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ABSTRACT

Archival of audio-visual databases has become an important discipline in multimedia. Various defects are typ-
ically present in such archives. Among those, one can mention recording related defects such as interference
between audio and video signals, optical related artifacts, recording and play out artifacts such as horizontal
lines, and dropouts, as well as those due to digitization such as diagonal lines. An automatic or semi-automatic
detection to identify such defects is useful, especially for large databases. In this paper, we propose two auto-
matic algorithms for detection of horizontal and diagonal lines, as well as dropouts that are among the most
typical artifacts encountered. We then evaluate the performance of these algorithms by making use of ground
truth scores obtained by human subjects.
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1. INTRODUCTION

The preservation of old audio and video recordings of major events that make history is essential for human
knowledge. Over the last years, many efforts have been dedicated to digitalization and restoration of audio-
visual archives, such as the Georges Méliès movie A Trip to the Moon, to preserve them from a certain death
due to the aging of their storage formats. The first step consists in converting the old analog recording to a
digital representation, which is better suited for nowadays storage, transmission, and processing technologies.
This process is very delicate, as it requires special care to avoid damaging the physical support and, in the
case of analog videotapes, to play the original content on a functional videotape player, which might be difficult
to find and to properly maintain. Then, restoration can be applied on the digitized content, for example by
removing defects due to the aging of the original physical support. The restoration can vary from a fully manual
process, which is very expensive, to a fully automated process, which is very challenging as it requires detection
and removal of defects without altering the original content. A few researchers have addressed this topic for the
restoration of films and video archives.1–4 In this paper, we present the results of our efforts on automatic defect
detection in the framework of the restoration of the Montreux Jazz Festival Digital Archives.

The Montreux Jazz Festival was created by Claude Nobs in 1967. Thanks to the warm welcome offered to the
artists, this festival immediately became a special one, a place where musicians could enjoy the venue in a relax
and friendly atmosphere that gave rise to the famous Montreux jam sessions, those magical artistic moments
when several musicians got together spontaneously, re-inventing their music in live duos or trios, on stage or
somewhere in town. With in mind the vision of keeping a memory of the musical performances, and having a
passion for technology and innovation, Claude Nobs decided to record the concerts from the first year of the
festival. No less than 4’000 artists among the most talented musicians in the world came to Montreux, resulting
in a unique live music collection of audio-visual recordings:

• 5’000 hours of video recordings, of which 2’000 are in critical condition
• 5’000 hours of audio recordings
• 4’000 documented concerts (metadata)
• 40’000 photos
• Hundreds of newspaper articles
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In Summer 2013, this archive was registered as part of the UNESCO program “Memories of the World”.
Quincy Jones describes it as: “It is the most important testimonial to the history of music, covering Jazz, Blues,
and Rock”. The entire original collection is preserved in a specially designed building with temperature and
humidity control, and will be filed and preserved as part of the future Claude Nobs foundation.

In 2010, in partnership with Montreux Sounds SA, EPFL launched the Montreux Jazz Festival Digital
Archives Project. The main motivation of the project is the preservation of this musical testimony, whose
original storage media are subject to the destructive tests of time. To ensure access to it for future generations,
an operation to digitize this unique catalogue is in process at EPFL, in collaboration with Vectracom in Paris (for
digitization) and Amplidata in Belgium (for storage). This new reference archive and the tools setup around it
at the MetaMedia Center (central information database, storage on hard drive, streaming, etc.) should allow fast
and easy access to the data, enabling valorization and safeguard of the recordings for the future. Preservation
and archive maintenance over the long term is the ultimate goal of the project. At the end of the Montreux
Jazz Festival Digital Archives Project, the creation of a dedicated public space will allow visitors to experience
a unique, personalized and immersive space to interact with the content of the archives. It will be a place where
Art, Technology, and Culture combine. This space will open in 2015 and will be located at the heart of EPFL
campus.

For EPFL, the originality and richness of the content make this archive a leading educational resource.
More than 5’000 hours of video and audio recordings (in mono, stereo, or multi-tracks versions) are being made
available to the researchers. This database is an invaluable digital resource that can be used in cutting-edge
research for a wide range of areas such as computing, signal processing, acoustics, augmented reality, multimedia
and security, to mention a few. Many EPFL laboratories are involved in the Montreux Jazz Festival Digital
Archives Project, bringing their competences in archive valorization (metadata generation), defect detection,
quality enhancement, or media transformation for use in new display technologies. In particular, the Multimedia
Signal Processing Group of EPFL is responsible for the automatic defect detection in the video archives. Based
on a detailed analysis of the digitized content, a set of typical defects was established. Among them, the audio
lines and dropouts were selected because of their frequency of occurrence and impact on perceived quality. Fully
automatic detection algorithms were developed to detect these two defects. In this paper, we describe these
algorithms in details and report their performance evaluated using a ground truth database of video sequences
annotated by human subjects. There are several solutions proposed in the literature dealing with detection of
various artifacts. Below, we focus on two most disturbing artifacts, namely quasi-periodic noise (audio lines)
and line or pixel drop (dropouts), therefore, we present here the overview of current work related to them only.

