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ABSTRACT
Simulating a building to predict its performance over
the course of a full year requires an accurate repre-
sentation of the stable and representative weather pat-
terns of a location, i.e. a weather file. While weather
file providers give due consideration to the stochastic
nature of weather data, simulation is currently deter-
ministic in the sense that using one weather file al-
ways generates one performance outcome (for a given
set of building parameters). Using a single time se-
ries or aggregated number makes further analysis and
decision-making simpler, but this overstates the cer-
tainty of the result of a simulation. In this paper, we
investigate the advantages and disadvantages of incor-
porating resampling in the overall simulation work-
flow by comparing commonly used weather files with
synthetic files created by resampling the temperature
time series from the same weather files. While pre-
vious studies have quantified uncertainty in building
simulation by looking at the calculation itself, this pa-
per proposes a way of generating multiple synthetic
weather files to obtain better estimates of expected per-
formance. As case studies, we examined the perfor-
mance of the ‘original’ and synthetic files for each of
a sample of world climates.

INTRODUCTION
Building simulation is a mixture of deterministic and
stochastic inputs. The materials from which a building
is constructed usually have known properties or be-
haviours and can, therefore, be counted as determinis-
tic components. Variation of properties with external
conditions, linear or non-linear, can mostly be mod-
elled or measured to a reasonable level of accuracy.
The energy/comfort performance of a given building
is, however, also strongly influenced by weather con-
ditions and occupant behaviour. Both of these are
stochastic inputs, and it could be advantageous to treat
them as such when predicting the indoor environmen-
tal performance of buildings, since they add a large
amount of uncertainty to any predictions. In fact, Bro-
hus et al. (2012) argue that it is impossible to have
one truly representative number for the expected en-
ergy use of a building, and that trying to reduce the
complex performance of a building to one number is

too simplistic an approach. They suggest generating
probability distributions or, at the very least, a mean
value and standard deviation. This could, according to
the authors, improve the value of simulation for design
and provide a “scientific” basis for a “safety factor”.
de Wit and Augenbroe (2002) argued that, while ex-
perts do sometimes factor in their understanding of un-
certainty into the design process, contemporary prac-
tice gives only passing attention to this issue in predic-
tive simulation, if at all. They found that the potential
of quantitative uncertainty analysis is of “virtually no
concern” to the simulation community. This is still a
problem, ten years after the publication of this article,
as features to incorporate stochasticity are not found in
popular simulation programs.
An understanding of uncertainty is especially impor-
tant for the design of high performance buildings,
which tend to be finely optimised for particular cli-
matic (and other) inputs. Donn et al. (2012) argue that
the performance of a finely tuned building could de-
viate drastically from predicted values if it is not used
by “automatons who behave exactly as the simulation
assumed they would”. The same fears apply to a build-
ing that is optimised to one expected weather pattern.
While it may not fail completely in the face of unex-
pected (especially extreme) weather, its actual perfor-
mance could fall far short of expectations. An analysis
of the influence of user behaviour on indoor perfor-
mance is outside the scope of this paper, but litera-
ture on uncertainty in simulation due to weather files
or climate alone is relatively sparse. Several articles
have proposed analyses and quantifications of uncer-
tainty in building simulation and design in general.
For example, Lomas and Eppel (1992), Fürbringer
and Roulet (1995), Lam and Hui (1996), de Wit and
Augenbroe (2002), Macdonald (2002), Tian (2013),
among others, analyse uncertainties due to inputs such
as material properties, user behaviour, and modelling
assumptions and simplifications.
de Wilde et al. (2008) examine the same parame-
ters with potential climate change, adding an addi-
tional dimension to their analysis of uncertainty in
performance projections. Jenkins et al. (2011) in-
vestigated the potential of overheating in dwellings
in the UK by using probabilistic climate projections.
They randomly extracted a hundred equally probable
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years from a hundred separate time series of thirty
years duration each, which were generated from a fu-
ture weather data-generating algorithm based on the
UKCP’09 projections. They then ran a hundred yearly
simulations to determine a regression equation that
could predict overheating in dwellings without dy-
namic simulation. While this is not the aim of this
study, the idea of incorporating multiple randomly
selected files (i.e. time series) is similar. Brohus
et al. (2012) proposed the use of stochastic differen-
tial equations for simulating the thermal performance
of buildings. They modelled input loads as “stochastic
processes, each comprising a time-varying mean value
function and a stochastic part described as a white
noise process scaled by a time-varying standard devi-
ation function”. Their methodology is able to incorpo-
rate stochasticity into the basic heat balance equation
at each node, for both inputs as well as model coeffi-
cients (such as specific heat loss coefficients). They
concluded that the “impact of a stochastic descrip-
tion compared with a deterministic description may be
modest for the dynamic thermal behaviour of build-
ings”, but they feel that it has more value in a model
where the effect of air flow is more significant. A ma-
jor drawback of their methodology is the very long
computation times – almost a week for a year-long
simulation of a simple room – which would increase
significantly with each input modelled stochastically
(e.g. wind loads, window opening regime, etc.).
This article is an exploration of the possibility of in-
troducing stochasticity into the simulation workflow
by the creation of synthetic weather files, rather than a
fresh attempt at quantifying uncertainty in modelling.
These synthetic weather files, generated with a tech-
nique known as bootstrapping, can be used to gener-
ate a range of possible values of a performance metric
(e.g. energy use for HVAC systems) instead of a single
value. Since the final performance of a building has
many stochastic inputs (weather being one of them),
a range of possible values (due to a range of different
weather scenarios) offer a clearer view of likely perfor-
mance than a single number. The authors have not, in
this study, investigated the applicability of resampling-
generated files to other sorts of studies like hygrother-
mal modelling or solar system sizing. Assuming that
a study, linear or nonlinear, is carried out using a typ-
ical weather file in the first place, we see no reason
why it cannot also be carried out using files created by
resampling.

