
TOUCH: In-Memory Spatial Join by Hierarchical
Data-Oriented Partitioning

Sadegh Nobari¶† Farhan Tauheed†‡ Thomas Heinis†

Panagiotis Karras§ Stéphane Bressan¶ Anastasia Ailamaki†
¶National University of Singapore, Singapore

†Data-Intensive Applications and Systems Lab, École Polytechnique Fédérale de Lausanne, Switzerland
‡Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Switzerland

§Department of Management Science and Information Systems, Rutgers University, USA

ABSTRACT
Efficient spatial joins are pivotal for many applications and
particularly important for geographical information systems
or for the simulation sciences where scientists work with spa-
tial models. Past research has primarily focused on disk-
based spatial joins; efficient in-memory approaches, how-
ever, are important for two reasons: a) main memory has
grown so large that many datasets fit in it and b) the in-
memory join is a very time-consuming part of all disk-based
spatial joins.

In this paper we develop TOUCH, a novel in-memory
spatial join algorithm that uses hierarchical data-oriented
space partitioning, thereby keeping both its memory foot-
print and the number of comparisons low. Our results show
that TOUCH outperforms known in-memory spatial-join al-
gorithms as well as in-memory implementations of disk-based
join approaches. In particular, it has a one order of mag-
nitude advantage over the memory-demanding state of the
art in terms of number of comparisons (i.e., pairwise object
comparisons), as well as execution time, while it is two or-
ders of magnitude faster when compared to approaches with
a similar memory footprint. Furthermore, TOUCH is more
scalable than competing approaches as data density grows.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Spatial databases
and GIS; G.2.2 [DISCRETE MATHEMATICS]: Graph
Theory

Keywords
Scalable algorithms; Spatial joins; TOUCH; Indexing

1. INTRODUCTION
Many applications dealing with spatial data rely on the ef-

ficient execution of spatial or distance joins. In geographical
applications these joins are used to detect collisions or prox-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

imity between geographical features [30], i.e., landmarks,
houses, roads, etc. and in medical imaging, spatial joins are
used to determine which cancerous cells are within a cer-
tain distance of each other [10]. In the simulation sciences,
where scientists build and simulate precise spatial models of
the phenomena they are studying, distance joins are, for ex-
ample, used to monitor the folding process of peptides [12].

Unfortunately, a distance join on two unsorted and unin-
dexed datasets is a computationally costly operation, even
if executed in the main memory of a supercomputer. Data
models grow fast and, as a result, the distance join is a
bottleneck in many scientific applications today, preventing
them from scaling to bigger models. Apart from growing,
data models in real-world scientific applications also become
increasingly realistic and hence denser. The growing density
of the models substantially increases the join’s selectivity,
rendering the efficient execution of this operation key for
scaling to larger and more realistic models.

To formulate the problem, we translate the distance join
into a spatial join that tests pairs of objects for intersection.
Formally, the distance join takes a distance ε and two spatial
datasets A and B and finds all pairs of spatial objects a ∈ A
and b ∈ B such that the distance between a and b is less
than or equal to ε. To translate the problem into a spatial
join, we increase the size of all objects in one dataset by ε
and then test both datasets for intersecting objects [15].

Existing research on spatial joins has mostly focused on
disk-based approaches. Spatial join techniques designed for
use in memory hence lack efficiency and scalability. In this
paper we develop TOUCH, a two-way spatial join approach
that works efficiently in memory. TOUCH combines con-
cepts from previous work and avoids their problems, i.e.,
excessive memory footprint and excessive number of com-
parisons. In particular, it uses a hierarchy to mitigate repli-
cation of elements and data-oriented partitioning to avoid
excessive pairwise comparisons. Additionally, data-oriented
partitioning further reduces the number of comparisons by
not considering the objects spatially far from other objects.

Because of the limited work on in-memory spatial joins,
we also draw inspiration from on-disk approaches and com-
pare our approach to disk-based approaches used in memory.
The latter is reasonable as growing memory capacities allow
for approaches with a bigger memory footprint, originally
designed for use on disk, to be used in main memory.

We apply our solution on the ”touch detection” problem,
a challenging neuroscience application that arises in collabo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147995515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ration with computational neuroscientists. The neuroscien-
tists build biophysically realistic models with data acquired
during anatomical research of the rat brain. In their mod-
els, as in the rat brain, each neuron has branches extending
into large parts of the tissue. The neurons receive and send
information to other neurons using these branches. To de-
termine where in the model to place the synapses (structure
that permits a neuron to pass a signal to another neuron),
it suffices to find the places where the distance between two
branches is below a given threshold [18], i.e., where the neu-
rons touch.

Our experiments show that TOUCH outperforms existing
spatial joins algorithms in terms of number of comparisons
and execution time. When compared to the fastest related
approach TOUCH requires substantially less memory. In
the context of our working example, TOUCH performs the
spatial join at least one order of magnitude faster than re-
lated work. Our experiments also indicate that TOUCH
will scale better to more detailed and denser neuroscience
datasets in the future.

Our work has significant potential impact beyond neu-
roscience applications. Spatial joins are broadly used in
many applications beyond neuroscience and the simulation
sciences, and their use in memory is becoming increasingly
important in many applications for two reasons. First, main
memory has grown so large that many datasets fit into it di-
rectly and the spatial join can be entirely performed in mem-
ory. Second, the in-memory join is also an integral part of
all disk-based joins. Disk-based joins partition datasets that
do not fit in memory and then join the partitions in mem-
ory. Speeding up the in-memory join helps to considerably
speed up on-disk approaches as a whole as well, particularly
if the join is very selective and many objects need to be
compared (thus spending a large share of the overall time
for the in-memory join).

The remainder of the paper is structured as follows. We
discuss related work and its shortcomings in Section 2. In
Section 3 we motivate our work and in Section 4 we present
TOUCH, our algorithm, and discuss its implementation in
Section 5. We compare TOUCH to related approaches in
Section 6 and draw conclusions in Section 7.

2. RELATED WORK
While several spatial join approaches have been developed

for disk in the past, only few have been developed for use in
memory. Many disk-based spatial join algorithms, however,
can also be used in memory. In the following we discuss all
related work no matter if it has traditionally been used for
disk or in memory.

2.1 In-Memory Approaches
Only two approaches have been developed for use in mem-

ory and thus have a small memory footprint: the nested loop
join [24] and the plane-sweep join [28].

The nested loop join iterates over both spatial datasets in
a nested loop and compares all pairs of objects. While this
results in a complexity of O(n2), no additional data struc-
tures are needed, making the approach very space efficient.

The plane-sweep approach sorts the datasets in one di-
mension and scans both datasets synchronously. All objects
on the sweep plane (stored in an efficient data structure) are
compared to each other to see if they overlap. Because the
objects are only sorted in one dimension, objects which are
not near each other in the other dimensions may be on the
sweep plane at the same time, thus leading to redundant
comparisons and hence slowing down the approach.

Despite its deficiencies, however, the plane-sweep approach
is still broadly used to join in memory the partitions result-
ing from disk-based spatial joins.

2.2 On-disk Approaches
Because they can also be used in memory, in the following

we discuss distance join approaches designed for disk. We
categorize the approaches based on whether they require an
index on both, one, or none of the datasets.

2.2.1 Both Datasets Indexed
If both datasets A and B are indexed with R-Trees [13],

a synchronous traversal [7] can be used to join them. With
the R-Tree indexes IA and IB on datasets A and B, this ap-
proach starts from the roots of the trees and synchronously
traverses the tree to the leaf level. If two nodes nA ∈ IA and
nB ∈ IB on the same level (one from each tree) intersect,
then the children of nA will be tested for intersection with
the children of nB . This process recursively traverses the
trees to the leaf level where the objects are compared.