The goal of works found in literature focusing on periodic and quasi-periodic noise is its removal. Until now,
two different solutions have been introduced, namely Wiener filter and masking to eliminate related spectral
peaks. The Wiener filter,5 albeit its computational complexity, performs well only in cases when a proper
and precise noise model is known. A second approach exploits the advantages of Fourier amplitude spectrum
properties to detect a periodic noise. Strictly periodic noise in spatial domain corresponds to sharp peaks in
Fourier domain and can be easily localized using thresholding techniques.6 These simple methods can be used
on a frame-by-frame basis where for each frame a new threshold value has to be set. Moreover, in practical cases,
the noise is not purely periodic and affects all surrounding spectral coefficients around the peaks. Therefore,
the use of such approaches is limited and not practical for processing large number of images. A spectral peak
detector dealing with quasi-periodic noise has been introduced in7 where authors compare amplitude spectral
components to local spectrum median to identify the peaks. This method shows very good performance, however,
using median filter is relatively slow, especially for large window sizes, which is crucial for high resolution content
(SD and higher). This, of course, assumes that the sampling of Fourier transform corresponds to the image
resolution. Processing a huge amount of data, as it is the case of Montreux Jazz Festival Digital Archives,
requires relatively fast automatic methods. Therefore, using median filter is not suitable. Below, we introduce a
fast automatic technique that relies on mean and standard deviation as statistical properties of Fourier amplitude
spectrum. This method, unlike the previous one, can exploit the summed area table,8 which assures high speed
computations.

Dropouts are a common problem in video archives. Despite the importance of dropout defects, few publica-
tions directly deal with the detection of this artifact. Abbas and Domanski9 have proposed an approach that



uses a nonlinear filter (e.g., three-dimensional median filter with motion compensation) as a predictor of a pixel’s
corruptness and uses the prediction error to control the restored pixel. The restored pixel takes the value of
either the input pixel itself, the nonlinear filter output, or a linear combination of both. In turn, the approach by
Harvey and Marshall10 is based on rearranging of pixel data into a format similar to that in which the original
analog data would have been found on the videotape. This technique brings the scratched data into alignment,
where corrupted pixels can be accurately detected by making use of morphological operators and thresholding.
An approach for severe dropouts detection has been proposed by Kaprykowsky et al.11 This technique uses a
two-stage classification based on global color statistics of the frames for defect detection. Similar works deal with
detection of vertical line scratches in video sequences.12,13 These scratches mostly remain in the neighborhood
of the same location over frames, unlike dropouts, which are randomly spread over a frame across the time, thus
making them more challenging for detection. However, most of the prior work on dropouts processing skips
the detection part, assuming that frames with such an artifact are already known (e.g., manually selected), and
mostly perform some form of global filtering for dropouts removal.

The remainder of this paper is organized as follows. A brief overview of the digitalization process of the
Montreux Jazz Festival Digital Archives and a description of the typical defects encountered in the digitized
content are given in Sec. 2. The algorithms developed to automatically detect the audio lines and dropouts are
described in Sec. 3. In Sec. 4, the performance of the algorithms is reported and analyzed. Finally, concluding
remarks and discussion on future work are given in Sec. 5.

2. VIDEO ARCHIVES

2.1 Digitalization

Many different tape formats were used across the years of the festival. The festival co-produced with the
Télévision Suisse Romande its first television programs. At the beginning, analog 2-inch tapes were a major
format. Then, spotting the latest audio-visual technology at the TV Symposium of Montreux, the festival quickly
switched from black-and-white to color (1970), from stereo to multi-tracks (1975), and from standard definition
to high definition (1991). The result is a vast catalog of concerts recorded and stored on different formats. For
many years, several formats were used in parallel, exploiting conventional technology of the time, as well as
emerging technologies on the rise.

One of the main challenges was the speed of digitization that the project required. Each month, approximately
200 hours of video and 200 hours of audio were digitized and encoded. The choice of digital data formats is
essential and has been selected very carefully. Regarding the video recordings, the digitized content is stored
in both uncompressed and lightly compressed (MPEG-2, 50 Mbit/s) formats. In the future, enhancements will
always result in additional copies of the same content in the archives. The overall process follows the main steps
described below:

1. Preparation of tape batches in Caux (same media format),
2. Scan in Vectracom (EPFL for HD content),
3. Visual and auditory quality control of digital media, input of results in the database,
4. Storage of compressed video and uncompressed audio on Amplidata hard disk system.