Resampling
Resampling is a technique used to create artificial data
from existing samples in order to improve estimates
of statistical quantities such as the mean or confidence
intervals. The procedure begins with a small set of iid
(independent identically distributed) points, i.e. one’s
original data. The original dataset is then sampled with
replacement (i.e. the probability of selecting any given
data point in the set resets after each draw) to create

several new sets of ‘data’ (the resamples). The statis-
tical quantities of interest are calculated for each new
dataset, giving a range of values. If the mean value is
of interest, for example, one is able to get a range of
means (i.e. one mean of each new synthetic set). The
shape of the distribution of this set of means is repre-
sentative of the shape of the original dataset.

Weather Files

To approximate the prevailing weather patterns of a
location, building simulation programs use ‘typical’
or ‘design reference years’ (DRY). Lund (1991, 1995)
enumerated three basic requirements for a DRY to be
useful, these being accurate representation of the true
frequencies, sequences, and correlations of a climate.
The first requirement ensures that a DRY represents
true magnitudes of extremes and means. The second,
that sequences of distinct values (episodes) recorded
most often appear in the DRY. The third, that corre-
lations between different meteorological time series
(e.g. temperature, sun, humidity, etc.) are represen-
tative. In the report, Lund states that the second and
third requirements will be impossible to fulfil satisfac-
torily. This, the report declares, is because “many of
the relationships between individual parameters can-
not yet be described mathematically”. As part of fur-
ther work in this direction, the authors intend to survey
more literature to see if a satisfactory test for assess-
ing the sequence and correlation requirements can be
found. There are several different algorithms currently
in use for generating DRY. The principal methods in-
clude frequentist methods, i.e. ones that select typi-
cal months based on frequency distributions; stochas-
tic generation, which uses long-term means and distri-
butions calculated from observed data to generate syn-
thetic files; and principal component analysis, which
separates out parameters based on their contribution to
overall variation and selects months that explain best
the variation seen in a climate.

