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Abstract—Wind power is gaining in significance as an im-
portant renewable source of clean energy. However, due to
their inherent uncertainty, wind generators are often unable
to participate in the forward electricity markets like the more
predictable and controllable conventional generators. Given this,
virtual power plants (VPPs) are being advocated as a solution for
increasing the reliability of such intermittent renewable sources.
In this paper, we take this idea further by considering VPPs as
coalitions of wind generators and electric vehicles, where wind
generators seek to use electric vehicles (EVs) as a storage medium
to overcome the vagaries of generation. Using electric vehicles in
this manner has the advantage that, since the number of EVs is
increasing rapidly, no initial investment in dedicated storage is
needed. In more detail, we first formally model the VPP and then,
through an operational model based on linear programming, we
show how the supply to the Grid and storage in the EV batteries
can be scheduled to increase the profit of the VPP, while also
paying for the storage using a novel scheme. The feasibility of our
approach is examined through a realistic case-study, using real
wind power generation data, corresponding electricity market
prices and electric vehicles’ characteristics.

Index Terms—Virtual power plants, electric vehicles, agent-
based approach, linear programming

I. INTRODUCTION

Renewable energy has received considerable attention in recent
years, and investments in this sector have been increasing
steadily, especially in wind power generation. Indeed, coun-
tries such as Spain and Denmark already use wind farms to
supply, respectively, 11% and 20% of their national electricity
needs1. Unfortunately, despite its environmental advantages
over many other sources of energy, wind power generation
has many drawbacks that have limited its wider adoption. In
particular, wind energy production is intermittent and prone to
large forecast errors [1] — two highly undesirable features for
electricity grid operators [2]. Moreover, in many regions, the
peak of wind energy production is often reached at night, when
demand is low. As a result, much of the energy produced by
wind is sold during these periods in which electricity prices are
also low [3]. Therefore, from a strictly economic point of view,
wind power generation is often not competitive compared to
other mature technologies of energy generation.

1See http://www.ree.es and http://www.ens.dk.

To address the above issues and to promote the development
of wind farms, many countries pay wind energy providers a
pre-determined feed-in tariff that is typically above market
prices. However, with the expected proliferation of wind farms,
these preferential policies are not desirable in the long run
(indeed, there are already plans towards rolling-back the feed-
in tariffs in many countries, such as UK and Germany).

Against this background, in this work we study an efficient
scheme that enables wind energy providers to improve their
profits by participating in short-term electricity markets, such
as the day-ahead market. To do so, we use storage as a
means of controlling the energy supplied to the power grid
(henceforth, called the ‘Grid’); wind farms store the energy
produced during periods of low prices and sell to the Grid
during periods of high prices. This approach also enables
wind generators to counter the unpredictability of wind power
generation by using storage as a buffer to meet their delivery
targets. In more detail, we rely on one of the key components
of the Smart Grid [4], that is, the virtual power plant (VPP).
A VPP can be understood as a coalition composed of multiple
energy producers and, possibly, energy storage providers that
come together to sell electricity as an aggregate [5]. In our
context, we consider VPPs of wind farms that use electric
vehicles (EVs) for storage [6]. EVs are already being con-
sidered as a suitable means of stabilising the Grid [7][8]
and aiding in the integration of renewable sources under the
moniker of ‘Vehicle-to-Grid’ (V2G) [9][10]. For us, choosing
electric vehicles as the storage resource has the following
advantages. First, the number of EVs is increasing rapidly,
and, being connected to the Grid, EVs provide easy access to
a large battery storage capacity.2 In addition, although an ICT
infrastructure is needed to support the communication between
the VPP members, using EVs as storage does not represent an
upfront capital cost for the VPP. Another benefit of such an
approach is that it can help to subsidise the cost of buying and
maintaining EVs by paying for their unused storage capacity.3

The objective of this work is to study the viability of having
VPPs that use EVs as a storage medium. In particular, we

2Private vehicles are typically parked 96% of their time. EVs can remain
connected to the Grid during this period.

