
Data-driven Neuroscience: Enabling Breakthroughs Via
Innovative Data Management

Alexandros Stougiannis¶ Farhan Tauheed†‡ Mirjana Pavlovic†

Thomas Heinis† Anastasia Ailamaki†
¶Department of Computer and Systems Sciences, Stockholm University, Sweden

†Data-Intensive Applications and Systems Lab, École Polytechnique Fédérale de Lausanne, Switzerland
‡Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Switzerland

ABSTRACT
Scientists in all disciplines increasingly rely on simulations
to develop a better understanding of the subject they are
studying. For example the neuroscientists we collaborate
with in the Blue Brain project have started to simulate the
brain on a supercomputer. The level of detail of their mod-
els is unprecedented as they model details on the subcellular
level (e.g., the neurotransmitter). This level of detail, how-
ever, also leads to a true data deluge and the neuroscientists
have only few tools to efficiently analyze the data.

This demonstration showcases three innovative spatial man-
agement techniques that have substantial impact on compu-
tational neuroscience and other disciplines in that they al-
low to build, analyze and simulate bigger and more detailed
models. More particularly, we demonstrate a tool that inte-
grates three spatial data management techniques that have
enabled breakthroughs in neuroscience: FLAT that enables
efficient querying of spatial data, SCOUT that allows for fast
exploration of spatial data and TOUCH that makes efficient
data discovery possible.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Spatial databases
and GIS; G.2.2 [DISCRETE MATHEMATICS]: Graph
Theory

Keywords
Spatial Indexing; Spatial Join; Range Queries, Graph Prefetch-
ing, FLAT, TOUCH, SCOUT

1. INTRODUCTION
Scientists in many disciplines no longer solely study nat-

ural phenomena in vitro or in vivo, but instead attempt
to understand the phenomenon better by simulating it on
supercomputers or cloud deployments. Processing and ana-
lyzing the simulation data, i.e., the models simulated or the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

simulation output is a challenging task with today’s tools.
Efficient tools to build and analyze models in order to pre-
pare new experiments is crucial for them. While the spatial
indexes developed in the past [2] are of great help to scien-
tists, several problems have not yet been addressed.

The work presented in this demo is motivated by our col-
laboration with the Blue Brain Project (BBP [10]). The
neuroscientists in the BBP build biophysically realistic mod-
els of the rat brain at an unprecedented level of detail with
data acquired in several years of anatomical research. A
small model contains several thousands of neurons (a small
part is shown in Figure 1, left), each one of which modelled
with electrophysiological properties as well as a precise mor-
phology defining the branches that extend into large parts
of the tissue in order to receive and send out information to
other neurons (Figure 1 (right) shows a cell morphology).
The neuroscientists use a supercomputer (BlueGene/P with
16K cores) to simulate the propagation of electrical impulses
through the branches of the neurons.

(a) Model (b) Neuron

Figure 1: Visualization of a small part of the model (left)
and the surface mesh of a neuron (right).

In their quest to better understand the brain, i.e., how
we perceive, feel etc., the neuroscientists need to build in-
creasingly big and detailed models of it. Building models
at the required level of detail and of the size needed, how-
ever, is impossible with today’s tools. What the neurosci-
entists therefore urgently need are spatial data management
techniques that (1) allow to efficiently query massive spatial
brain models, (2) provide fast data exploration capabilities
to analyze spatial data and (3) enable efficient discovery of
synapses in their models.

Until recently, the models contained only up to 10’000
neurons but thanks to the data management tools we have
developed (FLAT, SCOUT and TOUCH) models of one mil-
lion neurons or bigger can be built and simulated today. One
million neurons, however, is still far from their ultimate goal
of building models as big as the human brain (∼1011 neu-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147995517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rons), but by addressing their data management challenges
with the data management tools we demonstrate, we can
help them to build ever bigger models. Although our moti-
vation to build the tools comes primarily from our work with
neuroscientists, our tools are nevertheless very useful for sci-
entists in many other disciplines (biology [3], astronomy [4],
geology [6], etc.) as well.

In the remainder of the paper we briefly present the spa-
tial indexing techniques that are part of the demo, how we
visualize them and how the audience can interact with them.
We structure the paper in three main sections, one for each
part of the tool.

2. EFFICIENT SPATIAL DATA QUERYING
A recurring type of query that scientists need to execute

on their models are spatial range queries. The neuroscien-
tists in the BBP use spatial range queries to build, analyze
and visualize their models. Many indexes have been devel-
oped in the past to execute spatial range queries [2] and
while they execute range queries efficiently on many spatial
data sets, they fail to do so on dense datasets. The problem
is that the denser the dataset is, i.e., the more elements are
in the same unit of space, the more overlap and dead space
tree-based indexes (R-Trees and variants: STR, TGS, PR-
Tree, R+-Tree, R*-Tree and others) have. Several improve-
ments have been proposed, each, however, has drawbacks,
e.g., the R+-Tree [14] replicates elements to avoid overlap
but thereby also increases the index size considerably.