In this study we have used two types of DRY: Typical
Meteorological Years (TMY), distributed free by the
US Department of Energy (Wilcox and Marion, 2008),
and weather files generated by a proprietary software
called METEONORM (Remund et al., 2012). TMY
files are generated from mostly measured data, while
METEONORM (Meteo) files are generated from ob-
served distributions of different parameters scaled by
long term ‘normals’ (averages). The implication in
testing the resampled files against these two files is that
if the resampled time series approximate patterns in
measured data as accurately as these established files,
then the case for using the resampled files is strong.
If the differences in probability distributions between
Meteo and TMY are as significant as the differences
with the resampled files, there is no reason to suspect
that the resampled files represent an unlikely climatic
scenario (e.g. unlikely durations or intensity of high
temperature episodes).
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SIMULATION/EXPERIMENT
Case Study Selection
In this paper, we began with a Typical Meteorological
Year file (TMY) and a Meteo-generated file (Meteo)
for each of ten locations worldwide. These locations
are broadly representative of world climates and pop-
ulation concentration. They were originally selected
by Kleindienst et al. (2008) to represent a broad range
of solar paths and annual daylighting conditions. They
also happen to represent a range of climate types (see
Table 1), though temperate/subtropical climate types
are over-represented (ASHRAE climate type 4). This
apparently arbitrary selection originally came about
due to a preference for densely populated zones with
sufficiently different solar paths and, for now, we have
kept this preference. We did, however, change the
original ‘local’ location (Boston) to Geneva, to rep-
resent continental Europe. We may tinker with this set
in future work to represent as many significant divi-
sions of the (updated) Koeppen-Geiger climate classi-
fication system as possible, while keeping the urban
population density preference.

Table 1: Cities and their ASHRAE climate types.

CODE CITY
NAME

COUNTRY TYPE

ADD Addis Ababa Ethiopia 3C
BGK Bangkok Thailand 4B
GEN Geneva Switzerland 4C
HAR Harare Zimbabwe 4A
HGK Hong Kong PR China 4A
LON London UK 4C
PHO Phoenix USA 4B
SIN Singapore Singapore 1A
STP St Petersburg Russia 6A
SYD Sydney Australia 4A

Pre-processing
Meteorological time series like dry bulb temperature
(TDB) are not stationary iid series, and cannot there-
fore be resampled without some pre-processing. So,
we detrended the time series using a localised poly-
nomial fit. For example, Figures 1 and 2 show the
original (TMY) and detrended temperature series for
Geneva and Singapore respectively. The trend was cal-
culated using the smooth function in MATLAB, with
the loess method1 and a span of one month. After re-
moving the trend, we found that the remaining time
series are stationary (checked using the KPSS test for
stationarity developed by Kwiatkowski et al. (1992)),
which makes them eligible for resampling. Upon cre-
ating the resampled time series (which are also station-
ary iid values), we re-added the original trend to return
to a physically valid temperature time series with the
proper annual trend.

Figure 1: Temperature time series from the Geneva
TMY file.

Figure 2: Temperature time series from the Singapore
TMY file.

The trend lines in our examples above seem unusu-
ally tortuous, since we expect Geneva to have a cosine
trend and Singapore a constant one. The question of
picking an appropriate trend for this procedure is still
not satisfactorily resolved for us. In our work, we have
so far assumed a simple model consisting of a deter-
ministic and stochastic term, as shown in Equation 1.

Yt = µt +Xt (1)

Yt represents the time series, µt is the deterministic
trend, and Xt is the stochastic component. In our
case, µt is a 2nd order polynomial with a period of
twelve months, i.e. we expect the monthly means to
be the same in subsequent years. The tortuousness
of our trend-lines can be explained by our choice of
span (also known as bandwidth). Textbooks on time
series analysis do not seem to recommend a standard
bandwidth, since it is highly dependent on the data set
in question (Mudelsee, 2010; Cryer and Chan, 2008;
Gluhovsky, 2011). Starting from four-month spans,
we found that a span of one month was the largest
bandwidth that would leave us a stationary time series
after detrending. Whether this span-of-convenience is
appropriate will be explored more thoroughly in future
work, with more rigorous testing and case studies.