By building on the R-Tree, this approach also inherits the
problems of the R-Tree, namely inner node overlap and dead
space. Overlap in the R-Tree structure leads to too many
comparisons and hence slows down the join operation. Ex-
tensions like the R*-Tree [6] or the R+-Tree [29] have been
proposed to reduce overlap. The former tackles overlap with
an improved node split algorithm (reinsertion of spatial ob-
jects if a node overflows) while the latter duplicates objects
to reduce overlap. Duplicating objects, however, also leads
to duplicate results which have to be filtered.

Arguably the most efficient R-Trees can be built through
bulkloading if the data is known a priori. Several bulokload-
ing approaches like the STR [19], Hilbert [16], TGS [11] and
the PR-Tree [4] have been developed, all yielding better per-
formance than R+-Tree or R*-Tree. The R-Tree resulting
from bulkloading with Hilbert and STR perform similarly
and outperform TGS as well as the PR-Tree on real-world
data. TGS and the PR-Tree, however, outperform STR and
Hilbert on data sets with extreme skew and aspect ratio.

Double index traversals are also possible with Quadtrees [2]
(or Octrees in 3D). Similar to the R+-Tree objects are du-
plicated (or references to the objects) and duplicate results
are possible and need to be filtered at the end [3].

2.2.2 One Dataset Indexed
Extending on a basic nested loop join approach, the in-

dexed nested loop join [9] requires an index IA for dataset
A. The approach loops over dataset B and queries IA for
every object b ∈ B. Executing a query for each object is a
substantial overhead, particularly if B >> A.

The seeded tree approach [21] also requires one dataset
to be indexed with an R-Tree. The existing R-Tree IA
on dataset A is used to bootstrap building the R-Tree IB
on dataset B. After building the second index IB , a syn-
chronous traversal [7] is used for the join. Using the struc-
ture of IA to build IB ensures that the bounding boxes of
both indexes are aligned, thereby reducing the number of
bounding boxes that need to be compared. Improvements
avoid memory thrashing [23] or use sampling to speed up
building the R-Tree [20].

2.2.3 Unindexed
Disk-based approaches first partition both datasets and

then join the resulting partitions in-memory. When assign-
ing spatial objects to partitions, some objects may intersect
with several partitions. Two different approaches, multiple
assignment and multiple matching, have been developed to
deal with this ambiguity.



Multiple Assignment: this strategy assigns each spatial
object to all partitions it overlaps with (through duplica-
tion). The advantage is that the distance join only needs to
compare objects inside one partition with each other (and
not across partitions). Duplication, however, has major
drawbacks, namely a) more comparisons need to be per-
formed and b) because result pairs may be detected twice
they need to be deduplicated either at the end (by keep-
ing all results, thereby increasing the memory used - and
deduplicating them at the end) or throughout the join [8].

a4 

a5 a3 

a1 

a6 

a2 
1 

2, 4 

3, 4 4, 6 

6 6 

6 5 

3 5 

1 4 

Figure 1: PBSM partitioning (left) and assignment
(right)

PBSM [27] is the most recent and comparatively most ef-
ficient multiple assignment approach. As shown in Figure
1, PBSM partitions the entire space of both datasets into
cells using a uniform grid. Every object from dataset A is
assigned to all cells cA it overlaps and all b ∈ B are assigned
to cells cB respectively. After assigning all objects to cells,
all pairs of cells cA and cB which have the same position
are compared, i.e., all objects assigned to cA and cB are
tested for intersection. Because objects are replicated inter-
sections may be detected multiple times and hence dedupli-
cation needs to be performed.

The non-blocking parallel spatial join NBPS [22] algo-
rithm produces the result tuples continuously as they are
generated. NBPS distributes the tuples of the join relations
to the data server nodes according to a spatial partition-
ing function. In contrast to PBSM, NBPS avoids duplicates
so that the result can be returned immediately. More pre-
cisely, NBPS uses a revised reference point method to avoid
the duplicates while TOUCH uses a hierarchical partition-
ing that not only avoids any replication (in comparison with
NBPS) but also avoids the duplicates from the first stage of
the distribution.
Multiple Matching: this strategy on the other hand as-
signs each spatial object only to one of the partitions it over-
laps with. Hence when joining, objects in several partitions
must be compared with each other, as an object at the bor-
der of one partition can potentially intersect with an object
at the border of an adjacent partition.

The Scalable Sweeping-Based Spatial Join [5] is similar
to PBSM but avoids replication. It partitions space into n
equi-width strips in one dimension and maintains for every
strip two sets LAn and LBn. It assigns each a ∈ A that
entirely fits into strip n to LAn and for B and LBn respec-
tively. Finally, it uses an in-memory plane-sweep to find all
intersecting pairs from LAn and LBn for all n.

An object o intersecting several strips will not be repli-
cated but will instead be assigned to sets LAjk and LBjk

respectively where j is the strip where o starts and k where
o ends. When joining LAn and LBn all sets LAjk and LBjk

with j ≤ n ≤ k will also be considered in the plane-sweep.
To avoid the replication of objects, S3 [17] maintains a

hierarchy of L equi-width grids of increasing granularity as

Level 0 

Level 1 

Level 2 

cB cA 

Hierarchy for Dataset A Hierarchy for Dataset B 

Figure 2: S3 space partitioning and multi-level join.

shown in Figure 2. In D dimensions the grid on a partic-
ular level l has (2l)D grid cells and assigns each object of
both datasets to a grid cell in the lowest level where it only
overlaps one cell. To obtain this assignment, the algorithm
starts with level L (Level 2 in figure 2) and moves up the
levels until it finds the level where the object only overlaps
one cell.

The algorithm maintains two hierarchies, HA for dataset
A and HB for dataset B. Once all objects are assigned, the
cells of HA and HB are joined. More precisely, a cell cB of
HB is joined with its corresponding cell cA of HA and all
the cells on higher levels of HA enclosing cA (example cells
are shaded in Figure 2). Joining a cell with its counterpart
as well as with cells on higher levels is repeated on all levels.

The process of joining the cells implies that the objects
assigned to the highest level will be compared to all other
objects (on all lower levels) and hence the more objects are
assigned to the highest level, the more comparisons will be
needed. Datasets assigning more objects to levels closer to
the leaf level will require fewer comparisons for the join.

3. CHALLENGE
The development of TOUCH is driven by the requirements

of the computational neuroscientists we collaborate with. In
order to better understand how the brain works, the neuro-
scientists build biophysically realistic models of a neocortical
column on the molecular level and simulate them on a Blue-
Gene/P with 16K CPUs. Each of the models contains sev-
eral thousand neurons where each neuron and its branches
are modeled as thousands of cylinders. Figure 3 shows a cell
morphology, with cylinders modeling the dendrite and axon
branches in three dimensions.

Figure 3: Neuron modeled with cylinders.

The models are built based on the analysis of real rat
brain tissue. The structure of the neuron is rebuilt using
brightfield microscopy and their electrophysiological prop-
erties are obtained by the patch clamp technique [14]. The



locations of synapses (i.e., points where impulses leap over
between neurons), however, are not known, cannot be deter-
mined by the above techniques and thus need to be added
in a post-processing step. Placing the synapses is a one-
off operation executed only once for each model built. The
synapse locations are determined by the following rule: a
synapse is placed wherever a neuron’s dendrite is within a
certain distance of another neuron’s axon. Previous neuro-
science research has confirmed that a realistic model of the
brain is built by following this rule [18].