3However, it should be noted that our approach would work equally well
with any other form of battery storage, and need not necessarily be EV-based.
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TABLE I
NOTATION

Variable Description Variable Description
H Wind power generation site V Set of EVs
z Day-ahead estimated generation (kWh) sv Available storage of a single EV (kWh)
x Energy supplied directly to the Grid (kWh) DoD Depth of discharge
b Energy transferred to the batteries (kWh) Emax EV battery capacity (kWh)
d Energy transferred from the batteries (kWh) LET Battery lifetime throughput energy (kWh)
s Total available storage (kWh) L(DoD) Battery lifetime (# of cycles)
w Total energy supplied to the Grid (kWh) cb Battery capital cost (e)
y Needed storage capacity (kWh) cEV Cost of VPP participation (e)
g Energy transferred to the batteries as payment (kWh) Es(DoD) Energy stored for the VPP as function of DoD (kWh)
P(x,d) Profit function of the VPP (e) Ef (DoD) Energy received as payment as a function of DoD (kWh)
σ Percentage of y that is transferred as payment PEV(DoD) Profit function of an EV (e)
η Battery conversion loss pe Wholesale price of electricity (e)
uup
t Balancing-up required at time t (kWh) pup Balancing-up penalty (e)

udown
t Balancing-down required at time t (kWh) pdown Balancing-down penalty (e)

Bt Total energy stored in the EVs at time t (kWh) εt Wind speed forecasting error t hour ahead

define an approach for the modelling and implementation
of VPPs of wind generators and EVs to participate in the
electricity day-ahead market. Since the participants in the VPP
are autonomous entities with private preferences that act in
their own interest and interact with one another, we claim that
an agent-based perspective is highly appropriate to model the
functioning of a distributed system such as a VPP [11].

We also introduce a novel payment scheme to compensate
EVs for the use of their batteries (which shortens the battery
life), and to make the participation in the VPP profitable
enough for EVs, guaranteeing that the VPP will actually
be formed. Most importantly, we then conduct an economic
feasibility analysis of our whole approach through a case study
based on real data of wind generation and historical data
of market prices to simulate the functioning of a VPP. The
experimental evaluation shows that the formation of VPPs is
economically feasible and guarantees positive gains to both
wind farms and EVs.

In summary, the contributions of our work are as follows:
(i) We suggest an agent-based approach for VPPs of wind
generators and EVs. (ii) We extend the state of the art in
the Smart Grid domain by showing how a VPP can optimise
its energy supply schedule to the Grid and maximise profit
using storage to cope with the uncertainty associated with the
prediction of wind power generation. (iii) We present a novel
payment scheme for compensating the EV agents for their
participation in the VPP. (iv) We perform an analysis through
a realistic case study that shows how our model permits the
formation of VPPs that are profitable for both wind farms and
EVs.

The article is structured as follows. In Section II, we briefly
review relevant literature. Section III introduces our concept
of virtual power plant, and the modelling of its members.
Next, in Section IV, we define the formal model of a virtual
power plant, and show how the VPP can optimise its schedule
of supply to the Grid. Section V contains the details of our
empirical evaluation through a case study.

II. RELATED WORK

The growing pressure to increase the contribution of renewable
sources to electricity generation has prompted the inclusion

of distributed energy resources (e.g., fuel cells, PV systems,
small biopower) into many electricity systems. Given this,
VPPs have recently been proposed [5] as a means of providing
an appropriate interface for a set of distributed generation
and storage installations to be able to deal efficiently with
the Grid operators and other market actors [12]. Although
the benefits of VPPs have been extensively assessed, the
usual approach assumes that the components of the VPP
belong to the same stakeholder that has full control over
them [13]. Therefore, there is no need to take into account the
preferences and incentives of the VPP components. However, a
different approach is needed when each component of the VPP
belongs to a different stakeholder. For this reason, agent-based
techniques are starting to be considered as a suitable means to
realise the VPP concept. One example is [14], wherein they
propose a mechanism to promote formation of ‘cooperative’
VPPs of such renewable sources. However, although their
scheme is intended as an improvement on the feed-in tariffs, it
does not integrate the players into the actual energy markets.

Similarly, an agent-based technique for control of VPPs has
been presented in [15]. They propose a three-layer architecture
to control a VPP, where low layer agents are responsible for
locally managing VPP components, while high layer agents
look after the VPP-wide aspects like market participation and
trading strategy. However, very little detail is provided about
the mechanisms employed by the agents of the various layers
to run the VPP.

More relevant to our context is the idea of coupling genera-
tion with storage explored by [16]. They analyse the economic
performance of wind power generation by coupling a wind
farm with energy storage facilities, thus constituting a virtual
power plant. A method based on dynamic programming is
proposed for scheduling and operating such a plant in an
electricity market setting. However they do not study the more
challenging scenarios whereby the storage facilities are owned
by other stakeholders such as the privately owned electric
vehicles in our case. Having such multiple stakeholders brings
in aspects of revenue pay-offs, uncertainty and dynamism in
the VPPs which need to be addressed. In their work the wind
farm stakeholder owns a set of storage facilities that can be
used whenever needed. Although the authors do not specify



3

how much energy storage is available to the wind farm, it is
evident that the investment required for this kind of storage
facility is considerable, especially to be sustained by a single
stakeholder. Thus, their approach in not likely to be widely
adopted by wind generators.