1“Local regression using weighted linear least squares and a 2nd degree polynomial model” (The Mathworks, Inc., MATLAB 2013a).
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Resampling and Post-processing
For each climate, we resampled the dry bulb tempera-
ture time series from a source file (TMY in this case)
to create ten synthetic datasets each, keeping all other
meteorological parameters unchanged. We recalcu-
lated dew point temperature (TDP) based on the new
temperature series and original humidity. The resam-
pled dry bulb temperature time series were smoothed
with a moving average filter using a span size of 4-24
hours, until their maximum slope was less than that
of the TMY time series. This last step is necessary
since random number draws are sometimes so large
that successive values (in the synthetic temperature se-
ries obtained after re-adding the trend) are physically
infeasible.

Building Simulation
To compare the performance of the resampled files
with TMY and Meteo files, we simulated a residential
building in DesignBuilder software (DesignBuilder
Software Ltd, 2011). The building is a single family
home in northern Germany, and was initially modelled
with its current HVAC systems to verify the accuracy
of our model against actual energy bills. Then, we
removed auxiliary heating and cooling systems. This
allowed us to compare the results from different files
quickly and without any bias that may have been intro-
duced due to the design and (non-linear) performance
of an HVAC system. The same model was used for all
simulations. Some details, assumptions, and charac-
teristics of the model are given below.

1. All templates (construction, occupancy, etc.) were
modified from the default templates available in
DesignBuilder for the United Kingdom.

2. The site has no significant shading, and is located
in a suburban context.

3. Construction

• The house has a basement, a ground floor,
and an attic below a sloped roof. Total occu-
pied floor area is 236.8 m

2 and unoccupied
area is 80.8 m

2.
• Air changes per hour due to infiltration were

set at 0.7.
• Window to wall ratio is 30%. Windows are

single-glazed, with clear 3mm panes.
• U-value of external walls is 2.5 W/m

2 �K.

4. Activity and Indoor Environment

• The house is occupied by a family of four
(density 0.0196 people/m

2). Equipment
density is 2.16 W/m

2 and lighting power
density is 5 W/m

2
/100lx.

• The building is assumed to run at a common
household schedule: not occupied during of-
fice/school hours, peak usage in the morning
and evening, and occupied all day on week-
ends and holidays.

• The heating and cooling set-points were ini-
tially set at 21oC and 28oC respectively, al-
though the active systems were included only
for initial verification. The ventilation sys-
tem was left in place to maintain a flow rate
of 0.3 air changes per hour.

Figure 3: A rendering of our building model.

RESULTS
Weather Files
We carried out two tests on each temperature time se-
ries obtained from resampling to confirm that they are
physically valid and reasonably representative substi-
tutions for the source DRY files (in this case, TMY
files). The first was to check the correlation of the dry
bulb and dew point temperature series of each resam-
pled file and the Meteo file with the TMY file. Cor-
relation is a measure of the ‘closeness’ in the patterns
of two time series. We used the Spearman correlation
coefficient (⇢), which takes values between +1 and -1.
A value of +1 indicates perfect correlation, though not
necessarily linear, while 0 indicates no correlation and
-1 perfect anti-correlation.
For our second test, we compared Cumulative Distri-
bution Functions (CDF). A CDF of a random variable
is a measure of the frequency of occurrence of each
value that the variable can take. The CDF of a vari-
able x is given by P (x  X), where X is the value at
which the CDF is calculated. So a CDF of 0.85 for X =
13oC means that 85% of the values in a given dataset
are less than or equal to 13oC. The TMY-generation
algorithm uses the Finkelstein-Shafer (FS) statistic to
compare two CDF (Wilcox and Marion, 2008). The
FS is a measure of the absolute distance between two
distributions (Finkelstein and Schafer, 1971). We used
a similar normalised measure called the Normalised
Mean Square Error (NMSE, Equation 2) for easier
comparison between climates, since the magnitudes of
the FS statistic varied significantly. A value of +1 for
the NMSE indicates a perfect fit with reference data,
0 indicates that the fit is no better than a straight line,
while large negative numbers indicate a bad fit. The
NMSE in our test is calculated monthly, like in the
TMY algorithm. This is important since the shapes of
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CDF for a given climate could vary significantly by
season.

