed as described
in Section 4.3 from the estimated coefficients in order to check for sufficient evidence for the function
found between Xk

1 , X
k
2 and Y k(370).

Figure 6. We check if the function (Equation (37)) obtained between neurons 28, 114 and
98 in the reference trial (t = 40,718) is valid across all 36 trials of the 180◦ reaching task with
a threshold θ = 1.

Figure 6 implies that in 13 out of the 36 different trials of the 180◦ reaching task, the sum of neurons
28 and 114 is equal to the response of neuron 98 as the points corresponding to these trials lie above
the 45◦ line (here we set the threshold θ = 1). In one-third of the experimental trials, the functional
relationship given in Equation (37) holds. Moreover, if we exclude the unsuccessful trials, then 10 out
of 26 of the successful trials follow the above functional relationship between neurons 28, 114 and 98.
Most of the unsuccessful trials lie below the 45◦ line (Θ < 1) which indicates that these neurons behave
in a different manner during an unsuccessful trial. The below table lists the Θ values corresponding to
all the trials (we exclude 5 trials which give Θ of the form 0/0 and 1/0):
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Successful Trials Unsuccessful Trials
Θ ≥ 1 Θ < 1 Θ ≥ 1 Θ < 1

1.331
1.321
1.229
1.114
1.109
1.102
1.091
1.000
1.000
1.000

0.947
0.811
0.758
0.739
0.676
0.647
0.601
0.574
0.427
0.341
0.283
0.000

1.000
1.052
1.293

0.197
0.513
0.555
0.685
0.787
0.865

For successful trials, we can consider the cases when Θ ≥ θ as true positives (TP) and the cases when
Θ < θ as false negatives (FN). Similarly for the unsuccessful trials, we can consider the cases when
Θ ≥ θ as false positives (FP) and the case when Θ < θ as true negatives (TN). Then, at this value of the
threshold θ = 1 we can compute the following quantities:

• True Positive Rate (TPR) = TP/(TP+FP) = 76.92%
• True Negative Rate (TNR) = TN/((TN+FN) = 33.33%
• Sensitivity = TP/(TP+FN) = 45.45%
• Specificity = TN/(TN+FP) = 66.67%

We achieve high TPR but not such a high TNR as there are many false negatives. It should be noted that
these values depend on the value of the threshold θ. These numbers indicate that the functions identified
by our algorithm in a particular trial are somewhat consistent across different trials of the reaching task
of the same type.

7. Conclusions

This paper explores a novel application of the Information Bottleneck (IB) method in the context
of neuroscience. While most direct practical applications of the IB method are in the domain of
supervised and unsupervised clustering, we use the IB method in an entirely different way for identifying
compact linear functional relationships between different random variables. In this paper, we attempted
to answer the following questions: When can we say that a functional relationship exists between
random variables? How can we estimate these coefficients that explain linear dependencies between
random variables? How reliable are these estimates? This approach is then tested on artificial data
to investigate the performance of the proposed algorithm. We then applied our proposed algorithm on
experimental data characterizing the neural activity of a large population of neurons recorded during a
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macaque experiment involving behavioral tasks. Sifting through the data and considering a large number
of neuron triples, we were able to identify several occurrences of neurons that appear to exhibit linear
relationships towards other neurons. We selected one neuron triple and followed it through all 36 runs
of that particular experiment, finding a certain degree of consistency of the functional relationship that
was identified.

Appendix

Here, we provide a short derivation of Equations (28) and (29). For both, the main argument is that
the entropy of the n-dimensional multivariate Normal distribution with covariance matrix Σ is given by
1
2

log2(2πe)
n det(Σ), see e.g., ([16][p.254]). Specifically, for Equation (28), we can derive

I(X;Y ) = H(X) +H(Y )−H(X, Y ) =
1

2
ln



(2πe)n

∣∣∣∣∣∣∣∣
P · · · 0
...

. . .
...

0 · · · P

∣∣∣∣∣∣∣∣ (2πe)(||α||
2P +N)

(2πe)n+1

∣∣∣∣∣∣∣∣∣∣
P · · · 0 α1P
...

. . .
...

...
0 · · · P αnP

α1P · · · αnP ||α||2P +N

∣∣∣∣∣∣∣∣∣∣


=

1

2
ln

[
Pn(||α||2P +N)

PnN

]
=

1

2
ln

[
1 + ||α||2 P

N

]
(38)

For Equation (29), by the same argument, we find

I(V ;Y ) = H(V ) +H(Y )−H(V, Y ) =
1

2
ln

 (2πe)(||α̂||
2P )(2πe)(||α||2P +N)

(2πe)2

∣∣∣∣∣ ||α̂||2P 〈α̂,α〉P
〈α̂,α〉P ||α||2P +N

∣∣∣∣∣



=
1

2
ln

[
||α̂||2(||α||2P +N)

P (||α||2||α̂||2 − 〈α̂,α〉2) +N ||α̂||2

]
=

1

2
ln

 1 + ||α||2 P
N

1 +
||α||2||α̂||2 − 〈α̂,α〉2

||α̂||2
P

N

 (39)
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