The quality control of digital archives is an extremely important operation. It is performed at EPFL, in part
by students on campus, and in part by qualified personnel trained in the areas of audio or video. Mainly, this
control is to determine whether the scan was performed to the required expectations:

• Audio levels: maximum peak and RMS average,
• The phase correlation and the audio balance,
• The shape of the spectrum,
• The maximum luminance levels (typically in the presence of spots) and minimum (black peeling),
• The color levels and color phase,
• Special kinds of audio and video defects.

This information is also of great value for research. The annotations performed by human operators serve as
ground truth for algorithms or automated process control. After the quality control process has taken place, all
information regarding defects are entered into a database.



Figure 1: Bright light spots causing sensor burn in.

Figure 2: Proximity to a loud audio source causing modulation of the video signal by the audio signal.

2.2 Defects

A set of typical defects was established based on a detailed analysis of the digitized content. On the video quality
part, only one typical defect is due to the digitalization process, whereas most of the defects come either from
the filming conditions, the videotape recorder/player, or the aging of the tape. In the first case, the defects were
already visible at the time of the recording and when the concerts were broadcast after the festival. Figure 1
illustrates one example of such defect. This defect is due to the presence of a bright light sources in the scene,
such as a spotlight, and causes temporary sensor burn in. As a result, a greenish line or spot is visible in the
video sequence. The intensity, size, and color of this effect typically change over the time (see Fig. 1). Figure 2
illustrates another typical defect due to filming conditions. Multiple medium-sized horizontal blue or green lines,
sometimes moving up or down, characterize this defect. We have observed that this defect occurred when the
camera operator was close to a very loud audio source (loudspeaker). This defect is mostly visible in the archives
of the 70s and 80s. The origin of this defect is still not perfectly understood, but we suspect that the video signal
was modulated by the audio signal due to the strong magnetic field generated by the loudspeaker cables and the
close proximity of the camera cables and loudspeaker cables.

Different defects are also due to the videotape recorder and player. In particular, if the recording heads
were not properly cleaned before the recording of a concert, the dirt on the heads would produce visible moving
aperiodic horizontal lines on the video sequence. Figure 3 illustrates this defect. Another defect comes from the



Figure 3: Horizontal lines due to dirty heads on videotape recorder.

Figure 4: Cyclic groups of horizontal colored thin lines due to different tape-tape heads alignment between
recorder and player.

vertical alignment between the tape and the heads. If the alignment on the videotape player differs significantly
from the alignment on the videotape recorder, which can occur if a different machine is used for playback as
opposed to recording, then cyclic groups of horizontal colored thin lines are visible on the video sequence. The
video component is particularly sensitive to this misalignment due to the helical scan method. Figure 4 illustrates
the defect visible on the video sequence. The period of the groups is related with the number of tracks per frame.
We have observed that this defect is mostly visible on red and blue areas, and stronger on the right side of the
frame (see Fig. 4). Ideally, the same machine should be used for both recording and playback. However, this
condition is often impossible to fulfill considering that most of obsolete equipment is usually recycled.

It is well known that some videotape formats have a better longevity than others. In particular, the U-Matic,
2-inch, and 1-inch formats, which have mostly been used during the 70s and 80s, degrade quite fast with time. If
the video heads fail to contact firmly with the tape because of roughness, wrinkling, particles or debris on tape
or machine, then the video heads skip over the tape and the information cannot be read. If the magnetic oxide
or coating flakes off, the information at that point is permanently lost. These losses of information are commonly
referred to as dropouts. In the image, dropouts appear as pixels corresponding to missing data, black or white
spots, or streak. The intensity of the defect typically decreases on the right part of the streak. On color content,
the left part of the streak is sometimes composed of a few pixels with wrong color values. Figure 5 illustrates



Figure 5: Dropouts due to flaked-off or rough tape’s magnetic oxide or coating.

Figure 6: Diagonal grid due to jitter between the analog and sampling signals in the digitalization process.

dropouts on both black-and-white and color content. If several dropouts appear on each frame, then the video
sequence appears snowy. Some videotape players are equipped with electronic compensators to substitute the
missing information with information from the previous line. However, these systems are not perfect and some
dropouts remain visible.

Finally, one typical defect was identified as resulting from the digitalization process. Figure 6 illustrates this
defect. The origin of this defect comes from jitter between the original analog video signal and the sampling signal,
which is used as synchronization for the digitalization process, due to imperfect calibration of the equipment.
As a result, thin diagonal lines, with different periods and orientations, forming a grid, are visible on digitized
frames. The grid pattern is more visible in some areas, depending on the texture, color, and luminance (see
Fig. 6). This defect can be corrected by performing a proper calibration to ensure a perfect synchronization
between the two signals. Therefore, the sequences that suffer from this defect are digitized again.

