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1 Introduction

Estimation of distribution- and population-based optimization algorithms [1, 2] have been thor-
oughly investigated for their ability to handle ill-posed optimization problems. Maintaining a distri-
bution on the search space or a population of candidate solutions indeed enforces the search robust-
ness with respect to the (moderate) noise and multi-modality of the objective function, in contrast to
classical optimization methods such as quasi-Newton methods.

The main limitation of the above stochastic optimization methods is due to their sample complexity,
i.e. the large number of objective evaluations they require; this limitation hinders their application
to computationally expensive problems such as optimal design in numerical engineering, where
one evaluation might require solving structural problems using Finite Element Methods. For this
reason, stochastic optimization has often-wise been coupled with learning surrogate models, that is,
local approximations of the objective function, which enable to replace a significant fraction of the
true objective evaluations, with the inexpensive evaluation of the surrogate function. Among the
key issues of surrogate-based stochastic optimization are the exploration vs exploitation trade-off,
namely the control of the surrogate learning module (update schedule, learning hyper-parameters).

The present paper focuses on coupling self-adaptive surrogate learning with the covariance matrix
adaptation evolution strategy algorithm (CMA-ES) [2], a state-of-the art algorithm for continuous
black-box optimization. The contribution is twofold. Firstly, we show that a tight coupling of CMA-
ES and Ranking SVM [3], referred to as ACM-∗ achieves optimization invariance with respect to
both orthogonal transformations of the search space, and monotonous transformation of the objective
function, while adaptively adjusting the update schedule and the learning hyper-parameters.

Secondly, ACM-∗ is assessed comparatively to the quasi-Newton BFGS method [4], most specif-
ically, its high precision arithmetic implementation. It is shown that ACM-∗ matches the high-
precision BFGS performances when considering an appropriately scaled (quadratic) objective func-
tion, and outperforms the high-precision BFGS by a multiplicative factor ranging in 2..3 otherwise,
on the black-box optimization benchmarking (BBOB) noiseless test-bed [5].

The paper briefly describes CMA-ES for the sake of self-containedness before giving an overview
of ACM-∗ and discussing its invariance properties. The following sections are devoted to the exper-
imental validation of the approach comparatively to high-precision BFGS and the paper concludes
with some perspectives for further research.
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2 Covariance matrix adaptation evolution strategy (CMA-ES)

Let f denote the objective function to be minimized, defined on IRn

f : IRn 7→ IR

The so-called (µw, λ)-CMA-ES [2] maintains a Gaussian distribution on IRn, which is iteratively
used to generate λ candidate solutions, and updated based on the best (in the sense of f ) µ solutions
among the λ ones. Formally, every candidate solution xt+1 at time t+ 1 is drawn from the current
Gaussian distribution:

xt+1 ∼ N
(
mt, σt

2Ct

)
= mt + σtN (0,Ct), (1)

where Ct ∈ Rn×n is a covariance matrix, σt is a perturbation step-size, and the center mt of
the distribution is the current best estimate of the optimum. The new distribution center mt+1 is
computed as the weighted sum of the best (w.r.t. f ) µ solutions as follows1:

mt+1 =

µ
∑

i=1

wix
(i:λ)
t+1 , (2)

where x
(i:λ)
t+1 denotes the i-th best solution out of the λ ones generated at time step t + 1, and

∑µ
i=1 wi = 1. The covariance matrix Ct+1 is adjusted using both the local information about

the search direction, given by 1
σt
(x

(i:λ)
t+1 − mt), and the global information stored in the so-called

evolution path pt+1 of the distribution center m. For positive learning rates c1 and cµ (c1 + cµ ≤ 1)
the update of the covariance matrix reads as follows:

Ct+1 = (1− c1 − cµ)Ct + c1 pt+1 · pt+1
tr

︸ ︷︷ ︸

rank−one update

+cµ

µ
∑

i=1

wi

σt
2
(x

(i:λ)
t+1 − mt) · (x

(i:λ)
t+1 − mt)

tr

︸ ︷︷ ︸

rank−µupdate

(3)

The step-size σt+1 is likewise updated to best align the distribution of the actual evolution path of
σ, and an evolution path under random selection.

Interestingly, the recently proposed Information-Geometric Optimization (IGO [6]) framework
shows that the pure rank-µ update of CMA-ES is a special case of IGO when considering the family
of all Gaussian distributions Pθ in Rn and performing a natural gradient ascent of θ.