The problem of placing synapses therefore translates to a
spatial distance join between two unindexed and unsorted
datasets, one dataset containing cylinders representing ax-
ons and one containing cylinders representing dendrites. The
distance join is only executed once on each new model and
thus no data structures can be shared between distance joins
on different models. Because the 16K cores of the Blue-
Gene/P cannot access the disk concurrently, the join has
to be performed in memory alone. Furthermore, this inde-
pendency is advantageous for data-parallel algorithms that
can be executed on GPUs [25]. To do so, and because this
is an embarrassingly parallel problem, the dataset is split
into 16K contiguous subsets, each subset is loaded in the
memory of a core and the distance join is performed locally
(independent of the other cores and thus massively parallel).

The models currently built and simulated by the neurosci-
entists contain at most few million neurons, but the ultimate
goal is to simulate the human brain with approximately 1011

neurons. To achieve this goal, the number of neurons needs
to increase until the model has the same neuron and synapse
density as the human brain. The higher density of a dataset
modeling the human brain, as opposed to those modeling
the rat brain, will substantially increase the selectivity of the
distance join between the two datasets, as more synapses are
found in the former than in the latter. An efficient distance
join approach is therefore pivotal already today and the ad-
vancement of neuroscience research requires an in-memory
spatial join that will scale to the increasingly high selectivity
of arising models of the brain/neuroscience datasets.

The particular application notwithstanding, an efficient
in-memory spatial join is important for many applications:
after all, every disk-based spatial join needs to perform an
in-memory join.

4. TOUCH
Given the lack of adequate in-memory spatial join ap-

proaches we develop TOUCH, a new in-memory spatial join
algorithm for two unsorted and unindexed spatial datasets,
DS1 and DS2. We translate the distance join required by
our motivating example into a spatial join that detects in-
tersection between objects: instead of finding all pairs of ob-
jects d1 ∈ DS1 and d2 ∈ DS2 such that distance(d1, d2) ≤ ε,
we increase the size of all objects of one dataset, say DS1,
by ε and test for intersection with objects of DS2 [15].

It is established practice to perform a spatial join in two
phases: filtering followed by refinement [26]. Like most other
approaches, TOUCH focuses on the filtering phase in which
all objects are approximated by bounding boxes. Our solu-
tion can be combined with any off-the-shelf solution to the
second refinement phase, which takes into account the exact
object shapes (e.g., cylinders, spheres, etc.).

4.1 TOUCH Ideas
In developing TOUCH, we are inspired from previous disk-

based approaches, which can also be used in main memory.

Dataset A Dataset B

(a) The datasets A and B

filtered
Tree Building (based on dataset A) Assignment (of dataset B)

Level 2

Level 0

Level 1

(b) Tree building, assignment and joining phases

Figure 4: The three phases of TOUCH: building the
tree, assignment and joining.

However, we aim to combine the benefits and avoid the pit-
falls of previous approaches. In particular, we want to avoid
multiple assignment (as in PBSM), because it replicates ob-
jects and therefore (a) increases the memory footprint; (b)
requires multiple comparisons; and (c) makes it necessary to
deduplicate the results.

At the same time we want to reduce the number of com-
parisons of multiple matching approaches and we therefore
want to use data-oriented partitioning instead of space-ori-
ented partitioning as S3 does.

To further reduce the number of comparisons, we also use
filtering, a concept used by S3. In S3, objects from the
second dataset B are discarded if they intersect only with
cells that contain no objects from dataset A. If object b ∈ B
is only overlapping cells that contain no object from A then
b cannot possibly intersect with any object from A. Hence
b does not need to be considered further.

The main innovation of TOUCH lies in the fact that it
directly assigns objects of the second data set to the data-
oriented index of the first. By doing so it avoids the problems
caused by excessive index-overlap in other data-oriented ap-
proaches (R-Tree) as well as the problems of space-oriented
indexing approaches (like S3). As we will explain, the com-



bination of data-oriented partitioning during index-building
on the first dataset with hierarchical assignment of the sec-
ond dataset leads to significantly fewer comparisons and
speeds up the join itself.

The fact that we design our approach for use in memory
gives us more degrees of freedom. We no longer have to align
the data structures for the disk page size, but can choose the
size of the data structures used more flexibly (partitions of
arbitrary size, variable fanout, etc.).

4.2 Algorithm Overview
TOUCH is organized in three phases. During its first

phase it builds a hierarchical tree as support data structure
(like an R-Tree) and indexes dataset A with it. In particular,
it stores the objects of A in the leaf nodes of the tree. In
the second phase, all objects in dataset B are assigned to
the inner nodes (non-leaf nodes) of the tree. The third phase
uses a local join to join the datasets by comparing the objects
b ∈ B of each inner node n with the objects a ∈ A in the
leaf nodes reachable from n. Algorithm 1 gives an overview.

Algorithm 1: TOUCH

Input: A,B: two spatial datasets;
p: number of partitions

Data: PA: partitions built on A
Output: R: Result pairs

1 R = ∅;
2 Group the objects of A into p partitions PA;
3 T = Construct the hierarchical partitioning tree on PA;
4 Assign the objects of B to T ;
5 foreach in ∈ innernodes of T do
6 foreach leaf ∈ descendent leaf nodes of in do
7 R ← R ∪ join(in.entities , leaf.entities);

8 Return R;

4.3 Tree Building Phase
In the first phase TOUCH builds a hierarchical tree based

on dataset A. Each node of this tree contains pointers to
children nodes (the number of children each node has is
called the fanout), an MBR (minimum bounding rectangle)
and entities, i.e., pointers to objects of either dataset A or
dataset B. To build the tree, TOUCH groups spatially close
objects of dataset A based on their MBRs into buckets of
equal size. Different strategies can be used to assign spatially
close objects to the same bucket, TOUCH uses STR [19].

a1 ,a2 a3 ,a4 a5 ,a6 a7, a8 a9, a10 a11, a12 a13, a14 a15, a16 a17 ,a18 

b5 ,b21, b9 b1 ,b2 b14 ,b22,b12 

b7, b11 

Figure 5: TOUCH’s tree data structure.

Each bucket is used as a leaf node, i.e., a leaf node refer-
ences as the entities the objects a ∈ A in a bucket. The tree
is then built recursively: starting from the leaf level l, on the
next higher level l−1, f nodes of Nl from level l are summa-
rized into a new node (f is the fanout). The new node has
an MBR that encloses the MBRs of the f nodes from Nl.
Building the tree finishes with the root node which has an
MBR that encloses all objects of dataset A. An example of
a resulting tree is illustrated in Figure 5. The dashed lines

Algorithm 2: Tree Building Phase

Input: objs: spatial objects of dataset A
fo: fanout of the tree

Output: tree: root of tree
Data: PA: array of partitions of nodes/objects

nodes: array of nodes

1 PA = partition objs into partitions of size fo;
2 while |PA| > 1 do
3 foreach partition p ∈ PA do
4 calculate MBR of p;

make new node n with MBR
set objects inside p as children of n;
insert n into nodes ;

5 PA = partition nodes into partitions of size fo;

6 Return PA;

indicate that the MBR of each node encloses all the MBRs of
its children. Algorithm 2 illustrates the tree building phase.

Figure 4(b)(left) shows how the tree is built based on
dataset A in Figure 4(a). Starting at level 0, several ob-
jects (up to the fanout, three in this example) are grouped
into a node in the next higher level indicated by the dashed
rectangle. Objects (or nodes on higher levels) are recursively
grouped until the process arrives at the root node.

Should one of the datasets already be indexed with a hi-
erarchical index which uses data-oriented partitioning, then
this index can easily be converted to the tree needed for
TOUCH and the tree building phase can be skipped.

4.4 Assignment Phase
After constructing the tree, in which the leaf nodes point

to the objects of dataset A and each node has an MBR
that is defined recursively based on the MBRs of dataset
A, Algorithm 3 distributes the objects of dataset B to the
nodes of the tree based on the nodes’ MBRs.