3. AUTOMATIC DEFECT DETECTION

Based on the analysis of the typical defects observed in the digitized content (see Sec. 2.2), their frequency of
occurrence and impact on perceived quality, it was decided to first focus our efforts on two major defects: the
audio lines and dropouts. This section describes the algorithms developed to automatically detect these two
types of defect.
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Figure 7: The block diagram of the algorithm for automatic detection of audio lines.

3.1 Audio lines

Structured, quasi-periodic noise, referred to as audio lines in this paper, appear as horizontal or slightly tilted
periodic colored bands changing their amplitude, frequency, and phase frame-by-frame. Whereas such noise is
spatially stationary in each frame, it introduces non-stationary properties in the temporal domain. For example,
spatial periods of audio lines vary between 10 and 35 pixels within the investigated video dataset. Therefore,
an automatic detection of particular frames containing this artifact together with precise determination of noise
frequency needs to be performed a priori to the image enhancement phase. A relatively fast algorithm for
automatic detection of audio lines in video sequences is described further in this section.

Figure 7 illustrates the block diagram of the proposed algorithm. Automatic detection is performed in each
channel of used color space defined by the original format of video sequences (YUV 422 10 bit), and it is based
on adaptive thresholding of Fourier amplitude spectrum.

Time variable audio lines pattern in spatial domain corresponds to peaks in Fourier spectrum varying mainly
in their magnitude and location. Detection of these peaks is based on computation of adaptive threshold value
for each pixel position Ti,j using statistical properties of Fourier spectrum, namely mean value Mi,j and standard
deviation value Si,j . To generalize this approach, the proposed algorithm considers arbitrary windowing elements
WMx,y and WSx,y centered on position (i, j). The mean and standard deviation are determined as

Mi,j = mean

(⋃
x,y

W i,j
Mx,y

Ax,y

)
(1)

Si,j = std

(⋃
x,y

W i,j
Sx,y

Ax,y

)
(2)

Then, the threshold value is given as a linear combination of the above values as

TWMWS
i,j = CMMi,j + CSSi,j (3)

where CM and CS are constant multipliers defining the threshold value. The detection is successful for all
amplitude spectral components for which Ai,j > TWMWS

i,j .

This general approach is applicable to any periodic and quasi-periodic noise within the entire frame. Since
we are focused on a particular artifact, a spatial spectral mask is applied choosing only spectral components
corresponding to properties of audio lines. Range of values in audio lines periods defines the radial limits for a
spatial spectral mask in shape of annulus whereas their inclination determines the angular sector.

The threshold value depends on four different parameters: width of windowing elements (WM and WS) and
values of constant multipliers (CM and CS). Choice of the width of a window is strongly connected to the size
of the peaks. To detect a particular frequency, the width of the window must be bigger than the emphasized
area around the peak. The constant multipliers define the sensitivity of thresholding. For the dataset under
evaluation, the window size 15×15 pixels was empirically found as an optimal choice, and several different values
for constant multipliers were tested to obtain optimal thresholding value (see Sec 4.1).
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Figure 8: The block diagram of the algorithm for automatic detection of dropouts.

3.2 Dropouts

Dropouts are local defects in video sequences and appear as horizontal segments with significantly different pixel
values from neighboring pixels (see Sec. 2.2). Therefore, it is important to detect only those local regions in
video frames that are distorted and that will be removed by further filtering. In this section, we present our
method for automatic detection of dropouts in video sequences.

In the Montreux Jazz Festival Digital Archives, dropouts appear in video frames in a highly irregular manner,
i.e., they are not correlated between a given frame and its next frame. Therefore, for reliable dropouts detection,
we suggest exploiting both spatial and temporal nature of frames. Figure 8 illustrates the block diagram of
the detection method. Every frame is represented in both RGB and YCbCr color spaces. The R, G, B, and Y
components are separately considered for further processing, as explained in details in the following.

First, the temporal nature of the frames is considered for dropouts detection. A reasonable assumption
is made that dropouts do not appear at the same positions in consecutive frames, based on observations of
the dropouts temporal nature in the digital archives. To detect pixels as potential dropouts, we introduce the
Dropout Detection Index (DDI), which gives a useful measure of the presence or absence of any local distortion
in a video frame:

DDIc =

{ |dp+dn|
1+|dp−dn| , for dp > K ·meanlocal (dp) and dn > K ·meanlocal (dn)

0, otherwise
(4)

where c, p, and n refer to the current, previous, and next frame, respectively, and dp = |c− p| and dn = |c− n|
are the differences between the current and previous frames, as well as between the current and next frames.
Parameter K was empirically determined and set to 2. DDIc is computed for each pixel, therefore it is of the
same dimension as the resolution of the frames c in a video sequence. Instead of thresholding DDIc with a
constant value across the frame, a multiple of the local mean of the differences dp and dn is used as adaptive
threshold. The local means are calculated for each block of some fixed size (5 × 5 pixels, in our calculations).
In effect, this makes the thresholding operation adaptive to the local spatial information and local movement,
thus improving the detector performance.14 In addition, to decrease false detection, only blocks where motion in
both dp and dn is low are considered. Low motion is determined by making use of hysteresis thresholding with
the lower and upper threshold values set to 25 and 40, respectively. As a final result of this stage, DDIctemporal

is determined for every frame c.