Nevertheless, the study of agent-based techniques for EV
management and V2G activities has been picking up pace
in recent times [17]. An agent-based approach for forming
coalitions of EVs that provide the Grid with regulatory ser-
vices is presented in [18]. Particularly, they attempt to address
some of the challenges underlying the integration of the EVs
into the Grid through coalition formation and aggregation
techniques. Thus, their work is encouraging with regards to the
prospect of using EVs connected to the Grid to provide storage
services, while also championing the application of agent-
based techniques in this domain. However, they focus purely
on the regulatory market, which is significantly different from
the spot market (which is our focus), and hence they also lack
the perspective from the generators’ side.

III. VPP PARTICIPANTS

As explained earlier, a VPP is composed of some wind energy
producers and electric vehicles that act in the electricity market
as a single entity. Now, there are several electricity markets,
operating at different time scales, where conventional market
players can place their bids. Future markets trade power for
months-ahead or even years-ahead delivery, mainly to hedge
against future price fluctuations. In day-ahead spot markets,
power is traded on day k − 1 in order to deliver it on day k.
When the day-ahead market closes, the production schedule
for the next day is determined by the grid operator. The sup-
plier therefore establishes a contractual relationship with the
grid operator that requires them to deliver a certain amount of
energy for the next day and to pay for any deviation (positive
or negative) to the committed schedule. During the day of
delivery there is an intra-day market to reschedule generation
and consumption if necessary. The balancing market takes
place after the intra-day market. If a supplier is not able to
deliver the contracted power, the balancing market ensures
energy balance between generation and consumption. In this
case, the supplier that was responsible for the deviation from
the contracted schedule must pay imbalance penalties.

Since wind power prediction is sufficiently accurate only for
short time horizons, in our context, we consider the scenario
where a VPP participates in the day-ahead market. On day
k − 1, a VPP submits a supply bid where it commits itself
to deliver a specific amount of electricity at every time-slot of
day k. Therefore, on day k−1 the wind energy providers of the
VPP estimate their generation based on weather predictions.
Given the set of EVs that are willing to join the VPP for
day k, wind energy providers calculate the optimal amount of
storage needed to place the most profitable bids in the day-
ahead market. On day k (i.e., the actual day of delivery), based
on the realised production, the VPP continuously reoptimises
the supply to maximise profit while taking into account the
agreed contract. Based on this functioning model, three major
research questions will be addressed in Section V: (i) What is

the potential profit obtained by using the available storage?
(ii) What is the total amount of storage needed to maximise
such a profit? (iii) What is the potential profit made by the
EVs? Next, we present the model of the wind generator and
electric vehicle agents before moving onto the formal model
of the VPP.

A. Wind Power Generation Site
Let H denote a wind power generation site (or wind farm),
owned by a single stakeholder and managed by a software
agent. A single wind turbine j of a wind power generation
site H is characterised by a nominal power curve that for a
given wind speed (in m/s) returns the generated power. Let
Pj(t) be the power generated by turbine j over time for a
given day. The day is divided into N time slots, and the
expected electricity generated during the nth time slot is given
by Qj(n) =

∫ t=(n+1)τ
t=nτ Pj(t) dt, where τ = 24/N . The sum

over all the wind turbines at generation site H gives us the
generation vector, defined as z = [z(0) z(1) . . . z(N − 1)]T ,
where z(n) =

∑|H|
j=1 Qj(n). This expected generation vector

z is used for deciding the day-ahead bid (c.f. (1)). Hereafter,
for notational convenience, the nth element of any vector x is
denoted by x(n).

B. Electric Vehicles
Let V = {v1, v2, ..., vk} be a set of electric vehicles. An EV is
managed by a software agent that acts on behalf of the human
owner, and it is characterised by a storage profile, which
defines the amount of energy that can be stored in its battery
in each time slot and made available to the VPP. For a generic
EV v ∈ V , let sv be the storage profile vector for the N time
slots that compose a day, sv = [sv(0) sv(1) ... sv(N − 1)]T ,
where sv(n) is the quantity of energy that v, if included
in the VPP, can store at time slot n. In our context, it is
obvious that the storage profile vector should be calculated
based on the owner’s preferences (i.e., when the EV will be
available to store energy, what amount of storage is offered
by the EV to the VPP, etc.). In more detail, let Emax be
the maximum energy that can be stored in the battery of
the EV. Each vehicle is characterised by a preferred depth-
of-discharge regime (DoD ∈ [0, 1]), which indicates that
the vehicle is willing to provide at most DoD · Emax units
of storage. In fact, the depth-of-discharge not only affects
the battery life cycle, thereby the cost of participation of
the EV in the VPP, but also it affects the driving range,
since the battery capacity available for driving is reduced to
(1−DoD)Emax kWh. The storage profile vector is therefore
defined as sv = [DoD ·Emax DoD ·Emax ... DoD ·Emax]T .