The assignment is based on the number of MBRs on a
level the object b overlaps with (we define overlap as both
intersection and containment). In order to assign an object
b of dataset B, the algorithm starts from the root node. At
each level, object b can overlap with the MBR of none, one
or several nodes:

• Overlap with no MBR: if b overlaps with none of
the MBRs then we can safely filter b. Because b does
not overlap with any of the nodes’ MBR, it will not
intersect with any of the objects in the node either
and can hence be excluded from further consideration.

• Overlap with one MBR: if b overlaps with only
a single node’s MBR then the algorithm recursively
checks if b overlaps with the children of the node in
order to find the lowest level where b overlaps with a
single node’s MBR.

• Overlap with several MBR: if b overlaps with more
than one of the nodes’ MBR then the object will be
assigned to the parent of these nodes.

In brief, the algorithm assigns an object b ∈ B to the
lowest (closest to the leaf nodes) inner node n in the tree
whose MBR overlaps b and has no siblings overlapping it.
Algorithm 3 illustrates how the objects of dataset B are
assigned to the nodes in the tree built during the first phase.

Figure 4(b)(right) shows the assignment phase where ob-
jects are tried to be assigned to level 1. Objects are recur-
sively assigned one level higher (closer to the root) as long
as they overlap with several nodes (in this example only one
object needs to be assigned to the root node). If objects



are outside the MBR of all nodes on the leaf level, they can
safely be filtered (the black objects on level 0) because they
cannot intersect with any object from dataset A.

Algorithm 3: Assignment Phase

Input: obj: spatial object;
T : partitioning tree

Output: p: the inner node of T to assign obj to
1 overlap = false;
2 p = root node of T ;
3 while p is not a leaf node do
4 foreach ch ∈ children of p do
5 overlap = false;
6 if obj.MBR overlaps with ch.MBR then
7 if overlap then
8 Return parent of p;
9 else

10 p = ch;
11 overlap = true;

12 if ¬overlap then
13 Return φ; // obj is filtered.

14 Return p;

4.5 Join Phase
With all objects from dataset A referenced by the leaf

nodes and all objects of dataset B by the inner nodes, the
actual join is performed. Each inner node n is joined with all
its successors, i.e., with all nodes that have an MBR enclosed
by the MBR of n. The example in Figure 4(b) shows with
what nodes on the right, an example node on the left needs
to be compared (illustrated with the curved arrows).

As for S3, if all objects of B are assigned to the root node
then all objects of dataset A are compared against all objects
of B. However, in an ideally distributed dataset, objects of
B will be assigned as close to the leafs as possible; the more
objects are assigned to nodes closer to the leaf nodes, the
fewer objects ultimately need to be compared to each other.

We join objects of the inner nodes with the objects in their
descendant leaf nodes using Algorithm 4. We partition the
space into an equi-width grid. Then we assign the objects
of the leaf nodes to all cells they overlap. Ultimately, we
compare each object of an inner node with only the objects
in the grid cells it overlaps with.

Algorithm 4: Join Phase

Input: inner: an inner node
Output: R: a subset of result pairs

1 Uniformly divide the space to cells of same size;
2 foreach obj ∈ inner do
3 C = cells that obj overlaps with;
4 foreach cell ∈ C do
5 cell.objects ← cell.objects ∪ obj;

6 foreach L ∈ descendant leaf nodes of inner do
7 foreach obja ∈ L do
8 C = cells that obja overlaps with;
9 foreach cell ∈ C do

10 foreach objb ∈ cell.objects do
11 if obja overlaps objb then
12 R ← R ∪ (obja, objb);

13 Return R;

The result of the join performed in this last phase of
TOUCH is exactly the set of pairs of objects o1 and o2 where
the MBRs of o1, o2 overlap. TOUCH does not produce any
more candidate pairs than other approaches do.

4.6 Proof of Correctness
The correctness of TOUCH is proven in Theorem 1. Lemma

3 proves that the result pairs generated by TOUCH (until
joining the buckets, i.e. the global join) are unique. With-
out loss of generality, in the following we assume that a pair

of objects (a, b), a ∈ A and b ∈ B, is in the result pairs iff
MBR of object a overlaps the MBR of object b. In the case
of a distance join with a distance of ε, we can extend the
objects of a dataset by ε then check the overlapping of the
objects in the join.

Lemma 1 (Completeness). The assignment phase of
TOUCH does not miss any pair of overlapping objects.

Proof. Assume that object a of dataset A overlaps ob-
ject b of dataset B and the pair (a, b) is not in the result set
of TOUCH. Because in the probing phase of TOUCH, a is
compared against the bucket it overlaps at each level, and b
overlaps with a, then b must be inside at least one of these
buckets. As a result, b must be compared against a when
a’s bucket is joined against the bucket that b is assigned to.

Lemma 2 (Soundness). The set of result pairs gener-
ated by TOUCH is a subset of pairs of overlapping objects.

Proof. When a pair of objects (a, b), a ∈ A and b ∈ B, is
not overlapping, then two scenarios are possible. First, the
buckets a and b are assigned to are not overlapping, hence
the buckets are not joined with each other. The other pos-
sible scenario is that the buckets a and b are assigned to are
overlapping. As a result, the objects inside the buckets are
joined with each other. However, because (a, b) are not over-
lapping, this pair of objects is not reported as result. Any
pair in the set of result pairs of TOUCH hence overlap.

Theorem 1. TOUCH finds all object pairs that overlap.

Proof. The proof follows from Lemmas 1 and 2.

Lemma 3 (No duplication). The set of result pairs
generated by TOUCH (until joining the buckets, i.e. the
global join) contains unique pairs of objects.

Proof. Because each object b of the dataset B is assigned
to at most one bucket (single assignment) closest to the leaf
level that covers the object, b is compared against each ob-
ject of dataset A at most once. Hence, for any b, any result
pair that contains b appears only once.

5. IMPLEMENTATION
In order to implement TOUCH we build in a first phase

a tree based on dataset A. Each node in the tree contains
a triple {children, MBR, entities}. The leaf nodes contain
as entities the objects of dataset A and each node’s MBR
encloses all objects in it. The MBR of an inner node is
computed recursively based on the MBRs of its children.

In the second phase, the objects b ∈ B are distributed
and stored as the entities of the inner nodes of the tree.
Following Algorithm 3, each object b is assigned to the node
with the smallest MBR that still covers it.

5.1 Partitioning
In the first phase TOUCH partitions the objects of dataset

A into buckets and builds a tree, similar to an R-Tree [13].
In TOUCH we use the Sort-Tile-Recursive approach [19]

to group the objects. This technique first sorts the MBRs
on the first dimension. Then STR divides the dataset into
P 1/D slabs, where P is the number of partitions and D is
the number of dimensions, according to their current order.
Finally, STR recursively processes the remaining slabs using
the remainingD−1 dimensions. STR typically produces leaf
nodes with the smallest MBRs [19] (also on higher levels)
and thus allows for more effective filtering.



5.2 Design Parameters
In the course of building the data structures, i.e., the tree,

and ultimately joining the datasets several parameters can
be set and tuned. In the following we discuss what they are
and how they can have an impact on the performance.

5.2.1 Tree Parameters
The tree built on dataset A in the first phase of the join

resembles an R-Tree and hence has tunable parameters like
the size of the leaf nodes and the fanout, i.e., the number
of children each node has (except the leaf nodes). The size
of the inner nodes depends on the assignment of dataset B
and can hence not be known a priori.