2.1 FLAT: Efficient Range Query Execution
To address the problem of dense spatial datasets and hence

the problem of increasingly detailed models we have devel-
oped FLAT [15], a new query execution strategy for dense
datasets. At the core of FLAT is its novel range query execu-
tion strategy that uses neighborhood information, i.e., what
spatial elements neighbor each other, to make the time for
query execution independent of data density.

More precisely, to make FLAT work on arbitrary datasets
it adds in the indexing phase information to the dataset
describing what spatial elements neighbor each other. In
the query phase, FLAT first uses an R-Tree (STR [9] bulk-
loaded) to find an arbitrary element e inside the query range
and then uses the neighborhood information to recursively
visit the elements in the range: beginning with e, it re-
cursively visits e’s neighbors. The neighbors of retrieved
elements that are not in the range are not visited.

Figure 2: FLAT’s interactive query
selection on a small part of the ro-
dent neocortex.

Both phases of
the query execu-
tion are indepen-
dent of the dataset
density. Finding
an arbitrary ele-
ment in a query
range typically only
depends on the
height of the R-
Tree (as opposed
to finding a par-
ticular element in
an R-Tree which
suffers from over-

lap [15]). Retrieving all neighboring elements in the query
range by using the neighborhood information only depends
on the size of the result. FLAT hence executes range queries

more efficiently on today’s dense datasets and will scale sub-
stantially better to future, even more detailed models.

FLAT is currently used by the neuroscientists to compute
statistics (tissue density etc.) of the models they build and
to visualize smaller parts of the model.

2.2 Interactive Visualization
The demo of FLAT compares the range query execution

of FLAT and the R-Tree on real neuroscience data repre-
senting a small part of the rat neocortex (represented by a
surface mesh). The audience can visually define a query in
any region of a small representation of the neocortex (shown
in Figure 2) and can test how FLAT and the R-Tree behave
when executing queries in dense and sparse regions.

Figure 3: Statistics for
both, R-Tree and FLAT,
which are updated live dur-
ing query execution.

Once the query is cho-
sen, it is executed on both,
FLAT and the R-Tree.
While the query is running,
the result is visualized as it
is retrieved (similar to how
the neuroscientists use it in
practice) and also statistics
(disk pages retrieved, time
etc.) are shown and up-
dated at runtime (shown in
Figure 3).

At the same time we
visualize the query exe-
cution strategy of FLAT.
We show the order of el-
ements retrieved in the
query range and thereby il-
lustrate how FLAT crawls
through the query range by
means of the neighborhood
information (shown in Fig-

ure 4). We contrast this with the query execution strategy
of the R-Tree and show for the R-Tree how many nodes
are retrieved on each level (due to overlap more nodes are
retrieved on higher levels).

3. EFFICIENT DATA EXPLORATION
In order to analyze spatial models of road networks, ar-

terial trees etc. scientists need to execute moving range
queries, i.e., they need to execute spatial range queries inter-
actively in close succession on a model to analyze & visualize
the neighborhood of the structure they are following. Neuro-
scientists need this type of query to follow neuron branches
to see where they intersect other branches: at every step
they retrieve the surroundings of the branch at a particular
point and visualize it. Because this is an interactive process
- data is retrieved, visualized and then analyzed by a user
before the next query is executed - data can be prefetched
to considerably speed up the query sequence.

State-of-the-art approaches do not prefetch spatial data
with good enough accuracy because they rely on limited in-
formation. They either only use the current location [13]
or the last few positions to predict the next query location.
Because the structures of neurons (but also of arterial trees,
lung airways, etc.) are irregular and jagged, current pre-
diction approaches do not perform well. Other approaches
learn from past user behavior to predict future positions [8].
For massive models like in our scenario, however, learning
from past user behavior does not significantly improve pre-

diction accuracy because the probability that several users
follow the same paths is small.

3.1 SCOUT: Content-Aware Prefetching

Figure 4: Illustration of FLAT’s
query execution strategy, show-
ing the order of the parts of the
query result loaded (by coloring
them), i.e., crawling through the
result.

As a consequence
we have developed
SCOUT [16], a prefetch-
ing method for spa-
tial data that prefetches
with a considerably
higher accuracy speed-
ing up query se-
quences by a factor
of up to 15×.