IV. VPP MODEL

In general, a VPP may contain several wind power generation
sites. However, in this work, for the sake of simplicity, we
assume that a VPP contains a unique wind farm, which here
we assume is the VPP leader. This does not cause any loss
of generality because multiple generation sites can together be
represented by a single agent for the purposes of calculating
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the overall production and required storage at the VPP (which
is the aim of this section).

Formally, let the estimated electricity generated by the
VPP on the next-day at the nth time slot be z(n) ∈ R.
This estimated quantity z(n) can be supplied directly to the
Grid, stored in the batteries of the electric vehicles, or both.
Furthermore, for the same time slot, the VPP leader may want
to transfer to the Grid an additional quantity of electricity
that was stored in the batteries of the vehicles in previous
time steps. These decisions depend on the market prices and
also on the cost of using storage. In the following, we will
describe how EVs are paid for the storage they provide to the
VPP, the optimisation model used by the VPP to define the
supply bid to submit on day k − 1 to the day-ahead market
and the reoptimisation procedure executed on day k to limit
the imbalances caused by wind power prediction errors.

A. Storage Payment Scheme
In our approach, payment for storage is provided to the EVs
in the form of charging entitlements rather than money, to
take advantage of the price differential between wholesale and
retail market price of electricity. This work does not consider
transmission costs because, in any case, they are paid by each
EV owner as part of the energy supply installation. The cost to
the VPP for supplying the electricity is very low as compared
to the value placed on it by the EVs. For example, typically
in Spain, wholesale market prices are at 0.04e/kWh whereas
the retail prices are around 0.14e/kWh. Therefore, a donation
of 1 kWh to an EV will result in a loss of revenue of about
0.04e to the VPP as it could have otherwise sold this energy
in the market. At the same time, the perceived gain to the EV is
0.14e as it would otherwise have paid that much to purchase
it through a retail tariff. This way of paying for storage will
help in overcoming the main perceived disadvantage of using
EV storage for electricity spot markets – low revenues from
the market and high cost of battery life [19]. Thus, our storage
payment scheme is in the form of energy given away to the
EVs by the generators. The amount of energy given away is
measured as a proportion of the amount of storage used, which
thereby acts as the representative of the storage cost.

Given the above, the agent leading the VPP computes the
optimal schedule that maximises its profit based on predictions
of energy production and storage capacity for the next day,
and uses this schedule to place bids in the day-ahead market
(Section IV-B). Then, on the actual day of delivery, the leader
continuously reoptimises the schedule for the remainder of
the day to take into account the contracted energy supply and
the latest predictions of the energy production and available
storage (Section IV-C).

B. Day-Ahead Optimisation
To place the bid, the leader has to compute the following
five parameters that determine the supply schedule: (i) the
amount supplied directly into the Grid, (ii) the amount of
energy transferred to the batteries, (iii) the energy transferred
from the batteries to the Grid, (iv) the amount of battery
storage capacity needed (used to determine the numbers of

EVs needed in the VPP) and (v) the amount of energy
transferred to the EVs as payment. These five parameters are
denoted, respectively, by the vectors x ∈ RN , b ∈ RN ,
d ∈ RN , y ∈ RN and g ∈ RN . Let the maximum total
storage (upper bound for y) available to the VPP be given
by s = [s(0) s(1) . . . s(N − 1)]T and s(n) =

∑
v∈V sv(n),

where V denotes the set of EVs.
Let us denote that the electricity supplied to the Grid (either

directly or drained from the batteries) is paid for at price
pe(n). Also, let the ratio between the amount of energy given
to the EVs as payment and the amount of storage used be
denoted by σ ∈ [0, 1] (σ ≤ g(n)

y(n) ). Finally, let η ∈ (0, 1) be
the battery’s overall conversion loss, which takes into account
the percentage of electricity that is lost when electricity flows
from the Grid to the battery and vice-versa. Therefore, it is
necessary to store 1+η units of energy to have 1 unit actually
delivered from the battery.

