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Introduction Within the field of quadruped robot research,
much focus has been put on design of leg compliance and
leg configuration [1, 2, 3, 4], and controller design [5].
Typically, design goals include robot speed, cost of trans-
port, robustness against perturbations, and range of available
speeds. Recently, research has started mimicking the spine
of quadruped animals, both in the frontal and the sagittal
plane. A widely accepted hypothesis predicts higher speed,
resulting from active spine motion.
Here we present results from hardware experiments with an
active-spine equipped quadruped bounding robot, showing
that through reduction of horizontal impulse the robot’s me-
chanical cost of transport was reduced.

Robot Hardware Bobcat-robot (Fig.1) was designed as an
RC-servo controlled quadruped robot with nine motors: two
per two-segment leg, proximal hip/shoulder joint and leg
length controlling actuator. One RC-servo was mounted
at the robot’s spine, allowing active rotation in the sagit-
tal plane. The robot weights around 1kg, including me-
chanics, actuation, and computation on-board. Power was
provided by a tether. The two-segment legs (touch down
length 0.125m) of the robot include an extension spring,
producing leg-internal extension forces against external leg-
compression forces. Active leg flexion was implemented us-
ing a cable mechanism.

Experiments Experiments were conducted applying a) a
fixed spine strategy, i.e. a bounding gait with the spine RC
servo motor blocked, and b) an active spine strategy, where
the spine control signal was phase-coupled with the robot’s
hip joints. For both spine strategies, leg length and leg an-
gle control were based on an open-loop, CPG-based con-
troller with active leg compression [6]. For the maximum
speed of both strategies, the robot was guided over a force
plate, while equipped with motion capture markers. Syn-
chronized ground reaction forces were recorded along with
kinematic motion data, high-speed video footage1, and the
robot’s electrical net power consumption. Average speed,
collision angle (CA, [7]), collision fraction (CF [7]), me-
chanical cost of transport (COTmech, [7]), electrical cost of
transport (COTelec, [8]), and Froude number (FR) were cal-
culated from the data.

Results The most prominent difference (Tab. 1) between ac-
tive and passive spine bounding strategies was found in the
horizontal average impulse per stride (sum of absolute in-
termediate impulse values, Jh). Although the active spine

1http://tinyurl.com/c8wfuga

Figure 1: Active (top) and fixed (bottom) spine locomotion.

gait was faster, it showed an almost three times lower Jh.
We conclude that a well-timed spine movement allowed to
redirect the impulse into forward motion instead of a break-
ing force, leading also to a ≈ 30% lower average mechan-
ical cost of transport. Due to the very high-geared RC
servo motors, and the relatively high locomotion frequen-
cies, COTelec remained very high.

Table 1: Active spine and fixed spine experiments. Shown
are horizontal impulse Jh, collision angle CA, collision frac-
tion CF, mechanical and electrical cost of transport, speed v,
locomotion frequency f, Froude number FR.

Jh [Ns] CA CF COTmech
Active 0.26 0.38 0.54 0.52
Fixed 0.71 0.46 0.71 0.79

COTelec v [m/s] f [Hz] FR [J/Nm]
Active 8 0.72 3.5 0.50
Fixed 6.5 0.62 4 0.31

Future Work We will focus on the effects of closed-loop
control, towards more complex spine control signals.
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