CMA-ES performances and robustness are explained from its invariances:
∗ with respect to monotonous transformations of the objective function f . By construction, it does
not make any difference whether one considers the minimization of f , or that of g◦f , for any strictly
increasing function g : R 7→ R. In particular, CMA-ES yields the same performances regarding the
optimization of f and f3 (contrarily to BGFS, see below).
∗ with respect to angle preserving transformations of the search space (rotation, reflection, transla-
tion)2, due to the adaptation of the covariance matrix C.

3 ACM-∗

The proposed ACM-∗ algorithm is meant to extend CMA-ES to expensive optimization through
surrogate model learning. The focus is on preserving CMA-ES invariance properties, and enforcing
the self-adaptation of the surrogate learning module.

Surrogate model learning

The CMA-ES invariance w.r.t. monotonous transformations of the objective function is preserved
in ACM-∗ through a rank-based surrogate learning approach. Specifically, a ranking support vector

machine (Ranking SVM [3]) is used to learn the surrogate model f̂ from the available evidence
E = {(xi, f(xi)), i = 1, . . . ℓ}. Let us assume with no loss of generality that the training points in E
are ordered by increasing value of f(xi). For the sake of computational efficiency, a linear number
of ranking constraints (xi ≺ xi+1, i = 1 . . . ℓ − 1) is used. By construction, the surrogate model
thus learned is invariant under the composition of f with any strictly increasing function g.
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The invariance of the surrogate model w.r.t. orthogonal transformations of the search space is en-
forced by using a Radial Basis Function (RBF) kernel, which precisely involves the inverse of the
covariance matrix adapted by CMA-ES. Formally, the rank-based surrogate model is learned using

the kernel KC defined as: KC(xi, xj) = e−
(xi−xj)

T C−1(xi−xj)

2σ2 , which corresponds to rescaling the

training (and test, see below) data using the transformation x → C−1/2(x − m). Through using
this kernel, the surrogate learning module benefits from the CMA-ES efforts in identifying the local
curvature of the optimization landscape.

Surrogate model exploitation

A key issue in surrogate-based optimization concerns the updating schedule of the surrogate model,
specifically how many optimization iterations (a.k.a surrogate life-length n̂) should a surrogate
model be used before being rebuilt. The proposed approach first optimizes f by CMA-ES for one

iteration and uses the candidate solutions to build f̂ . It thereafter proceeds by iterating the following

steps: i) optimize f̂ by CMA-ES for n̂ iterations; ii) optimize f by CMA-ES for one iteration and

use the candidate solutions to assess the accuracy of f̂ ; iii) depending on the fraction of incorrectly

ordered pairs, adjust n̂; iv) use the candidate solutions for relearning f̂ . In this way, n̂ is set to 0

when f̂ gives random prediction, thus falling back to the original CMA-ES. This procedure also al-
lows ACM-∗ to be efficiently parallelized on λ CPU that is often not the case for surrogate-assisted
algorithms which evaluate only one point per iteration (e.g., some trust-region based algorithms).

Surrogate model hyper-parameters

The quality of the surrogate model f̂ is sensitive to the learning hyper-parameters, e.g., the number
and distribution of training points controls whether the model is global or local. The selection of
the hyper-parameters is handled through launching an internal CMA-ES for one iteration, aimed
at minimizing the surrogate model error and searching the hyper-parameter space. Along this line,
ACM-∗ achieves the lifelong learning/optimization of i) the learning hyper-parameters; ii) the sur-
rogate model and its life-length. The user is only required to provide the range of variation of the
learning hyper-parameters.

4 Goal of experiments: comparative assessment with high-precision BFGS

The experimental validation of the proposed scheme aims at assessing ACM-∗ comparatively to
the well-known quasi-Newton BFGS algorithm [4] on ill-conditioned optimization problems. The
literature indeed shows that BFGS suffers from numerical problems in such cases (see [7] for an ex-
tensive discussion). Specifically, on the 24 noiseless benchmark problems of the BBOB suite, BFGS
is shown to reach a first performance level (10−2) very quickly comparatively to other algorithms,
and then plateaus [8]. Our conjecture is that this shortcoming is due to an insufficient precision in
estimating the gradient of f (and thus the Hessian of f ). This conjecture is tested by considering a
high-precision arithmetic version of BFGS, referred to as pBFGS (implemented in C++, integrated
in the high-precision arithmetic package ARPREC [9])3.