The objective of the VPP is solving the following optimi-
sation problem4:

maximise
x,b,d,y,g

P(x,d) =
N−1∑

n=0

pe(n) [x(n) + d(n)]

subject to
∀n∈{0,...,N−1}

x(n) + (1 + η)b(n) + g(n) = z(n),

∆(n) + b(n) ≤ y(n),

∆(n)− d(n) ≥ 0,

g(n) ≥ σ y(n),

x(n) ≥ 0, b(n) ≥ 0, d(n) ≥ 0, y(n) ≥ 0,

0 ≤ y(n) + g(n) ≤ s(n).
(1)

where P(x,d) represents the revenues raised by the VPP
from the electricity sold in the market, based on the estimated
generation z, and

∆(n) =

{
0, if n = 0
∑n−1

i=0 (b(i)− d(i)) otherwise
(2)

is the net energy stored in the EVs’ batteries at the beginning
of time slot n. (We assume in (2) that the initial available
energy is zero, but this can be easily generalised to the case
where some energy is already present.)

The first constraint in (1) guarantees that the electricity
z(n) is split into a quantity that is supplied to the Grid,
x(n), another quantity that is stored in the batteries, b(n),
and the quantity that is given away to the EVs as payment for
their participation, g(n). The second constraint guarantees that
the electricity that is stored in the batteries fits the available
storage. The third constraint guarantees that the electricity
that is drained from the batteries does not exceed the energy
that is actually stored in the batteries. The fourth constraint

4Note that (1) is a standard linear programming (LP) problem that can be
solved with any off-the-shelf LP solver. In particular, we used an implemen-
tation of the simplex method offered by the Apache Commons Math library.
The typical execution to solve an instance of the problem takes no more than
2 seconds on a 2.66GHZ Intel Core 2 Duo with 4GB of memory.
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guarantees that the payment received by the EVs in terms
of energy g(n) is at least as much as the required proportion
(given by σ) of storage used y(n). By solving this optimisation
problem,5 the day-ahead bid w is given by w = x+ d.

C. Receding Horizon Optimisation

During the day of delivery, the closer we get to a time slot, the
better the estimate of the energy production. At any given time
slot on the day of delivery, the schedule computed in Section
IV-B may need to be adjusted to cope with dynamic changes
(e.g., the VPP may be unable to supply the contracted energy).
Therefore, the VPP leader should continuously adapt to this
dynamic and uncertain setting in order to maximise profit.

The approach taken in this work is based on receding
horizon optimisation [20]. Although this approach is not
optimal, it is one of the most widely used techniques in
practice when the problem at hand is not solvable with
methods that find the optimal policy [21], such as dynamic
programming (DP). In fact, straightforward DP is not only
computationally expensive when the state and input space are
continuous and multidimensional, but it is also impossible to
use when the disturbances are not conditionally independent
of the past disturbances [21]. In receding horizon optimisation,
a deterministic optimal control problem is solved at each time
step, using estimates available at the current time step for the
unknown future disturbances. The solution to this optimisation
problem yields the optimal sequence of actions for the finite
horizon, if the future disturbances were equal to the estimates.
Then only the first action of the sequence is applied. At the
next time step, the computation is repeated using the exact
value of the current state, which is now known, and an updated
set of predictions for the future disturbances [20].

More formally, let z′t ∈ RN be the new energy forecast
vector known at time slot t for the remainder of the N − t
time slots of the day; i.e., z′t(t), . . . , z′t(N−1) are the forecasts,
at time t, for time slots t, . . . , N − 1, respectively (other
components of the vector z′t can be ignored). Similarly, let
s′t ∈ RN represent the new maximum total storage capacity
available to the VPP at time t for the remainder of the day.
Let pup be the cost vector of the penalty that an electricity
supplier must pay if it is “short”, i.e., if it delivers less energy
than that contracted in the day-ahead market. However, if the
agent is “long”, i.e., it provides more energy than contracted,
the price of the energy surplus is not higher than that in the
day-ahead contract.6 The difference in these two prices (the
contracted price minus the actual surplus price) is denoted by
pdown. More precisely, pdown(n) = pe(n)−psurplus(n), where
psurplus(n) is the price of the extra energy at the nth time slot.7

5In cases where we would like to know the ideal amount of storage needed
to attain the highest possible profit, we can replace the constraint 0 ≤ y(n) ≤
s(n) in (1) by the constraint 0 ≤ y(n).

6This setting prevents suppliers that participated in the day-ahead market
from reserving a certain amount of power with the aim of delivering it in the
balancing market at a higher price. In fact, the functionality of covering short
or long positions is carried out by the reserve power suppliers, which have a
different contractual relation with the grid operator.