Second, the spatial nature of the frames is considered for dropouts detection. Here we assume that dropouts
do not appear in consecutive rows and that horizontal edges in frames are thicker than 1 pixel. However, due
to interlacing, these assumptions can lead to false detection of horizontal edges when there is a large vertical
motion. Therefore, we consider detection of dropouts in the de-interlaced versions of the frame, namely the
two fields are separated by splitting the even and odd rows of the original frame and both fields are separately
processed. DDIc is now computed with Eq. (4) in an analogous way, by comparing the current, previous, and
next rows within one field. Three different DDIc measures are calculated separately for the interlaced signal
and the two fields of the same frame c. Two DDIc measures corresponding to the two fields are at the end
combined into a single DDIcspatial deinterlace by performing the dual operation of the deinterlacing process. As a
final result of this stage, DDIcspatial deinterlaced and DDIcspatial interlaced are determined for every frame c.



Then, the three measures computed in the previous stages, namely DDIctemporal, DDI
c
spatial interlaced, and

DDIcspatial deinterlaced, are processed to determine the relevant dropouts and discard the false ones. Remind that
these measures are of the same dimension as the resolution of a frame c. Since dropouts appear as horizontal
segments, the values along each row in DDIc are first summed to determine the rows with the highest intensity
change. We reasonably assume here that the higher intensity change in a row, the higher the probability of
dropouts presence in that row. Only N rows with the highest values are selected. The parameter N was
empirically set to 10. Then, the adaptive threshold of µ+ 2σ is applied on the selected rows, where µ and σ are
the mean and standard deviation of DDIc, respectively. As a result of this phase, discontinuities that appear
in the selected rows with a total intensity change higher than the threshold are selected as dropouts. These
calculations are repeated for all three DDIc measures, and three binary masks with locations of dropouts are
determined. Morphological filtering (dilation) is further applied on binary masks to include possibly missing
dropouts in every line.

Finally, the results represented by the three binary masks, i.e., temporal, spatial interlaced, and spatial de-
interlaced, are combined to determine unique and valid dropouts. The decision on the final dropouts is made
as follows: each dropout should be detected in at least two binary masks and in at least two components (R,
G, B, or Y). To further reduce the false detection, we suppose that frame filtering in the regions of detected
dropouts modifies the perceived frame. Therefore, we check if the improvement by applying a simple median
filtering in the regions of detected dropouts (or the degradation, in case of false detection) is visible by means
of the structural similarity (SSIM) map. In filtering, every pixel detected as dropout is replaced by the median
value of its seven neighboring pixels from the previous and the next rows, and from the left column. The SSIM
map is then computed between the original and filtered frames. Finally, pixels are classified as visible (valid
dropouts) and non-visible dropouts by making use of hysteresis thresholding applied on the SSIM map, with the
lower and upper threshold values set to 0.2 and 0.65, respectively. As a final outcome, visible dropouts that have
an impact on the perceived image are kept as valid dropouts.

Pixels detected as valid dropouts in the original frame are replaced by the corresponding pixels from the
filtered frame. This updated frame is used as a new input for a second pass of the algorithm to allow dropouts
with lower confidence to be tested. Valid dropouts detected during each pass are merged to produce the final
result of the detection process.

4. RESULTS

A list of the most critical defects was built by the MetaMedia Center (see Sec. 2) to identify both the more
perceptually annoying and widely spread defects. During quality control operations, concerts showing significant
defects were tracked and kept apart for analysis. Then, for the purpose of automatic defect detection and
enhancement, EPFL students were involved in indexing and tagging those critical video sequences to precisely
indicate when and where the defects appear on the video streams. Many samples of each defect were extracted
to build a ground truth database to benchmark the algorithms. All video sequences were available in standard
definition, 25 fps, interlaced format. The database contained a total of 28 and 9 different video sequences for
the evaluation of the audio lines and dropouts detection algorithms, respectively. Tables 1 and 2 detail various
statistics on video sequences used in the ground truth database.

To evaluate the performance of the developed algorithms, standard receiver operating characteristics (ROC)
were used. Given the ground truth and the detection results, the numbers of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) were computed for each video sequence. Based on these
numbers, the following set of complementary performance metrics was computed to evaluate the proposed algo-
rithms: true positive rate (TPR), false positive rate (FPR), accuracy (ACC), specificity (SPC, or true negative
rate), positive predictive value (PPV), negative predictive value (NPV), and false discovery rate (FDR).15 The
following subsections report the results for the audio lines and dropouts detection.