5 Experiments

The self-adaptive surrogate learning ACM-∗ is used on the top of the bi-population with restart mode
of CMA-ES, using its active update variant [10], considering the (non-surrogate-based) CMA-ES,
the baseline implementation of BFGS, and the 32-decimal digit precision pBFGS as baselines4, both
with restart mode.

Fig. 1-Left reports the median results (out of 15 runs) on the 20-dimensional Rosenbrock func-

tion fRosenbrock(x) =
∑n−1

i=1

(
100(x2

i − xi+1)
2 + (xi − 1)2

)
(uniform initialization in [−5, 5]20

for all algorithms). ACM-∗ outperforms the CMA-ES mode by a factor of about 2.5-3.0. As the
Rosenbrock function is not ill-conditioned, pBFGS performs similarly to BFGS (not shown here)
and ACM-∗. Rescaling the objective function (considering f2 or f4) however adversely affects
pBFGS, slowing down the convergence by a factor of about 3 for f4. In the meanwhile, ACM-
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Figure 1: Left: Median objective value (out of 15 independent runs) reached for a number of objec-
tive evaluations for ACM-∗, BFGS and pBFGS on 20-dimensional Rosenbrock function fRosenbrock

and its different scaled variants: f = f2
Rosenbrock (legend pBFGSpow2) and f = f4

Rosenbrock (leg-
end pBFGSpow4) .
Right: Bootstrapped empirical cumulative distribution of the number of objective function evalu-

ations divided by dimension for 50 targets in 10[−8..2] for all 24 noiseless functions in 20-D. The
”best 2009” line indicates the BBOB 2009 “portfolio oracle“, the aggregation of the best algorithm
result for each function.

∗ and CMA-ES-based approaches show their invariance w.r.t. monotonous transformations of the
objective function.

BBOB framework provides 24 noiseless [5] and 30 noisy [11] benchmark problems with different
properties: separable, non-separable, unimodal, multi-modal, ill-conditioned, deceptive, functions
with and without weak global structure. Figure 1-Right shows the benchmarking results on 24
noiseless BBOB problems with 15 instances/runs for each problem and 50 uniformly generated
target f values per problem (24×50=1200 target function values for y-axis). The results show that
ACM-∗ outperforms its CMA-ES baseline and all other benchmarked algorithms in most cases.
The high-precision version of BFGS, pBFGS, significantly improves on BFGS thanks to its robust
performance on ill-conditioned problems. Monotonous transformations of the objective function
(f2 (pBFGSpow2) and f4 (pBFGSpow4)) however significantly affect the pBFGS results.

6 Discussion and future work

This paper emphasizes the merits of invariance w.r.t. monotonous transformation of the objective
function, regarding surrogate-assisted optimization. A second result concerns the advantages of
high-precision BFGS for solving ill-conditioned optimization problems. High-precision compu-
tations however require the source code to be rewritten not only on the part of the optimization
algorithm, but often also on the part of the objective function (as was the case in our study). The
latter is impossible in standard black-box scenarios; often-wise it is intractable even when the ob-
jective source code is available. A third result is that high-precision arithmetic does not prevent
BFGS results from degrading when the scaling of the objective function differs from the ”desirable”
quadratic BFGS scaling.

Further work will investigate a tighter coupling of CMA-ES and Ranking SVM (typically, relating
the surrogate model life-length and the perturbation step size). Alternative comparison-based surro-
gate models will also be considered, such as Gaussian Processes for ordinal regression [12]. Finally,
as shown by [13], quasi-Newton methods can be interpreted as approximations of Bayesian linear
regression under varying prior assumptions; a prospective research direction is to replace the linear
regression by ordinal regression-based Ranking SVM or Gaussian Processes in order to derive a
version of BFGS invariant w.r.t. monotonous transformations of the objective function f .
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Notes

1An active CMA-ES variant also uses the worst candidate solutions to update mt+1.

2If the initial candidate solutions are transformed accordingly.

3The source code is available at https://sites.google.com/site/highprecisionbfgs/.

4For gradient approximations by finite differences ǫ = 10
−20 is used in pBFGS instead of ǫ = 10

−8 in
BFGS.
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