7We assume that we cannot learn any additional information about prices
during the day of delivery, so for our purposes the prices remain unchanged.

From this, it follows that pdown ≥ 0, where “≥” stands for
the element-wise inequality.

Now, at every time slot t, given the contracted supply w
(recall w = x+d), the leader has to compute a new schedule
x′
t,b

′
t,d

′
t,g

′
t ∈ RN and required storage y′

t ∈ RN , which
are the updated versions of x, b, d, g and y, respectively,
for the remainder of the day (the remaining N − t slots).
Therefore, the new supply vector RN % w′

t = x′
t + d′

t is
computed at every time t ∈ {0, . . . , N − 1}. The imbalance
vector for being “short” is, therefore, uup

t = [max(0, w(t) −
w′

t(t)) ... max(0, w(N − 1) − w′
t(N − 1))]T . Similarly, the

imbalance vector for being “long” is defined as udown
t =

[max(0, w′
t(t)−w(t)) ... max(0, w′

t(N − 1)−w(N − 1))]T .
With the above, the profit function at time t considering
imbalance penalties is given by

P ′
t(x

′
t,d

′
t) =

N−1∑

n=0

pe(n) [x′
t(n) + d′t(n)]

−
N−1∑

n=0

pup(n)uup
t (n)−

N−1∑

n=0

pdown(n)udown
t (n). (3)

Given that the above function, although concave,8 is not
differentiable everywhere due to he max function, we recast
the optimisation problem having (3) as the cost function as

maximise
x′
t,b

′
t,d

′
t,y

′
t,g

′
t,α,β

N−1∑

n=t

pe(n) [x′
t(n) + d′t(n)]

−
N−1∑

n=t

pup(n)α(n)−
N−1∑

n=t

pdown(n)β(n)

subject to
∀n∈{0,...,N−1}

x′
t(n) + (1 + η)b′t(n) + g′t(n) = z′t(n),

Bt +∆′
t(n) + b′t(n) ≤ y′t(n),

Bt +∆′
t(n)− d′t(n) ≥ 0,

g′t(n) ≥ σ y′t(n),

x′
t(n) ≥ 0, b′t(n) ≥ 0, d′t(n) ≥ 0, y′t(n) ≥ 0

0 ≤ g′t(n) + y′t(n) ≤ s′t(n),

α(n) ≥ 0,β(n) ≥ 0,

α(n) + x′
t(n) + d′(n) ≥ x(n) + d(n),

β(n) + x(n) + d(n) ≥ x′(n) + d′(n).
(4)

where Bt is the total energy present in the EVs at time t,
α(n) and β(n) are variables included to remove the non-
differentiable function max of (3), and

∆′
t(n) =

{
0, if n = t
∑n−1

i=t (b
′
t(i)− d′t(i)) otherwise.

On the day of delivery, (4) is solved at every time slot t, and the
schedule used at time t is x′

t(t), b
′
t(t), d

′
t(t), g

′
t(t). The values

8Note that −uup
t and −udown

t are concave functions, so (3) can be seen
as a positive sum of concave functions, which implies that the resulting sum
is also a concave function [22].



6

TABLE II
LIFETIME CYCLES FOR DIFFERENT DoD VALUES

DoD cycles
20 50,000
40 12,000
60 4000
80 2500

x′
t(n), b

′
t(n), d

′
t(n), g

′
t(n) for n > t are only exercise values

to enable the agent to maximise the total profit of the day
(planning ahead).

V. CASE STUDY

We conducted an experimental case study using real-data to
evaluate the economic feasibility of our approach and answer
the questions raised in Section III. Here, we describe first the
details of the data used for modelling the wind farms and the
electricity market. We then follow that up with a discussion on
the electric vehicles and the impact on their batteries caused by
their participation in the VPP, before moving onto the results.

A. Wind Farm and Market Data
The proposed approach is not dependent on any specific setting
of the wind farm in terms of nominal power or wind turbine
technology. Thus, we assume a generic wind farm with 10
typical Izar-Bonus 55/130 wind turbines, each of them with
a rotor diameter of 55m and a nominal capacity of 1.3 MW.
Prior to submitting its supply bid to the market, the WG agent
must estimate the expected generation vector z, which implies
forecasting the wind speed for the next 1 to 24 hours ahead.
To simulate the forecasting error we proceed as follows. We
collected the wind speed and the 1 to 24 hour ahead forecasts
for two months,9 from September to October 2011 for a
location containing a wind farm in Spain.10 We then compute
the t hour ahead forecasting error εt as wsreal−wspredt , where
wsreal is the real wind speed and wspredt is the t hour ahead
prediction. For any t ∈ {1, . . . , 24}, we compute the mean
and variance of the forecast error εt. Finally, we define a
normal distribution of the forecast error parametrised with the
aforementioned mean and variance.