Table 1: Statistics of the ground truth database used to evaluate the audio lines detection algorithm.

Video 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Number of
252 111 144 451 134 396 225 148 130 98 63 178 102 54 210 66 149 77 60 35 69 46 38 73 168 77 35 81

frames

Number of
45 76 84 154 43 146 77 69 98 24 18 26 59 32 29 14 101 37 60 22 33 11 28 68 79 62 15 64frames with

audio lines

Table 2: Statistics of the ground truth database used to evaluate the dropouts detection algorithm.

Video 1 2 3 4 5 6 7 8 9

Number of frames 15 43 29 5 21 161 13 24 25

Number of frames with dropouts 10 42 0 1 6 45 2 0 7

Number of dropouts 15 230 0 1 8 60 2 0 49

Average number of dropouts per frame 1 5.3 0 0.2 0.4 0.4 0.2 0 2.0

Max number of dropouts per frame 3 14 0 1 2 4 1 0 21

4.1 Audio lines

Figure 9 shows a typical example of image data, its Fourier amplitude spectrum (Cb channel), used spatial
spectral mask, and results for detection of horizontal audio lines in each color channel. All peaks corresponding
to quasi-periodic noise are shown and detected, even for higher frequencies. Applying the mask (see Fig. 9(c)),
the result of detection can be narrowed to audio lines corresponding frequencies only.

The goal was to find one combination of parameters to automatically detect audio lines with high accuracy
through the entire dataset. Four variables mentioned above, i.e., two widths of windowing elements for computing
mean and standard deviation and two constant multipliers were changed to achieve the optimal combination.
The window width of 15× 15 pixels was determined as optimal for SD resolution content and Fourier amplitude
spectrum. Several combinations of CM and CS were evaluated to determine optimal thresholding parameters
for the entire video dataset. Standard ROC were used to evaluate particular combinations of parameters. To
choose the optimal combination of CM and CS , the overall accuracy was taken as a decision-making criterion.
Figure 10 shows the ROC curves expressing the relation between TPR and FPR for the following parameters:
WM = WS = 15 × 15 pixels, CM = 2.5, and CS = [2, 3]. For better orientation, only the set of ten most
representative video sequences is shown. One can see that detection performance depends strongly on the
threshold value. High values of CS result in poor detection performance and TPR is at its lower limit for each
content. On the other hand, there are many false positive detections for low values of CS so we get a lot of
false alarms detecting clear frames. Consistent trend of all characteristics shows that a proper combination of
parameters can improve the detection in order of tens of percent. The goal is to choose the optimal combination
of CM and CS that will provide best detection performance for all frames over the entire dataset, namely that
TPR and FPR will be as close as possible to 1 and 0, respectively. Based on the different ROC curves, the
parameters CM = CS = 2.5 were chosen to complete the optimal set of parameters.

Table 3 reports the ROC for the parameters WM = WS = 15× 15 pixels and CM = CS = 2.5. From overall
point of view, the detection algorithm shows a good performance within the evaluated dataset with average
value of TPR = 87%, ACC = 83%, and PPV = 76%. The biggest deviation from the average performance in
terms of accuracy can be seen for video sequences 7 and 16 with accuracy values of 67% and 62%, respectively.
This is caused by higher values of false positive (21% and 38%, respectively) in relation of number of frames.
Closer analysis of amplitude spectrum of problematic frames shows that defined thresholding parameters are too
sensitive in comparison to given ground truth. In another words, even if the artifact doesn’t disturb the viewer,
it is still detected in spectrum. On the other hand, sequences 8 and 10 show higher values of false negative,
meaning that the detection algorithm missed frames for which the positive ground truth is defined. For further
processing, which is, as mentioned above, the removal of the artifact, it is crucial to lower false alarms and missed
detections to zero. Therefore, the thresholding parameter should be adapted and tailored to the content.
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Figure 9: a) Typical image data containing the audio lines. b) Fourier amplitude spectrum of Cb component.
c) Spatial spectral mask used for detection. d-f) results for detection of horizontal lines before applying spectral
mask.

Figure 10: Receiver operating characteristics of the proposed algorithm for audio lines detection.



Table 3: The performance metrics for audio lines detection. All values are given in [%].

