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Abstract. Taking inspiration from approximate ranking, this paper in-
vestigates the use of rank-based Support Vector Machine as surrogate
model within CMA-ES, enforcing the invariance of the approach with
respect to monotonous transformations of the fitness function. Whereas
the choice of the SVM kernel is known to be a critical issue, the pro-
posed approach uses the Covariance Matrix adapted by CMA-ES within
a Gaussian kernel, ensuring the adaptation of the kernel to the currently
explored region of the fitness landscape at almost no computational over-
head. The empirical validation of the approach on standard benchmarks,
comparatively to CMA-ES and recent surrogate-based CMA-ES, demon-
strates the efficiency and scalability of the proposed approach.

1 Introduction

The importance of invariances in science has long been acknowledged. In com-
puter science in particular, the invariance of an algorithm with respect to a given
transformation of the problem domain is a source of robustness, as any theoret-
ical or empirical result that is demonstrated for a given problem instance can be
extended to the whole class of problems obtained by applying the transformation.
For instance, many bio-inspired optimization algorithms such as tournament-
based EAs, PSO, or DE only rely on comparisons of the fitness function, making
them invariant under any monotonous transformation of the fitness. From a the-
oretical perspective, this invariance property is a source of robustness [5]; from
an algorithmic perspective, it removes the need to tune the algorithm hyper pa-
rameters according to some (generally unknown) scale of the fitness function. In
the realm of continuous optimization, the state-of-the-art CMA-ES [8] is known
to achieve invariance with respect to orthogonal transformations of the search
space. CMA-ES extreme robustness with respect to internal parameter tuning,
and its outstanding performances for many types of fitness functions [7] are
attributed in part to this invariance property, the importance of which is wit-
nessed by the variability of other algorithm performances depending on e.g. the
separability or condition number of the fitness function [1].
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Meta-model assisted optimization is used to decrease the number of evalu-
ations of computationally expensive fitness functions in the framework of con-
tinuous optimization: a surrogate model of the fitness is built on the fly, and
used in lieu of the actual fitness. Such method, also known as “Response Sur-
face Method”, has been used for long in the Numerical Engineering community
[2]. Because Evolutionary Algorithms (EAs) require a lot of fitness evaluations,
much work has been devoted in the last decade to specifically tune meta-model
assisted approaches to EAs (see e.g. [9] for a survey – and section 2).

Unfortunately, building a surrogate model from the fitness values gathered
during the search definitely obliterates any invariance by monotonous transfor-
mation of the fitness. Preserving such invariance in a surrogate-based approach
requires the surrogate model to only comply with the ranks of the sample points
with respect to the fitness function. In the realm of statistical Machine Learning,
rank-based Support Vector Machines (SVMs) precisely aims at learning a model
from the only ordering of the sample points [15]; such a rank-based surrogate
could be used in lieu of a value-based surrogate, enforcing the comparison-based
invariance of the underlying optimization algorithm. To the best of our knowl-
edge, the only work investigating the use of rank-based SVM as surrogate model
within a meta-model assisted EA is Runarsson’s [14]; while this approach was
reported to bring small improvements over a CMA-ES baseline, a major issue
regards the choice of the kernel, the Achilles heel of all SVM-based methods.

Following the path opened by [14], this paper investigates the use of rank-
based SVM surrogate models within CMA-ES. It further borrows [11] the use
of the Covariance Matrix adapted by CMA-ES, viewed as the proper metric
to look at the region of the fitness landscape currently explored. Finally, the
paper contribution is to integrate a rank-based Support Vector Machine sur-
rogate within CMA-ES, where the SVM kernel is set to the covariance matrix
adapted by CMA-ES. Section 2 surveys evolutionary model-assisted approaches,
focussing on rank-based surrogates and CMA-ES. Section 3 introduces the pro-
posed algorithm, called ACM-ES for (alphabetically) ranked CMA-ES; it details
how a rank-based SVM is tightly coupled with CMA-ES, using the change of
representation induced by the current covariance matrix to derive an adaptive
kernel with almost no computational overhead. The experimental validation of
the approach is reported and discussed in section 4, and directions for further
work are sketched in section 5.

2 Surrogate Models and Ranking

2.1 Approximate Ranking

Most approaches to evolutionary meta-model assisted optimization build and
use the surrogate model in a way similar to that of classical optimization. The
surrogate model is trained by regression, depending on the underlying model
space (from mostly quadratic polynomials to neural networks, kriging aka Gaus-
sian Processes or SVMs); the surrogate model (possibly taking into account its



uncertainty) is used in lieu of the actual fitness function, or it is used to pre-
screen promising solutions; and the model is updated based on computations of
the true fitness on those promising solutions (see [9] for a detailed survey).