For the disk-based R-Tree, the fanout defines the node size
and is chosen such that the nodes fit on an integer number of
disk pages. Because TOUCH is developed for memory, disk
restrictions no longer apply and we can choose fanout and
node size more freely. The choice of the fanout, however,
has an impact on the performance.

a1 

a3 

a2 

b1 

a4 

a1 

a3 

a2 

b1 

a4 

Figure 6: Filtering.

The smaller the fanout,
the higher the tree and
thus the better can the
objects be distributed
over the levels. Dis-
tributing them over more
levels leads to fewer ob-
jects of the dataset B
assigned to each node
and therefore leads to

fewer comparisons. Using the same approach on S3 would
not be beneficial; it would lead to very fine-grained grids and
hence many objects would be propagated to higher levels,
leading to more comparisons.

A big fanout, say the maximum fanout when the root node
connects with all leaf nodes, on the other hand degrades the
performance of TOUCH. In this case the entire dataset B is
assigned to the root node and all objects of A are compared
against it, resulting in the maximum number of comparisons.

The fanout also has an impact on filtering. Objects of
dataset B are filtered (and are thus not considered for the
result set) if they do not intersect with any of the leaf nodes.
As Figure 6 illustrates, the smaller the fanout, the fewer
objects are in the leaf nodes, the smaller their MBRs will
be (less dead space in the MBR that is actually not covered
by any of the objects) and hence the more objects can be
filtered (e.g., b1 in Figure 6).

5.2.2 Local Join Parameters
The local join has the size of grid cells as a parameter. All

objects assigned to one of the cells must be compared pair-
wise. Setting the cell size too big therefore means that more
objects are assigned to each cell and have to be compared
pairwise. Setting it too small on the other hand means too
many objects need to be replicated.

To determine the grid cell size, we ensure that the cell size
is considerably larger than the average size of the objects.

5.2.3 Join Order
Given two datasets A and B, deciding which dataset to

use first to build the tree and which one to assign to the
inner nodes of the tree is pivotal for performance.

To improve filtering, the decision would ideally be based
on the density of both datasets: the sparser the first dataset,
the more objects of the second dataset may be filtered. Not
knowing the density of the datasets a priori, we can still

make a reasonable assumption and take the smaller dataset
as the first dataset. If it has the same (or a bigger) spatial
extent than the bigger dataset, then it will be sparser and
allow for more filtering. If its spatial extent is smaller than
the one of the bigger dataset, then the difference in extent
allows for effective filtering as well.

Using the smaller dataset first will also help to speed up
building the hierarchical structure as well as reduce its size
in memory.

6. EXPERIMENTAL EVALUATION
In this section we measure the performance of TOUCH and

study the impact of dataset characteristics on its perfor-
mance. We compare TOUCH against the two spatial joins
designed for memory, plane-sweep and nested loop. Al-
though the nested loop join is the textbook worst case of
a join, we still include it in the comparison because it is
broadly used (as part of disk-based joins and otherwise).

Because growing memory capacities allow for approaches
with a bigger memory footprint, originally designed for use
on disk, to be used in main memory we also compare TOUCH
against approaches designed for disk but used in memory,
namely S3 [17], PBSM [27], the indexed nested loop [9] and
the synchronous R-Tree traversal [7] (RTree for short). For
RTree we use an in-memory implementation of the bulk-
loading STR R-Tree. The STR R-Tree exhibits the best
performance for non-extreme (with respect to aspect ratio
and skew) real world data [4].

To make the experiments reproducible we do not use the
BlueGene/P, but execute them single-threaded on one core
of a Linux machine. This is similar to TOUCH’s use in the
context of the neuroscience application: because the prob-
lem is embarrassingly parallel, each core of the BlueGene/P
runs a spatial join on a subset of the entire dataset in its
local memory, independent of the other cores.

6.1 Setup
Hardware: The experiments are run on a Linux Ubuntu
v2.6 machine equipped with 2 quad CPUs AMD Opteron
(each with 2 MB L2, i.e., 512KB × 4 cores and 6 MB L3
cache), 64-bit @ 2.7GHz and 64GB RAM. The storage con-
sists of 4 SAS disks of 300GB capacity each, striped to 1TB.
Software: For all the experiments the OS can use the re-
maining memory to buffer disk pages. For a fair comparison
the implementations of all approaches are single threaded.
All approaches are implemented in C++.
Settings: We choose to join, in line with the discussion
in Section 5.2.3, the smaller datasets first. In absence of
heuristics to set the parameters of all competing spatial join
approaches we determined the parameters with parameter
sweeps. For the R-Tree based approaches (indexed nested
loop and the synchronous R-Tree traversal) we use the best
configuration, i.e., a fanout of 2 and nodes of 2KB and S3
is configured with a fanout of 3 and 5 levels. For PBSM we
use two different configurations, illustrating the trade-offs
involved: (1) PBSM-500, the fastest configuration accord-
ing to the parameter sweep with a resolution of 500 cells
in each dimension which, however, has a big memory foot-
print due to replication and (2) PBSM-100 a configuration
with a resolution of 100 cells in each dimension that has a
smaller memory footprint but takes longer to execute. For
TOUCH we set the parameters in line with the discussion
in Section 5.2, i.e., we set the fanout to 2, the number of
partitions to 1024, and for the local join the number of cells
in each dimension to 500. We empirically observed the best



Datasets Size (objects) ε = 5 ε = 10

Uniform 160K × 1600K 73.4 87.1
Gaussian 160K × 1600K 300 617.5
Clustered 160K × 1600K 89.5 125.2
Neuroscience 644K × 1285K 411 728

Table 1: Selectivity of the datasets (×E−6)

performance with these parameters. The time to build the
indexing structures is included as part of the reported query
execution times.

6.2 Experimental Methodology
For the experiments we use two fundamentally different

types of datasets. To demonstrate the general applicability
of our approach and to stress that we do not exploit any
particularity of the neuroscience datasets, we primarily use
3D synthetic spatial datasets to evaluate TOUCH.

To generate synthetic 3D datasets we distribute spatial
boxes with each side of uniform random length (between 0
and 1) in a constant space of 1000 space units in each of
the three dimensions. We use three different distributions,
namely uniform, Gaussian (μ = 500, σ = 250) and clustered
to generate datasets containing from 160K to 960K objects
and from 1.6 to 9.6 million objects. The clustered distri-
bution uniformly randomly chooses up to 100 locations in
3D space around which the objects are distributed with a
Gaussian distribution (μ = 0, σ = 220). In all experiments
we always join datasets of the same type only. Projections
of the three 3D distributions into 2D are shown in Figure 7.

Driven by our motivating example from neuroscience, we
use two different ε, 5 and 10. Both these distance predicates
are used to build models of the brain.

 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

(a) Uniform

 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

(b) Gaussian

 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

(c) Clustered

Figure 7: Distributions used for the experiments.

To further characterize the datasets, Table 1 reports the
selectivity [1] of both synthetic and neuroscience datasets
according to equation 1.

Selectivity =
|resultpairs|

|datasetA| × |datasetB| (1)

In addition to the synthetic datasets we measure the per-
formance of the algorithms on a real dataset as well. We use
a model of a small part of the rat brain represented with 450
million cylinders as objects. We take from this model a con-
tiguous subset with a volume of 285μm3 and approximate
the cylinders with minimum bounding boxes. For dataset
A we use the 644,000 axon cylinders in the subset and for
dataset B the 1.285 million dendrite cylinders in the sub-
set (a realistic ratio between axon & dendrite cylinders).
Synapses are placed where axon cylinders are in proximity
of dendrite cylinders.