NMSE(i) = 1� |x(i)� xref(i)|
|x(i)�mean(xref(i))|2 (2)

Figures 4 and 5 show the Spearman correlation coef-
ficient (⇢) values from comparing the Meteo and re-
sampled time series with TMY (the bar representing
resampled values is the average from all 10 files). The
artificial (i.e. resampled) temperature time series gen-
erally show a strong positive correlation with the orig-
inal time series (i.e. TMY), in some cases even better
than the Meteo file. The correlation of the resampled
files in Addis Ababa, Bangkok, and Singapore is un-
acceptably weak ( 0.5). However, it should be noted
that even Meteo does not compare well to the TMY
series for these climates. This could imply that corre-
lation is perhaps not the best comparison for a climate
that has a relatively small seasonal trend (compare Fig-
ures 1 and 2). If the resampled files perform as badly
on the next test for the same climates (i.e. those with
small seasonal trend), it would call into question the
robustness of this methodology.

Figure 4: Overall correlation between TMY tempera-
ture series and others (Meteo and average resampled).
See Table 1 for the names of the cities.

Figure 5: Correlation of dry bulb temperature (TDB)
and dew point temperature (TDP) between TMY tem-
perature series and others (Meteo and average resam-
pled). See Table 1 for the names of the cities.

For the second test, we compared the CDF of the re-
sampled time series, TMY, and Meteo with real hourly
time series of dry bulb and dew point temperatures ob-
tained from the NCDC (National Climatic Data Cen-
ter, 2012) for the years 2000-11 (12 in total). The Me-
teo files we used are based on the latest data available
in the software, while the TMY series also use the lat-
est possible data available with the respective mete-
orological organisations. The reasoning behind com-
paring CDF is that neither the DRY files nor our re-
sampled files are supposed to ever be able to replicate
an entire year exactly. Rather, they should have the
same distributions and patterns over a given season.
Figure 6 shows the NMSE-based comparison of the
CDF. The NMSE for each month was calculated sepa-
rately, and the 12 monthly values were averaged. The
resampled files show an acceptable performance in
this comparison, although the TMY and Meteo files
are consistently better. The worst-performing loca-
tions are Hong Kong, Harare, and Geneva. Strangely,
these three locations are among the best perform-
ers when compared using the correlation test above.
These results taken together would imply that the re-
sampled time series are ‘shifted’ from the original, i.e.
they maintain the patterns of the original but not the
magnitudes. Why this happens for these three cli-
mates only is not clear. They are all type 4 climates
(ASHRAE, see Table 1), though their secondary label
(A, B, or C) is not the same. London and Phoenix
are also type 4 climates, and they show acceptable
performance. That it is not an artefact of random
number sampling is supported by the fact that the
result stayed consistent across successive bootstrap-
ping draws. It should be noted that the source files
(TMY) for the under-performing locations do them-
selves compare well to the measured data, except for
Hong Kong.

Figure 6: Normalised Mean Square Errors (NMSE)
between Cumulative Distribution Functions (CDF) of
weather files with reference to measured data.

Building Simulation
Since this is an exercise in examining the feasibility
of using resampled weather files rather than testing the
performance of the building itself, we report the results
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of energy simulation using a crude metric similar to
heating/cooling degree days. We start with the hourly
outdoor temperature and calculate the distance of each
point from some arbitrary static comfort zone (15o -
20o C in this case). We then aggregate these hourly
differences into one value per climate – the total num-
ber of degree-hours when a climate may require heat-
ing or cooling. We repeat the procedure for the indoor
climate, which gives us an indoor value for aggregate
degree-hours. Since the same building is used for sim-
ulating each file (in each climate), the difference be-
tween the indoor and outdoor degree-hour values (for
a given climate) should be caused purely by the build-
ing (we call this the building’s ‘performance’).
The mean performance value obtained by simulating
the ten resampled files is compared (for each climate)
with the values obtained from the Meteo and TMY
files in Figure 7. The standard deviations for perfor-
mance obtained from the set of resampled files tended
to be less than 10% of the mean for all climates. The
range of values is somewhat smaller than would be ex-
pected from a stochastic process (e.g. locations shown
in Figure 8). This could be because the resampled files
were smoothed before being used for energy simula-
tion, causing them to resemble each other more than
raw random samples would. Bangkok presents the
only problematic case in this comparison. Given that it
performed well in the NMSE test (i.e. the relative dif-
ference in hourly temperature values is not large), and
mediocre in the correlation test (i.e. its episodic pat-
terns are not well aligned), we see no reason why ab-
solute (aggregated) performance should be so starkly
different. We hope to test more climates of this sort
in future work to verify whether this is a problem with
our methodology or an outlier.