To denote the actual winds, we use wind speed data for
the years 2009 and 2010 from the same wind farm in Spain.
In order to simulate the electricity market, we use historical
prices from the Spanish electricity market operator11 for the
corresponding period of 2009 and 2010. As described in
Section IV, electricity is supplied to the EVs at no cost in
order to pay for their storage resource and the ratio of this
energy to the amount of available storage is denoted by σ.

B. Electric Vehicle Data
To model the impact of VPP participation on the EV battery
life, we rely on the widely used cost model proposed by
Kempton and Tomic [23]. Let LET be the battery lifetime

9http://www.wunderground.com
10http://www.sotaventogalicia.com
11http://www.omel.es

throughput energy (in kWh) for a specific depth-of-discharge
regime (DoD). Using their model, if the battery capital cost
(in e) is cb, the cost cEV of VPP participation for the EV is
therefore defined as:

cEV =
cbEs(DoD)

LET
(5)

where Es(DoD) is the energy that the EV stores on behalf of
the VPP, which is also a function of DoD. Battery lifetime is
often expressed in cycles, measured at a specific DoD, leading
to the following expression of LET:

LET = L(DoD) · Es(DoD) (6)

Thus, the cost cEV of VPP participation for the EV becomes:

cEV =
cb

L(DoD)
(7)

To determine the lifetime in cycles, we rely on the results
presented by EPRI [19] related to the lifetime of Li-Ion
batteries, whose technology is expected to be the most cost-
efficient for V2G applications compared to Lead acid or Ni-
MH [24]. The DoDs that are considered in this paper, with
their respective lifetime in cycles, are summarised in Table II.

The participation of an EV in a VPP implies that it receives
a certain quantity of free electricity for the storage it provides
to the VPP. Let Ef (DoD) be the energy that the EV receives
from the VPP. This electricity is assumed to be valued by the
EV at 0.14 e/kWh, which is the electricity price for end users
in Spain. The EV profit function is therefore defined as:

PEV = 0.14 Ef (DoD)− cb

L(DoD)
(8)

Each EV is responsible for deciding the DoD that it is
willing to provide to the VPP, since this parameter affects the
profitability for the EV of joining the VPP. Low DoDs result
in lower degradation of the battery, but also lower revenues
(less storage offered to the VPP). High DoDs lead to higher
revenues but with faster degradation of battery.

In the experiments we assume that EVs are provided with a
30 kWh Li-Ion battery, whose cost12 is 6330 e. The battery’s
total conversion loss parameter η is set to 0.27 [23].

C. Results
We conducted sufficient simulation runs to obtain statisti-
cally significant results (all error-bars denote 95% confidence
intervals). The main focus of the experimental evaluation
is on assessing the profit of the wind farm that leads the
VPP and comparing it with the profit that the same wind
farm would have generated if it did not have any storage
available. Let P(x,d) be the realised profit that the VPP
obtains, after providing free electricity to EVs (as payment
for storage) and facing imbalance penalties in the market.
Let P(x,d | s = 0) be the profit raised by its component
wind farm participating in the electricity market but without

12This value is the EPRI estimate of a Li-Ion battery cost in a mass
production scenario [19].
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Fig. 2. Profit of an Electric Vehicle

storage, i.e., bidding according to the expected supply and
facing possible imbalance penalties. The profit gain of our
approach is then given by:

P(x,d)− P(x,d | s = 0)

P(x,d | s = 0)
(9)

In more detail, Fig. 1(a) plots the profit gain according to
the month of the year, grouped by different values of σ. The
profit gain tends to be higher during the winter and spring
months, when the wind generation output is at its highest
levels. We evaluated three values of σ (0.05, 0.1 and 0.15).
When σ is 0.05, since storage is relatively cheap, the VPP uses
the storage widely to maximise the profit, thus outperforming
the traditional wind farm by more than 20% (as in December
and March), with peaks of more than 40% of profit gain in
January. The VPP is able to shift the supply towards the more
profitable time slots, at noon and in the evening, drawing on
the energy stored in the batteries in the previous time slots.
As σ increases, storage becomes more expensive and therefore
less utilised by the VPP. As expected, the profit gain tends to
shrink for σ = 0.10 and σ = 0.15.