Like the experimental evaluations of PBSM [27], S3 [17],
R-Tree-based join [7] and others we focus on the filtering
phase of the join (where the objects are approximated by
minimum bounding rectangles and are tested for intersec-
tion) and do not include the time for the refinement phase
as this depends on the geometry of the objects. We measure
for all approaches the total execution time as well as the
implementation-independent number of comparisons, i.e.,

comparisons between the bouding boxes of two objects where
they are tested for intersection.

Because the spatial join is developed for use in memory, we
also measure the memory footprint. We compare TOUCH
against the nested loop join (NL), plane-sweep join (PS),
PBSM, S3, synchronous R-Tree traversal (RTree for short)
and the index nested loop join, each of the latter four with
the plane-sweep as the local join. Our implementation of
PBSM deduplicates during the join [8] (and not at the end)
and thus does not need additional memory.

Unless otherwise noted, the experimental methodology is
similar to the one of PBSM [27] and S3 [17]: we fix dataset A
and successively increase the size of dataset B (to a multiple
of the size of dataset A).

6.3 Loading the Data
To illustrate that the main performance bottleneck of a

spatial join is not the reading of the data into memory, we
measure the time it takes to load the data in memory and
compare it to performing a spatial join with the PBSM ap-
proach. In the experiment we use as dataset A a 1.6M uni-
form dataset and increase dataset B from 1.6M to 9.6M.
The time to load never exceeds 2 seconds whereas the exe-

cution time for the fastest state-of-the-art approach (PBSM-
500) grows from 334 to 1512 seconds. The time to load the
datasets is hence dwarfed by the time taken for the spa-
tial join. Improving on the time spent on the spatial join
therefore will effectively reduce the overall execution time.

6.4 Varying Dataset B
In a first set of experiments we fix ε, use a dataset A of

fixed size and steadily increase the size of dataset B, similar
to the experiments in [17, 27]. To compare TOUCH with all
other approaches we first experiment with small datasets B
and to study TOUCH in more detail, we experiment with
bigger datasets B.
Small Datasets: Figure 8 illustrates the performance of all
algorithms for the small uniform datasets. The figure shows
the number of object-object comparisons (tests for intersec-
tion) and the execution time in logarithmic scale. In this
figure dataset A contains 10, 000 objects and the ε of the
join predicate is 10 while we vary the number of objects of
dataset B from 160, 000 to 640, 000 with steps of 160, 000.
This experiment shows that our approach and PBSM (both
configruations) drastically outperform the nested loop join
and plane-sweep in terms of execution time and number of
comparisons. Moreover, the results confirm that the execu-
tion time directly depends on the number of comparisons.

Clearly, execution of the nested loop join is slowest be-
cause it requires O(n2) comparisons. The plane-sweep ap-
proach on the other hand has a comparatively high execu-
tion time because it has to perform too many comparisons:
for example in two dimensions, objects sorted by their x-
coordinates may be close to each other on the x-axis but
far apart on the y-axis. The plane-sweep hence performs
redundant comparisons resulting in a higher execution time.

Because PBSM-100 has fewer and thus bigger grid cells
than PBSM-500, it has more objects in each grid cell and
hence more objects that are not close to each other will be
needlessly compared when two corresponding grid cells are
joined. This results in more comparisons and PBSM-100 is
therefore slower than PBSM-500.
Large Datasets: in the following set of experiments we fix
dataset A to 1.6M and steadily increase the size of dataset B.
Figures 9, 10 and 11 illustrate the number of comparisons,



 0.01

 0.1

 1

 10

 100

 1000

 10000

 160  320  480  640L
o
g
 p

lo
t 

o
f 

n
u
m

b
er

 o
f 

co
m

p
ar

is
o
n
s 

(M
il

li
o
n
s)

Objects in dataset B (Thousands)

NL
PS

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(a) Comparisons

 0.01

 0.1

 1

 10

 100

 1000

 10000

 160  320  480  640

L
o
g
 p

lo
t 

o
f 

ex
ec

u
ti

o
n
 t

im
e 

(s
ec

o
n
d
s)

Objects in dataset B (Thousands)

NL
PS

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(b) Execution Time

Figure 8: Small uniform datasets, increasing the size
of B with ε = 10.

execution time and memory consumption of the five remain-
ing algorithms (two indexing approaches, indexed nested
loop join (INL) and R-Tree spatial join (RTree), and three
non-indexing approaches namely, TOUCH, S3 and PBSM
(in two configurations) respectively for uniform, Gaussian
and clustered large datasets. Due to the long execution
time we exclude the nested loop join and plane-sweep join
in these experiments. In terms of running time for all the
three types of synthetic datasets, TOUCH is one order of
magnitude faster than PBSM-500, PBSM-500 outperforms
PBSM-100 and PBSM-500 is also one order of magnitude
faster than the three other algorithms. However, PBSM-500
consumes more than two orders of magnitude more memory
compared to the other four algorithms. Because the grid
cells of PBSM-100 are bigger, fewer elements are replicated
and PBSM-100 thus requires less memory.

The performance of the algorithms on different datasets
can be explained by comparing the selectivity of the join-
ing datasets. As Table 1 shows, Gaussian datasets have the
largest selectivity, followed by clustered datasets and finally
the uniform datasets. As a result all the algorithms perform
faster on the uniform datasets than on clustered datasets
and they perform faster on the clustered datasets than on
the Gaussian datasets. Likewise, the algorithms do more
comparisons on Gaussian datasets than on the clustered
datasets and more on the clustered datasets than on the
uniform datasets. The algorithms need approximately the
same amount of memory independent of the dataset type.

S3 shows an interesting behavior for the different dataset
types compared to the other algorithms. The best per-
formance of S3 can be seen on the uniform datasets, Fig-
ure 9, while this algorithm performs worst on the clustered

datasets. S3 uses space-oriented equi-width grid partitioning
in contrast to TOUCH, which uses data-oriented partition-
ing; thus, when the objects are not distributed uniformly, as
in the clustered datasets, S3 performs worst. This explains
why S3 performs faster in comparison to the indexed nested
loop join on the uniform datasets, Figure 9, and the Gaus-
sian datasets, Figure 10, while it is slower on the clustered
datasets, Figure 11.

By comparing the performance of INL and the RTree re-
garding the number of comparisons and execution time in
Figures 9, 10 and 11 (a & b), respectively, we can conclude
that although both require almost the same number of com-
parisons, the RTree is always faster than INL. The fact that
INL requires more time is due to the repeated traversal of the
tree as opposed to the synchronous traversal of the RTree.

Comparing the memory consumption of the algorithms,
chart (c) in Figures 9, 10 and 11, PBSM-500 consumes about
two orders of magnitude (80×) more space in comparison to
the other algorithms. This memory consumption of PBSM-
500 is mainly because of multiple assignment and hence ob-
ject replication. PBSM-100, on the other hand, uses fewer
and bigger cells and thus replicates fewer objects leading to
less memory consumption.

In the experiments for all datasets, TOUCH requires more
memory than INL because TOUCH keeps the buckets con-
structed based on dataset A in addition to the tree while INL
only maintains a tree for dataset A. The RTree maintains
one tree for each dataset and thus requires more memory
than TOUCH as does S3 because it constructs the hierar-
chical partitioning for each dataset separately.

6.5 Varying Distance Threshold ε
In a second set of experiments, two datasets with 1.6M

objects are joined with two different ε. The execution time
measurement for synthetic datasets with different distribu-
tions shows that the behavior of the approaches is similar to
what we obtained when increasing the size of dataset B. In
both cases, increasing ε or the size of dataset B, the selec-
tivity is increased.

0

5000

10000

15000

20000

25000

TOUCH PBSM-500 PBSM-100 S3 RTree Indexed NL

Ex
ec

ut
io

n 
tim

e 
(s

) 

E=5 E=10
E=5 E=10
E=5 E=10

Clustered
Gaussian 

Uniform 

Figure 12: Comparing the approaches for two dif-
ferent ε on all datasets.