Figure 7: Difference in (averaged) performance val-
ues obtained from resampled files and the two refer-
ence files. ‘Diff TMY’ is with reference to the TMY file,
and ‘Diff Meteo’ is with reference to the Meteo file.

The results presented here are for one ‘realisation’. In
a realisation, a random series of indices is used to pick
the values that make up a given draw. This means that
we obtain different datasets with successive runs of
a resampling script. However, the random nature of

this process ensures that the datasets (ten each) gen-
erated by each realisation have similar average perfor-
mance. That is, the results were consistent across dif-
ferent bootstrap realisations.

Figure 8: Performance values for Geneva, London,
and St Petersburg. Results plotted are from all resam-
pled values (for an arbitrary realisation), TMY, Meteo,
and an average of all resampled files.

DISCUSSION
Our exploration of resampling to generate weather
files for simulation generally resulted in physically vi-
able files. This procedure does not, naturally, con-
vey the underlying physical model. However, given
the random nature of weather data and the difficulty
of modelling it with closed-form models, we find that
bootstrap draws from a source DRY file generate ac-
ceptable time series. Observing the mismatch of the
TMY and Meteo files against measured data, we see
that the Design Reference Years should not be treated
as purely deterministic inputs. While they reflect his-
toric climatic normals and patterns well, they are not
meant to be exact representations of any given year
a building might experience in its lifetime. While the
performance obtained from the various resampled files
did not vary significantly in this experiment, that in
itself is not reason enough to disregard the potential
usefulness of generating files from resampling. We
only resampled temperature values, whereas a build-
ing’s performance is also strongly influenced by solar
radiation, humidity, and wind speed (with other mete-
orological factors such as infra-red radiation from the
sky making smaller contributions). The issues raised
by this initial study, and discussed below, point toward
several avenues for improvement.

Climate Change
A CIBSE report on the use of climate change scenarios
for building simulation says that “at present there is no
accepted methodology for carrying out climate change
risk assessments for the environmental design of build-
ings...” (Hacker et al., 2009). Shamash et al. (2012) re-
viewed available guidance on, and approaches to, us-
ing probabilistic climate projections in simulation in
the building industry in the UK. The methods they dis-
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cuss inevitably involve multiple simulations with ex-
tensive pre- and post-processing. The approach pro-
posed in this paper is not an acceptable substitute
for simulation with probabilistic climate projections
in its current form, since it cannot recreate weather
‘episodes’ (e.g. heat waves), extreme events (e.g.
overheating), and changes in climatic normals. Re-
sampling, with proper adjustment and calibration (e.g.
the smoothing carried out in this paper), is a good can-
didate for modelling a stochastic natural process. Suc-
cessive realisations of this procedure could help gen-
erate patterns that better reflect the true random na-
ture of weather. What resampling cannot do by itself,
though, is generate new trends or create episodes. This
means that its applicability to modelling probable cli-
mate change is limited in the raw form we explored
here. Future work in this regard is expected to involve
other modelling methods (e.g. ARMA, ARCH, etc.)
to overcome these shortcomings. Detailed climatic
models can predict future weather with some accu-
racy when given realistic starting conditions and inputs
like emissions scenarios. They could also form a more
physics-based basis for generating future weather files
in combination with a random draw technique like re-
sampling.