TP TN FP FN TPR FPR ACC SPC PPV NPV FDR
Video 1 6.35 78.57 3.57 11.51 35.56 4.35 84.92 95.65 64 87.22 36
Video 2 54.05 27.03 4.5 14.41 78.95 14.29 81.08 85.71 92.31 65.22 7.69
Video 3 53.47 40.28 1.39 4.86 91.67 3.33 93.75 96.67 97.47 89.23 2.53
Video 4 30.82 47.23 18.63 3.33 90.26 28.28 78.05 71.72 62.33 93.42 37.67
Video 5 31.34 53.73 14.18 0.75 97.67 20.88 85.07 79.12 68.85 98.63 31.15
Video 6 26.77 59.85 3.28 10.1 72.6 5.2 86.62 94.8 89.08 85.56 10.92
Video 7 23.11 44.44 21.33 11.11 67.53 32.43 67.56 67.57 52 80 48
Video 8 29.05 51.35 2.03 17.57 62.32 3.8 80.41 96.2 93.48 74.51 6.52
Video 9 68.46 13.85 10.77 6.92 90.82 43.75 82.31 56.25 86.41 66.67 13.59
Video 10 19.39 63.27 12.24 5.1 79.17 16.22 82.65 83.78 61.29 92.54 38.71
Video 11 20.63 71.43 0 7.94 72.22 0 92.06 100 100 90 0
Video 12 4.49 75.84 9.55 10.11 30.77 11.18 80.34 88.82 32 88.24 68
Video 13 54.9 41.18 0.98 2.94 94.92 2.33 96.08 97.67 98.25 93.33 1.75
Video 14 57.41 29.63 11.11 1.85 96.88 27.27 87.04 72.73 83.78 94.12 16.22
Video 15 13.81 57.62 28.57 0 100 33.15 71.43 66.85 32.58 100 67.42
Video 16 21.21 40.91 37.88 0 100 48.08 62.12 51.92 35.9 100 64.1
Video 17 67.11 20.81 11.41 0.67 99.01 35.42 87.92 64.58 85.47 96.88 14.53
Video 18 48.05 36.36 15.58 0 100 30 84.42 70 75.51 100 24.49
Video 19 96.67 0 0 3.33 96.67 0 96.67 0 100 0 0
Video 20 57.14 20 17.14 5.71 90.91 46.15 77.14 53.85 76.92 77.78 23.08
Video 21 47.83 24.64 27.54 0 100 52.78 72.46 47.22 63.46 100 36.54
Video 22 23.91 47.83 28.26 0 100 37.14 71.74 62.86 45.83 100 54.17
Video 23 73.68 18.42 7.89 0 100 30 92.11 70 90.32 100 9.68
Video 24 91.78 1.37 5.48 1.37 98.53 80 93.15 20 94.37 50 5.63
Video 25 47.02 30.95 22.02 0 100 41.57 77.98 58.43 68.1 100 31.9
Video 26 79.22 14.29 5.19 1.3 98.39 26.67 93.51 73.33 93.85 91.67 6.15
Video 27 40 51.43 5.71 2.86 93.33 10 91.43 90 87.5 94.74 12.5
Video 28 79.01 7.41 13.58 0 100 64.71 86.42 35.29 85.33 100 14.67
Average 45.24 38.2 12.14 4.42 87.08 26.75 83.44 69.68 75.59 86.06 24.41



Table 4: The performance metrics for dropouts detection. All values are given in [%].

TP TN FP FN TPR FPR ACC SPC PPV NPV FDR
Video 1 0.16 99.51 0.32 0.01 93.33 0.32 99.67 99.68 34.15 99.99 65.85
Video 2 0.72 98.31 0.75 0.22 76.52 0.76 99.03 99.24 48.89 99.78 51.11
Video 3 0.00 99.66 0.34 0.00 100.00 0.34 99.66 99.66 0.00 100.00 100.00
Video 4 0.04 99.82 0.14 0.00 100.00 0.14 99.86 99.86 20.00 100.00 80.00
Video 5 0.03 99.84 0.09 0.03 50.00 0.09 99.87 99.91 26.67 99.97 73.33
Video 6 0.05 99.56 0.37 0.01 83.33 0.37 99.62 99.63 12.79 99.99 87.21
Video 7 0.03 99.81 0.16 0.00 100.00 0.16 99.84 99.84 14.29 100.00 85.71
Video 8 0.00 99.74 0.26 0.00 100.00 0.26 99.74 99.74 0.00 100.00 100.00
Video 9 0.29 99.12 0.54 0.05 85.71 0.54 99.41 99.46 35.29 99.95 64.71
Average 0.15 99.49 0.33 0.04 87.66 0.33 99.63 99.67 21.34 99.96 78.66