Figure 12 illustrates the impact of doubling ε on the ex-
ecution time. For most approaches, doubling ε leads to an
approximate duplication of the execution time. The sole ex-
ceptions are both PBSM configurations where an increase
of ε leads to a disproportionate increase of execution time.
This is because, as ε grows, PBSM replicates more objects,
leading to a super-linear increase in the number of compar-
isons performed. Because PBSM-100 has bigger cells, an
increase of ε from 5 to 10 will not lead to as much replica-
tion as in the case of PBSM-500, but execution time still
grows super-linear due to replication.



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1.6  3.2  4.8  6.4  8  9.6

N
u

m
b

er
 o

f 
co

m
p

ar
is

o
n

s 
(B

il
li

o
n

s)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(a) Comparisons

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.6  3.2  4.8  6.4  8  9.6

E
x

ec
u

ti
o

n
 t

im
e 

(h
o

u
rs

)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(b) Time

 0.01

 0.1

 1

 10

 100

 1.6  3.2  4.8  6.4  8  9.6

L
o

g
 p

lo
t 

o
f 

M
em

o
ry

 o
cc

u
p

ie
d

 (
G

B
)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(c) Memory

Figure 9: Synthetic large uniform datasets varying size of the second dataset with ε = 5.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1.6  3.2  4.8  6.4  8  9.6

N
u

m
b

er
 o

f 
co

m
p

ar
is

o
n

s 
(B

il
li

o
n

s)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(a) Comparisons

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1.6  3.2  4.8  6.4  8  9.6

E
x

ec
u

ti
o

n
 t

im
e 

(h
o

u
rs

)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(b) Time

 0.01

 0.1

 1

 10

 100

 1.6  3.2  4.8  6.4  8  9.6

L
o

g
 p

lo
t 

o
f 

M
em

o
ry

 o
cc

u
p

ie
d

 (
G

B
)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(c) Memory

Figure 10: Synthetic large Gaussian datasets varying size of the second dataset with ε = 5.

 0

 5

 10

 15

 20

 25

 1.6  3.2  4.8  6.4  8  9.6

N
u

m
b

er
 o

f 
co

m
p

ar
is

o
n

s 
(B

il
li

o
n

s)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(a) Comparisons

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1.6  3.2  4.8  6.4  8  9.6

E
x

ec
u

ti
o

n
 t

im
e 

(h
o

u
rs

)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(b) Time

 0.01

 0.1

 1

 10

 100

 1.6  3.2  4.8  6.4  8  9.6

L
o

g
 p

lo
t 

o
f 

M
em

o
ry

 o
cc

u
p

ie
d

 (
G

B
)

Objects in dataset B (Millions)

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

(c) Memory

Figure 11: Synthetic large clustered datasets varying size of the second dataset with ε = 5.

6.6 Analysis of TOUCH
In the following set of experiments we analyze the impact

of filtering in TOUCH and the fanout parameter.
Filtering: comparing Figures 9 (a) and 11 (a) shows that
all algorithms except TOUCH perform more comparisons
for the clustered dataset than for the uniform datasets. The
reason is the increased selectivity of the clustered dataset
compared to the uniform dataset as indicated in Table 1.

However, as can be seen from these experiments (Figures
9 (a) and 11 (a)), TOUCH does not perform many more
comparisons for the clustered dataset than for the uniform.
As we show in a next experiment this is because of TOUCH’s
filtering capability. We join dataset A with 1.6M objects
with dataset B with an increasing number of objects for the
different dataset distributions and a distance predicate ε of
5. The results in Figure 13 illustrate that TOUCH filters
many objects of dataset B in the clustered dataset (e.g.,
440,000 out of the 9.6M objects of dataset B). As explained
in Section 4.4, TOUCH can filter the objects of dataset B
that do not intersect with any MBR of the inner nodes of
the tree and the filtered objects are thus not compared.

Another interesting observation in Figure 13 is the fil-
tering capability of TOUCH on different datasets. For in-
stance when joining two synthetic datasets with 1.6M ob-

1.6 3.2 4.8 6.4 8 9.6

# 
of

 fi
lte

re
d 

ob
je

ct
s

Objects in dataset B (Millions)

Uniform Gaussian Clustered

Figure 13: Filtering capability of TOUCH with
dataset A of 1.6M with ε = 5.

jects in dataset A and 1.6M objects in dataset B, no object
is filtered from the uniform datasets while 0.07 percent of
the objects are filtered from the Gaussian datasets and 4.07
percent from the clustered dataset. Hence, the less uniform
objects are distributed, the more objects can be eliminated
through filtering (and hence the number of comparisons is
reduced). The impact of filtering is even more substantial
in case of joining neuroscience datasets where 26.58% of the
objects can be filtered.
Impact of the Fanout Parameter: in the next experi-
ments we measure the impact of the fanout parameter on



TOUCH by joining dataset A with 1.6M and dataset B
with 9.6M (with uniform, normal and clustered distribution;
datasets A and B are always of the same type of distribu-
tion) and an ε of 5. We consecutively increase the fanout
from 2 to 20.

In the first experiment shown in Figure 14(a) we measure
how many objects can be filtered for an increasing fanout.
As mentioned previously, no filtering can be done in case of
the uniform distribution. For the other two distributions the
trend clearly shows that a smaller fanout allows for more fil-
tering as discussed in Section 5.2. The impact of an increas-
ing fanout, however, does not seem to increase the number
of objects filtered significantly (at most less than 1% for the
clustered datasets).

 100

 1000

 10000

 100000

 2  4  6  8  10  12  14  16  18  20

L
o
g
sc

al
e 

o
f 

N
u
m

b
er

 o
f 

E
le

m
en

ts
 F

il
te

re
d

Fanout of TOUCH

Gaussian
Clustered

(a) Filtering

 2

 3

 4

 5

 6

 7

 8

 9

 2  4  6  8  10  12  14  16  18  20

N
u
m

b
er

 o
f 

C
o
m

p
ar

is
o
n
s 

(M
il

li
o
n
s)

Fanout of TOUCH

Uniform
Gaussian
Clustered

(b) Comparisons

Figure 14: Impact of the fanout of TOUCH on fil-
tering and number of comparisons with ε = 5.

The fanout, however, has a bigger impact on the num-
ber of comparisons. As Figure 14(b) shows, the smaller the
fanout, the higher the tree and hence the better distributed
the elements are, leading to fewer comparisons. The differ-
ence is significant: for all distributions, 1.5× fewer compar-
isons are needed for fanout 2 as opposed to fanout of 20.

6.7 Neuroscience Datasets
Finally, we also measure the performance of TOUCH on

neuroscience datasets. True to the neuroscience use case
we execute this operation that is executed once per model
the neuroscientists build by joining two datasets. Dataset
A (the axons) has 644K objects (boxes) and dataset B (the
dendrites) with 1.285M objects in a volume of 285μm3. The
average volume of the bound bounding box of the objects
in both datasets is 1.34μm3. The configuration of the ap-
proaches is the same as in previous experiments and the best
found experimentally (see Section 6.1).

Figure 16 illustrates the same measurements, number of
comparisons, execution time and the amount of memory re-
quired, on the neuron dataset for two different join predi-
cates (i.e., ε = 5 and ε = 10). The measurements in this fig-

ure show that TOUCH outperforms all other approaches in
terms of time and space. Also for these datasets, PBSM-500
is the fastest (after TOUCH) but it requires substantially
more memory (rightmost graph in Figure 16), thus limiting
its scalability. As with previous experiments, PBSM-100 re-
quires substantially less memory than PBSM-500, but at the
same time it requires more comparisons and also more time.