Another research objective was assessing the amount of
storage needed to maximise such a profit. To this end, Fig. 1(b)
plots the storage required by a VPP, as a percentage of its
electricity generation, to maximise its profit (note that the error

bars are too close to be visible). As expected, the amount
of storage needed by the VPP decreases as it becomes more
expensive due to the optimisation (in Sec. IV). In absolute
terms, if we consider the winter month with the highest level
of demand in terms of storage (January), the VPP must have
at its disposal a storage capacity ranging from approximately
50MWh for σ = 0.05 to 19MWh for σ = 0.15. This
observation leads us to the following question: how many
electric vehicles are needed to realise this optimal storage
capacity? The answer depends on the storage capacity (DoD)
offered by the EVs to the VPP. If we assume that each EV
offers the most profitable DoD, which is 0.4 (see Fig. 2), a
single EV is able to provide 0.4 · 30 = 12 kWh, and thus, the
VPP would need from 1583 to 4166 EVs to store 19 MWh
to 50 MWh of energy. A wind farm such as that simulated in
this article, with a nominal capacity of 10 ·1.3 MW = 13 MW,
would represent 0.0006% of the Spanish installed wind power
capacity, which is 21,673 MW.13 Given that in Spain there are
22,145,000 passenger cars,14 if we assume a 10% penetration
of EVs the wind farm would need from 0.0007% to 0.0019%
of the available EVs.

Finally, we also assessed the benefit to the EVs for par-
ticipating in a VPP. To this end, Fig. 2 plots the EV annual
profit (based on the analysis in Sec V-B) for different values
of σ and DoD. When σ = 0.05, storage is relatively cheap
and therefore the EVs are widely used. Although the price
paid to the EV is lower (less electricity is provided at no
cost), it is more likely that the VPP needs storage. As a
result, EVs make small but frequent profits throughout the year
leading to high annual profits. However, when σ increases, the
usage of storage is less profitable to the VPP. Thus, with EVs
being utilised far less frequently, their annual profits are also
reduced. Hence we see that, despite being counter-intuitive,
a lower σ, because of the frequent use of storage, results in
higher annual profits to the EVs, even overcoming the cost
of the loss in battery life-cycles. Depending on the DoD, an
EV is able to gain up to 282e per year. It is also interesting

13http://www.aeeolica.org
14See “Energy, transport and environment indicators”, Eurostat, 2010
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to notice how, for any given σ, DoD = 0.4 is the value that
maximises the EV profit. Offering even more storage is not
good for an EV as costs outpace revenues.

VI. CONCLUSIONS

The focus of this work is to enable wind power generators to
fully participate in electricity markets by forming VPP with
EVs that can store the energy to overcome the intermittent
nature of the energy supply. We showed how the VPP can
maximise its profits by optimising the schedule of supply to the
Grid based on the energy production and the available storage.
We also introduce a novel scheme of paying the EVs for their
storage through supplying energy at no cost. Then, using real
data from a wind farm, historical data of market prices and
EV characteristics, we conducted a case-study to assess the
economic viability of such an approach. Our analysis showed
that our VPP method is more profitable to both wind farms
and EVs compared to not participating in the VPP. Receding
horizon optimisation showed to be simple and computationally
cheap since, at each time step, a linear optimisation problem
was solved using standard LP techniques. Moreover, it also
delivered a control policy that guaranteed a profit for all VPP
participants. These initial results are encouraging and there
is significant potential for even more improvement if more
advanced optimisation techniques are employed.

This work is the first assessment of the feasibility of
applying the V2G concept in the electricity spot markets, and
therefore, opens up several avenues of future work. Specifi-
cally, such VPPs will need to have appropriate mechanisms
to classify EVs based on reliability and incentivise them to
adhere to their schedules. Similarly, protocols for formation
and management of the VPPs need to be explored, including
which EVs should be chosen for storage in any particular time
period. In this respect, the notion of trust and reputation will
be essential for the VPP leader to track the adherence of an
EV to its published profile during the selection of potential
VPP members.

While in our work, the case study focussed on wind farms
and EVs, the basics of the approach presented here can readily
be applied to other similar forms of renewable energy (e.g.,
photovoltaic) and storage systems (e.g., supercapacitors and
flywheels). Furthermore, new actors can be modelled, such as
aggregators that represent fleets of EVs and offer additional
services other than storage for wind power generators, such as
frequency regulation for the grid operator [25] or storage ca-
pacity for demand side management and outage management
in buildings [26].

Finally, for VPPs to become a reality, a number of techno-
logical advances are required (i.e., smart meters and battery
charging controllers). Many of these technological develop-
ments are already underway and this rapidly advancing field
presents an attractive opportunity for agent technologies to
demonstrate their utility in real-world applications [4].
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