Post-processing
The resampling methodology used in this paper does
not account for correlation between parameters. This
correlation is difficult to model in principle, and is not
always apparent even in complex general climate mod-
els. In any case, running climate models to generate
files for building simulation, even if these models were
well characterised and localised, would be virtually
impossible with the computation power usually avail-
able for energy modelling. Correlation between pa-
rameters and auto-correlation of each parameter with
itself are usually modelled based on measured data,
akin to a CDF. Assuming that this resampling method
would be used with only one short time record (e.g. a
TMY file), developing correlation or auto-correlation
functions on the fly could be difficult and unreliable.
Future work involving the resampling of multiple pa-
rameters from one file (e.g. solar radiation, humid-
ity, etc.) might need more post-processing to maintain
physically valid correlations between the parameters.
For example, checking of the correlation functions of
the resampled files against those found in the source
files. In addition to correlation, resampled files must
be post-processed to respect the physical constraints of
each individual meteorological parameter in question.
For example, in this paper, we smoothed the resam-
pled temperature datasets to have the same maximum
slope as measured data (represented by TMY for now).
Relative humidity, to take another example, cannot be
less than 0% since that would be physically meaning-
less. We feel that the post-draw smoothing carried out
in this procedure is justified, since that is a reflection
of the tendency of temperature time series to have long

memory (i.e. change slowly in time). A brute force
approach to addressing both these problems could be
to keep running realisations until a sufficiently large
pool of acceptable time series is obtained. Diagnos-
tic tests could include matching correlation and auto-
correlation functions as well as physical validity with
the original files and underlying physics.

Computational Issues
If resampling is deemed a satisfactory method of cre-
ating new weather files, the added computational cost
naturally depends on the size and complexity of one’s
building model. Resampling itself contributes mini-
mal extra computational load, although rerunning the
energy simulations in DesignBuilder software multi-
ple times was very time-consuming in our implemen-
tation. The extra effort involved in preparing mul-
tiple weather files manually and simulating them far
exceeded the time for resampling and even for the
actual simulation itself. However, this can be over-
come by running energy simulation programs in ‘batch
mode’ (multiple inputs and outputs with one com-
mand), which we were unable to do for this study. We
feel that the added time needed for multiple simula-
tions is not significant considering the potential advan-
tages of getting a distribution of performance data (as-
suming weather file generation and energy modelling
can be done in batches).

CONCLUSION
In this paper we presented an initial exploratory study
for using resampling to generate multiple weather files
for simulation. Based on our tests of correlation with,
and deviation from, TMY and Meteo weather files and
measured data, we found that resampling does not pro-
duce unrealistic time series for dry bulb and dew point
temperature. This study was limited to temperature,
though solar radiation, humidity, and wind speed are
also potential candidates for resampling-based genera-
tion of synthetic time series. We found that resampling
is not computationally-intensive in itself.
Given the nascency of this approach, and of proba-
bilistic simulation in general, it is difficult to predict
how this approach could be best incorporated in sim-
ulation. There are possibly several other sources of
variation (like occupant behaviour) that may not be
adequately described by equations. It seems unlikely
that it would be feasible to run all likely variations
in different inputs (e.g. climate, programmatic usage,
etc.) in all possible combinations. A possible solu-
tion could be to demonstrate the robustness of one’s
design with several input files generated, and prelim-
inary results described here indicate that resampled
files are strong candidates for generating probabilis-
tic inputs, especially if expected trends(e.g. UKCP’09
projections), episodes, and events are properly inte-
grated. This would result in a ‘building performance
range’, reflecting the range of outcomes that could be
caused by any number of sources of variation. This
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would demarcate confidence intervals for building per-
formance instead of relying on single output values.
The range of values generated by this method could be
used to improve predictions for individual buildings.
They could also be used to calculate scientific “safety
factors” or probabilistic performance criteria for com-
mon building types that designers may be required to
demonstrate as having been fulfilled.

ACKNOWLEDGEMENT
We would like to acknowledge the guidance provided
by Prof. A Gluhovsky from Purdue University in ex-
ploring statistical techniques. He provided the final
push to take this project from idea to reality. We would
also like to thank Soenke F. Horn for allowing us to
use his energy simulation models as a basis for our
analyses. Discussions with Soenke were invaluable in
getting out of software- and procedure-related jams.