Only considering the
previous query loca-
tions is not enough
to predict future query
locations with high
accuracy. To sup-
port scientists in ex-
ecuting spatial range
query sequences along

their path of interest, SCOUT thus not only considers the lo-
cations of previous queries, but also their content. While the
result of query q in the sequence is loaded, SCOUT already
starts to reconstruct the dominating structures/the topo-
logical skeleton in q and approximates them with a graph.
Once the graph is constructed, it is traversed to find the
locations where its edges exit q. At the exit locations, the
edges exiting are extrapolated linearly to predict the next
query locations. Range queries are then executed at the
predicted locations to prefetch data into memory.

n+3

n+2
n+1

n

Figure 5: Pruning the irrelevant
structures (solid lines) from the can-
didate set (dashed lines) in subse-
quent queries (solid squares) of the
sequence.

In every query
result there are
many different struc-
tures and the sci-
entist may be fol-
lowing any one
of them. To
identify the struc-
ture the scientist
follows, SCOUT
exploits that all
queries in the spa-
tial range query
sequence must con-

tain the structure followed. It thus only considers the inter-
section between the structures leaving the (n − 1)th query
and the set of structures entering the nth (the most recent)
query. The structure the user follows must be in the inter-
section. With several queries in a sequence, the structure
the user follows can thus be identified reliably. Figure 5
shows how the candidate set is reduced and the structure
followed is identified reliably to prefetch the correct data.

3.2 Prefetching Visualization
To demonstrate the benefits of SCOUT the audience can

interactively walk through a model representing a small part
of the rat brain. The dataset used represents several thou-
sand neurons with surface meshes. Audience members can
choose what prefetching method they want to use and can in-
teractively walk through the model. With this they can test
SCOUT and see that when following a structure, SCOUT
prefetches nicely and the visualization is smoother compared

to moving through the model randomly. Users can also com-
pare SCOUT against other prefetching approaches (Hilbert
prefetching [13], Extrapolation prefetching) and will see that
due to the accurate prefetching the visualization is quicker
and smoother than for other approaches.

Figure 6: SCOUT speeds up walk-through following a neu-
ron branch through a model.

As the screenshot in Figure 6 illustrates, we also show
statistics of the last visualization, i.e., how much data was
prefetched in total, how much was correctly prefetched and
how much data needed to be retrieved additionally. The
statistics are refreshed as data is being prefetched to make
the difference to other approaches more explicit. Addition-
ally we visualize what parts of the model are prefetched
between queries for the different prefetching methods.

4. EFFICIENT DATA DISCOVERY
When building a small model of the brain, the neurosci-

entists first put together several thousand neuron structures
(an example of just one is illustrated in Figure 1 (right))
and then identify where to place the synapses, i.e., the places
where branches of different neurons are close enough for elec-
trical impulses to leap over [7]. The latter, placing the syn-
apses, is a difficult data management problem best described
as a distance join [5] on an unindexed and unsorted dataset
to find pairs of neuron branches within distance e of each
other.

To perform the spatial join at scale, the neuroscientists
run it in the main memory of either a supercomputer (Blue-
Gene/P) or a cluster. Only two approaches [11, 1] have
been developed particularly for use in memory so far. Nei-
ther is particularly efficient: the nested loop join [11] has a
complexity of O(n2) while the sweep line approach [1] can
become inefficient if too many elements are on the sweep line
(likely in case of dense data/detailed models). Approaches
developed for disk [5] can of course also be used in memory,
most of them, however, first need to index the dataset in a
costly step before the spatial join can be performed or suffer
from excessive memory use (due to object replication, e.g.,
PBSM).

4.1 TOUCH: In-Memory Spatial Join
Given the lack of scalable approaches, we have developed

TOUCH [12], a new two-way spatial join approach that

works efficiently in memory and is one order of magnitude
faster than known approaches (PBSM) and two orders of
magnitude faster than known approaches with an equally
small memory footprint (synchronized R-tree traversal, S3
and Scalable Sweep Join). TOUCH, our approach is de-
signed radically different than known approaches in that it
avoids space-oriented partitioning and thus also avoids ele-
ment replication. Replication has to be avoided because it
(a) increases the memory footprint and (b) requires multi-
ple comparisons (as well as making the removal of duplicate
results necessary).

Instead, TOUCH uses data-oriented partitioning to join
datasets A and B. It first indexes dataset A and packs all
elements into partitions to open up empty space between
partitions, i.e., where there are no elements. These empty
spaces allow TOUCH to use filtering, a concept used to
reduce the number of comparisons: if any element b from
dataset B falls into empty spaces, it can safely be ignored
as there are by definition no elements from A in the empty
space with which b could intersect. In the second phase
TOUCH directly assigns objects of B to the data-oriented
index of the A and by doing so avoids the problems caused by
excessive index-overlap in other data-oriented approaches.
The combination of data-oriented partitioning during index-
building on the first data set with hierarchical assignment of
the second dataset leads to significantly fewer comparisons
and speeds up the spatial join.