Because the neuroscience datasets are very densely popu-
lated in the center, but extremely sparse elsewhere, filtering
has a considerable impact. For ε = 5, 341,553 objects or
26.58% of the dataset B can be filtered. In case of ε = 10,
the objects are bigger (because of the distance predicate)
and consequently fewer objects can be filtered. Still, a con-
siderable share, 21.23%, is filtered.

In a next experiment we measure how the approaches per-
form with an increasing density of the spatial model. To
emulate increasing density we take the set of axon cylinders
and dendrite cylinders from the densest model built to date.
In every step we randomly choose an increasing subset of
both datasets and join them, emulating increasing density.

 0.01

 0.1

 1

 10

 100

20% 40% 60% 80% 100%

E
x
ec

u
ti

o
n
 t

im
e 

(h
o
u
rs

)

Percentage of the datasets

PBSM-500
PBSM-100

S3
Indexed NL

RTree
TOUCH

Figure 15: Execution time for increasingly dense
spatial neuroscience datasets with ε = 5.

As the results in Figure 15 show, TOUCH already today
outperforms the fastest approach among S3 and the R-Tree-
based approaches by a factor of 50 for the densest dataset.
TOUCH is 8 times faster than the fastest state-of-the-art ap-
proach, PBSM-500. At the same time, PBSM-500 requires
6GB of memory while TOUCH only requires 500MB.

7. CONCLUSIONS
In this paper we identify the lack of efficient approaches for

in-memory spatial joins. We demonstrate that the two in-
memory approaches, namely the nested-loop and the plane-
sweep, are inefficient and that disk-based approaches are not
efficient either when applied in main memory. An exception
is PBSM, which is fast but needs excessive memory.

We develop TOUCH, a spatial join algorithm that com-
bines the advantages while avoiding the pitfalls of previous
approaches. TOUCH avoids a space-oriented partitioning
on the large scale and uses a data-oriented partitioning to
organize both datasets. To avoid object replication, objects
of one dataset are used to construct an R-Tree-like hierarchy,
while those of the other are assigned to the level where they
are fully contained by an MBR. The partitions on different
levels are joined using a space-oriented partitioning.

We experimentally demonstrate that our approach is faster
and has a substantially smaller memory footprint than the
previous state of the art with real and synthetic datasets.
Our results also indicate that TOUCH is scalable to larger
and denser datasets, a key issue in scaling up the neuro-
science application we are motivated from. Thus, TOUCH



0
2
4
6
8

10
12
14

Ex
ec

ut
io

n 
tim

e 
(h

ou
rs

) E=5 E=10

(a) Time

0

5

10

15

20

25

30

N
um

be
r o

f c
om

pa
ris

on
s 

(B
ill

io
ns

) 

E=5 E=10

(b) Comparisons

0
2
4
6
8

10
12
14
16

M
em

or
y 

oc
cu

pi
ed

 (G
B)

 E=5 E=10

(c) Memory

Figure 16: Comparison of all approaches for ε of 5 and 10 on neuroscience datasets.

is recommendable as a method of choice for such applica-
tions. Furthermore, as we only make a few assumptions
about dataset characteristics, with TOUCH we provide a
general-purpose solution applicable on any spatial dataset.

8. REFERENCES
[1] W. G. Aref and H. Samet. A Cost Model for Query

Optimization Using R-Trees. In GIS ’94.
[2] W. G. Aref and H. Samet. Cascaded Spatial Join

Algorithms with Spatially Sorted Output. In GIS ’96.
[3] W. G. Aref and H. Samet. Hashing by Proximity to

Process Duplicates in Spatial Databases. In CIKM ’94.
[4] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The

Priority R-tree: a practically efficient and worst-case
optimal R-tree. In SIGMOD ’04.

[5] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and
J. S. Vitter. Scalable Sweeping-Based Spatial Join. In
VLDB ’98.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: an efficient and robust access
method for points and rectangles. SIGMOD Record,
19(2):322–331, 1990.

[7] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
Processing of Spatial Joins Using R-Trees. In
SIGMOD ’93.

[8] J.-P. Dittrich and B. Seeger. Data Redundancy and
Duplicate Detection in Spatial Join Processing. In
ICDE 2000.

[9] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Addison Wesley, 3rd edition, 2000.

[10] A. Farris, A. Sharma, C. Niedermayr, D. Brat,
D. Foran, F. Wang, J. Saltz, J. Kong, L. Cooper,
T. Oh, T. Kurc, T. Pan, and W. Chen. A Data Model
and Database for High-resolution Pathology
Analytical Image Informatics. Journal of Pathology
Informatics, 2(1):32, 2011.

[11] Y. J. Garćıa, M. A. López, and S. T. Leutenegger. A
Greedy Algorithm for Bulk Loading R-trees. In GIS
’96.

[12] S. Gnanakaran, H. Nymeyer, J. Portman, K. Y.
Sanbonmatsu, and A. E. Garcia. Peptide folding
simulations. Current Opinion in Structural Biology,
13(2):168–174, 2003.

[13] A. Guttman. R-trees: a Dynamic Index Structure for
Spatial Searching. In SIGMOD ’84.

[14] O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and
F. J. Sigworth. Improved Patch-clamp Techniques for

High-resolution Current Recording from Cells and
Cell-free Membrane Patches. Pflügers Archiv European
Journal of Physiology, 391:85–100, 1981.

[15] E. H. Jacox and H. Samet. Spatial Join Techniques.
ACM TODS ’07.

[16] I. Kamel and C. Faloutsos. Hilbert R-tree: An
Improved R-tree using Fractals. In VLDB ’94.

[17] N. Koudas and K. C. Sevcik. Size Separation Spatial
Join. In SIGMOD ’97.

[18] J. Kozloski, K. Sfyrakis, S. Hill, F. Schürmann,
C. Peck, and H. Markram. Identifying, Tabulating,
and Analyzing Contacts Between Branched Neuron
Morphologies. IBM Journal of Research and
Development, 52(1/2):43–55, 2008.

[19] S. Leutenegger, M. Lopez, and J. Edgington. STR: a
Simple and Efficient Algorithm for R-Tree Packing. In
ICDE ’97.

[20] M.-L. Lo and C. V. Ravishankar. Spatial Hash-Joins.
In SIGMOD ’96.

[21] M.-L. Lo and C. V. Ravishankar. Spatial Joins Using
Seeded Trees. In SIGMOD ’94.

[22] G. Luo, J. F. Naughton, and C. J. Ellmann. A
non-blocking parallel spatial join algorithm. In ICDE,
pages 697–705, 2002.

[23] N. Mamoulis and D. Papadias. Slot Index Spatial
Join. IEEE TKDE, 15(1):211–231, 2003.

[24] P. Mishra and M. H. Eich. Join Processing in
Relational Databases. ACM Computing Surveys,
24(1):63–113, 1992.

[25] S. Nobari, T.-T. Cao, P. Karras, and S. Bressan.
Scalable parallel minimum spanning forest
computation. In Proceedings of the 17th ACM
SIGPLAN symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 205–214,
New York, NY, USA, 2012. ACM.

[26] J. Orenstein. A Comparison of Spatial Query
Processing Techniques for Native and Parameter
Spaces. In SIGMOD ’90.

[27] J. M. Patel and D. J. DeWitt. Partition Based
Spatial-Merge Join. In SIGMOD ’96.

[28] F. Preparata and M. Shamos. Computational
Geometry: An Introduction. Springer, 1993.

[29] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. In VLDB ’87.

[30] M. Ubell. The Montage Extensible DataBlade
Architecture. In SIGMOD ’94.