REFERENCES
Brohus, H., Frier, C., Heiselberg, P., and Haghighat,

F. 2012. Quantification of uncertainty in predict-
ing building energy consumption: A stochastic ap-
proach. Energy and Buildings, 55:127–140.

Cryer, J. and Chan, K. 2008. Time Series Analysis:
With Applications in R. Springer Texts in Statistics.
Springer.

de Wilde, P., Rafiq, Y., and Beck, M. 2008. Uncertain-
ties in predicting the impact of climate change on
thermal performance of domestic buildings in the
UK. Building Service Engineering Research and
Technology, 29(1):7–26.

de Wit, S. and Augenbroe, G. 2002. Analysis of un-
certainty in building design evaluations and its im-
plications. Energy and Buildings, 34(9):951–958.

DesignBuilder Software Ltd 2011. DesignBuilder
Printable Documentation v3.0.

Donn, M., Selkowitz, S., and Bordass, B. 2012. The
building performance sketch. Building Research &
Information, 40(2):37–41.

Finkelstein, J. and Schafer, R. 1971. Improved
goodness-of-fit tests. Biometrika, 58(3):641–645.

Fürbringer, J. M. and Roulet, C. A. 1995. Compari-
son and combination of factorial and Monte-Carlo
design in sensitivity analysis. Building and environ-
ment, 30(4).

Gluhovsky, A. 2011. Statistical inference from at-
mospheric time series : detecting trends and coher-
ent structures. Nonlinear Processes in Geophysics,
18(4):537–544.

Hacker, J., Capon, R., and Mylona, A. 2009. Use of
climate change scenarios for building simulation:
the CIBSE future weather years. CIBSE Chartered
Institute of Building Services Eng.

Jenkins, D. P., Patidar, S., Banfill, P. F. G., and
Gibson, G. J. 2011. Probabilistic climate projec-
tions with dynamic building simulation: Predicting
overheating in dwellings. Energy and Buildings,
43(7):1723–1731.

Kleindienst, S., Bodart, M., and Andersen, M.
2008. Graphical representation of climate-based
daylight performance to support architectural de-
sign. Leukos, 5(1):1–28.

Kwiatkowski, D., Phillips, P., Schmidt, P., and Shin,
Y. 1992. Testing the null hypothesis of stationar-
ity against the alternative of a unit root: How sure
are we that economic time series have a unit root?
Journal of econometrics, 54:159–178.

Lam, J. C. and Hui, S. 1996. Sensitivity analysis of en-
ergy performance of office buildings. Building and
Environment, 31(I):27–39.

Lomas, K. J. and Eppel, H. 1992. Sensitivity analy-
sis techniques for building thermal simulation pro-
grams. Energy and Buildings, 19(1):21–44.

Lund, H. 1991. The Design Reference Year. In Pro-
ceedings of Building Simulation 1991, pages 600–
606, Nice, France. IBPSA.

Lund, H. 1995. The Design Reference Year User Man-
ual. Technical report, Technical University of Den-
mark, Copenhagen, Denmark.

Macdonald, I. A. 2002. Quantifying the Effects of Un-
certainty in Building Simulation. Phd, University of
Strathclyde.

Mudelsee, M. 2010. Climate Time Series Analysis,
volume 42 of Atmospheric and Oceanographic Sci-
ences Library. Springer Netherlands, Dordrecht.

National Climatic Data Center 2012. Climate Data
Records.

Remund, J., Mueller, S., Kunz, S., and Schilter, C.
2012. METEONORM Handbook Part II : Theory.

Shamash, M., Mylona, A., and Metcalf, G. 2012.
What Guidance Will Building Modellers Require
For Integrating. In Wright, J. and Cook, M., editors,
First Building Simulation and Optimization Con-
ference, IBPSA-England, number September, pages
253–260, Loughborough, UK. IBPSA-England.

The MathWorks Inc. 2013. MATLAB.

Tian, W. 2013. A review of sensitivity analysis meth-
ods in building energy analysis. Renewable and Sus-
tainable Energy Reviews, 20:411–419.

Wilcox, S. and Marion, W. 2008. Users Manual for
TMY3 Data Sets. Technical report May, National
Renewable Energy Laboratory.

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 1429 -