4.2 Spatial Join Visualization
We visualize how TOUCH works on a small neuroscience

dataset (that fits into main memory) and show how it finds
the locations where synapses need to be placed faster. The
demonstration of TOUCH has three elements. First the
audience member chooses on a small representation of the
brain model the area to perform the spatial join (same inter-
face as Figure 2) as well as a method to perform the spatial
join with, i.e., TOUCH, S3, PBSM etc.

Figure 7: As the spatial join iden-
tifies locations of synapses, they are
highlighted in a three dimensional
model of the brain.

The execution
of the spatial join
is then visualized
by highlighting on
a three dimen-
sional model of
the brain the lo-
cations where syn-
apses need to be
placed as the join
proceeds. Fig-
ure 7 shows how
the locations of
synapses are high-
lighted as the spa-
tial join runs. At-
tendees can exe-

cute the join with different methods and can see how
TOUCH outperforms the other approaches. To quantify and
to make the difference more explicit we update at runtime
charts showing time spent on the join, memory footprint as
well as the number of pairwise comparisons needed.

5. CONCLUSIONS
The neuroscientists in the Blue Brain Project build in-

creasingly big, complex and detailed models of the brain.
But while the unprecedented size and level of detail of their
models provide fundamentally new insight into neuroscience

phenomena, the amounts of spatial data involved are also
unprecedented and are difficult to handle with today’s tools.
The lack of efficient tools makes it difficult to analyze the
data and therefore to build, analyze and fix the models.

With FLAT, SCOUT and TOUCH, this demo showcases
spatial data management techniques we have developed to
address some of the biggest data management challenges
faced in the BBP. The techniques we demonstrate have en-
abled considerable breakthroughs in the BBP.

6. REFERENCES
[1] H. Edelsbrunner. Algorithms in combinatorial

geometry. Springer-Verlag, 1987.
[2] V. Gaede and O. Guenther. Multidimensional Access

Methods. ACM Computing Surveys, 30(2), 1998.
[3] S. Gnanakaran, H. Nymeyer, J. Portman, K. Y.

Sanbonmatsu, and A. E. Garcia. Peptide folding
simulations. Current Opinion in Structural Biology,
13(2):168–174, 2003.

[4] J. Gray, A. Szalay, A. Thakar, P. Kunszt,
C. Stoughton, D. Slutz, and J. Vandenberg. Data
Mining the SDSS SkyServer Database. In Technical
Report, MSR-TR-2002-01, Microsoft Research, 2002.

[5] E. H. Jacox and H. Samet. Spatial Join Techniques.
ACM TODS, 32(1):7, 2007.

[6] D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp. A 14.6
Billion Degrees of Freedom, 5 Teraflops, 2.5 Terabyte
Earthquake Simulation on the Earth Simulator. In
Supercomputing ’03.

[7] J. Kozloski, K. Sfyrakis, S. Hill, F. Schürmann,
C. Peck, and H. Markram. Identifying, Tabulating,
and Analyzing Contacts Between Branched Neuron
Morphologies. IBM Journal of Research and
Development, 52(1/2):43–55, 2008.

[8] D. Lee, J. Kim, S. Kim, K. Kim, K. Yoo-Sung, and
J. Park. Adaptation of a neighbor selection markov
chain for prefetching tiled web gis data. In Conference
on Advances in Information Systems ’02.

[9] S. T. Leutenegger, M. A. Lopez, and J. Edgington.
STR: a Simple and Efficient Algorithm for R-tree
Packing. ICDE ’97.

[10] H. Markram. The Blue Brain Project. Nature Reviews
Neuroscience, 7(2):153–160, 2006.

[11] P. Mishra and M. H. Eich. Join Processing in
Relational Databases. ACM Computing Surveys,
24(1):63–113, 1992.

[12] S. Nobari, F. Tauheed, T. Heinis, P. Karras,
S. Bressan, and A. Ailamaki. TOUCH: In-Memory
Spatial Join by Hierarchical Data-Oriented
Partitioning. In SIGMOD ’13.

[13] D.-J. Park and H.-J. Kim. Prefetch Policies for Large
Objects in a Web-enabled GIS Application.
Transactions on Data and Knowledge Engineering,
37(1):65–84, 2001.

[14] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. VLDB ’87.

[15] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann,
H. Markram, and A. Ailamaki. Accelerating Range
Queries for Brain Simulations. In ICDE ’12.

[16] F. Tauheed, T. Heinis, F. Schürmann, H. Markram,
and A. Ailamaki. SCOUT: Prefetching for Latent
Structure Following Queries. In VLDB ’12.