4.2 Dropouts

The proposed algorithm determines lines in video frames where dropouts appear, therefore it can be evaluated
as a typical detection task. The goal of this detection task is to classify every line in a video frame as a line with
or without dropouts. Table 4 reports the values of performance metrics for every video separately, as well as the
average values for the entire video dataset. Values are calculated for the set of parameters which are empirically
selected (see Sec. 3.2). In average, the algorithm achieves good performance in terms of high TPR, high ACC,
and low FPR. Video sequences with few dropouts show good TPR (above 85%) as the majority of dropouts are
detected by the proposed algorithm. For video sequences with higher density, TPR decreases to 75% or below.
High values of ACC, SPC, and NPV are expected due to very high number of true negatives, i.e., high number
of lines where there are no dropouts. Also, the number of false positives is limited to 20 lines per frame by
a parameter, which defines the number of the rows with the highest intensity change (2 passes with N = 10
lines each, see Sec. 3.2), whereas the minimum number of lines with true negatives is around 550. Therefore,
the value of FPR is kept very low - in worst case it can reach 0.76%. As complementary metrics to those
presented, SPC and NPV have lower limit of 99.2%. On the other hand, in average, the algorithm introduces
four times more false positives than the number of true positives in a video, as shown by FDR and PPV values.
The false positives are introduced in regions with high motion, where pixel differences in consecutive frames
tend to be high. Therefore, additional processing step can be introduced to further reduce false positives. For
example, determining the displacement of the blocks in consecutive frames and calculating differences between
local, displaced blocks, instead of computing differences over an entire frame.

Figure 11 shows the performance of dropouts detection in the form of the ROC curves. The curves are shown
for the set of video sequences containing dropouts (see Tab. 2). The curves were produced by varying parameter
K in Eq. (4) between 1 and 20. Results show that TPR and FPR are highly dependent on the selection of the
parameter K. General trend is that both TPR and FPR increase by decreasing the value K, except for K values
between 1 and 3 where, for majority of the video sequences, the TPR becomes “saturated” once it reaches the
highest extreme values. It is interesting that these extreme values are different for different video sequences,
and that the proposed automatic approach performs better for sequences with lower number of dropouts. For
instance, the TPR in sequences 1, 4, 5, and 7 with few dropouts achieve their highest values of 100%, when
compared to sequences 2, 6, and 9 with the high number of dropouts where the TPR reaches upper limit around
80%. Also, sequences with smaller average number of dropouts per frame show better performance in term of
FPR. For instance, video sequence 5 reaches its best performance of TPR = 100% for FPR = 0.1%, whereas
sequence 2 shows best performance for FPR = 0.7%. Another interesting observation is that video sequences do
not reach their best performance for the same value of K, and that the same variations of K produce different
changes in performance of different sequences. For example, video sequences 1, 5, and 7 reach 100% of TPR
quite fast and then keep this value while FPR increases. On the other hand, video sequence 6 is slow in reaching
its higher TPR values. Taking into account a tradeoff between high TPR and low FPR and their different values
for every video, we selected the value 2 for K as the optimal parameter for all video sequences.



Figure 11: Receiver operating characteristic of the proposed algorithm for dropouts detection.

These results show that the proposed algorithm performs very well for sequences with lower number of
dropouts, whereas performance decreases for sequences with a lot of dropouts. This and all the other facts
presented in this section lead to a conclusion that parameters should ideally be adjusted for each sequence
separately to achieve higher performance for each of them. One of the solutions is to manually select values for
different video sequences, which would lead to a semi-automatic approach. However, having large number or long
video sequences in a digital archive would require a time-consuming and tedious process of parameter tuning.
Therefore, we suggest at first extending the objective analysis presented in this paper to include a subjective
assessment of restored video sequences, i.e., where the detected dropouts are automatically removed by filtering.
Subjective assessment can determine the lower limit of performance that would meet subjects’ expectations for
different content types. By doing this, we can potentially reduce the time for parameter tuning and faster achieve
satisfactory results.

5. CONCLUSION

In this paper, we presented two algorithms to automatically detect multiple quasi-periodic horizontal lines,
referred to as audio lines, and dropouts, which are two typical defects visible in video archives. Audio lines
correspond to peaks in the Fourier spectrum and were detected based on an adaptive thresholding of the frequency
components. Dropouts appear as pixels corresponding to missing data and were detected by comparing each
pixel to its spatial and temporal neighbors and applying an adaptive thresholding. These algorithms were applied
to the Montreux Jazz Festival Digital Archives. To evaluate the performance of the algorithms, a ground truth
database was created by collecting annotations from human subjects on a set of video sequences showing these
two defects. Results show that both algorithms achieve good performance with a true positive rate of above
87%.

To improve the performance of defect detection, thresholding parameters should ideally be adjusted for each
sequence separately, for example by manual selection. However, such semi-automatic approach is not convenient
when a large amount of data needs to be processed. For video archive restoration, defect detection is closely
linked with defect removal. In future work, the performance of the developed algorithms will be evaluated
through subjective evaluation of restored video sequences. Such evaluation will be very beneficial to determine
the impact of false detection on perceived quality as well as an optimal tradeoff between false positive and false
negative.
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