To our best knowledge, the first work acknowledging the fact that EAs “only”
require accurate ranking information, as opposed to accurate approximation of
the fitness function, is that of Th. Runarsson [13]. This work introduced the idea
of approximate ranking: a simple weighted nearest neighbor regression model is
used as surrogate model, and its validity is assessed based on whether it preserves
the (objective function-based) ordering of points. The most promising individuals
according to the surrogate model are evaluated with the objective function until
the ranking of the best individuals stabilizes. Significant savings are reported
on test functions compared to the baseline algorithm (an ES variant tailored to
constrained optimization), although they do not allow comparison with state-of-
the-art results. Moreover, the surrogate model is probably too simple to lead to
competitive results.

Approximate ranking however inspired Local Meta-Model CMA-ES (lmm-
CMA), proposed by Kern et al. [11]: a local quadratic model is build anew for
each offspring generated with the usual CMA-ES procedure, and approximate
ranking is used to adaptively determine the number of actual objective eval-
uations to be run at each generation. lmm-CMA significantly outperforms the
original CMA-ES with a speed-up factor of circa 2-3, making it competitive with
state-of-the-art approaches. The requirement on approximate ranking was later
relaxed by another variant, nlmm-CMA [3], using the rank stability of the set of
µ best offspring as stopping criterion (as opposed to, the rank of each offspring),
and thus improving over lmm-CMA on most benchmark functions (detailed re-
sults will be given in section 4.2 for the sake of comparative validation).

There are however a few drawbacks with lmm-CMA algorithms, apart from
the fact that they use a regression surrogate model and hence depart from the
comparison-based invariance of CMA-ES. Firstly, they rely on quadratic approx-
imations, and thus their performances decrease when the objective function is far
from being quadratic (see section 4.2). Secondly, they must use the full quadratic
model [11], and hence the surrogate model must be of order d2, where d denotes
the problem dimension; the regression problem thus is of order d6, which makes
it hardly scalable for medium size problems (d > 20).

2.2 Rank-Based Surrogate Model with Rank-SVMs

Another seminal idea regarding the comparison-based issue in meta-model as-
sisted EAs is again due to Th. Runarsson [14], using rank-based learning to train
the surrogate model. Let us briefly recall rank-based Support Vector Machines,
assuming the reader’s familiarity with SVM first principles [15].

Let (x1, . . . , xN ) denote an N -sample in instance space X, assuming with no
loss of generality that point xi has rank i. Rank-based SVM learning [10] aims
at a real-valued function F on X such that F(xi) < F(xj) for all pairs i, j such
that i < j. In the SVM framework, this goal is formalized through minimizing
the norm of F (regularization term) subject to the ordering constraints, thus



involvingN(N−1)/2 constraints. A more tractable formulation [15] only involves
the N − 1 constraints related to consecutive points, F(xi) < F(xi+1) for i =
1 . . . N − 1. The latter formulation was used in [14] and will also be used in the
presented approach.

Using the kernel trick3, ranking function F is defined as a linear function w
w.r.t. some feature space Φ(X), i.e. F(x) = ⟨ w,Φ(x) ⟩. With same notations
as in [15], the primal optimization problem is defined as follows, where slack
variable ξi and constant Ci respectively account for the violation of the i-th
constraint, and the weight of the violation, to be minimized:

Minimize{w, ξ}
1
2 ||w||

2 +
∑N

i=1 Ciξi

subject to

{
⟨ w,Φ(xi)− Φ(xi+1) ⟩ ≥ 1 + ξi (i = 1 . . . N − 1)
ξi ≥ 0 (i = 1 . . . N − 1)

(1)

The corresponding dual problem, quadratic in the Lagrangian multipliers α, can
be solved easily. Finally, the rank surrogate F is given as

F(x) =
N−1∑
i=1

αi(K(xi, x)−K(xi+1, x))

Like for any SVM-based approach, the main critical issue behind rank-based
SVMs remains the choice of the kernel, that is known to be highly problem-
dependent [15]. Furthermore, as pointed out in [4], the kernel used within an
SVM-based surrogate should adapt to the optimization process: the optimal ker-
nel is likely to change as search proceeds, exploring different regions of the search
space. Some results related to kernel adaptation within SVM-based surrogate in
CMA-ES, using fixed kernels, have been obtained by updating the surrogate
model using Kendall tests on ranks (although approximate ranking could also
have been used). The computational gains in terms of number of function evalu-
ations do depend on the kernel, as was expected; the gains however are reported
in [14] to rapidly decrease with the dimension d of the problem.

3 Rank-SVM CMA-ES

The main contribution of the paper is to integrate the rank-based surrogate
approach first proposed by [14] within the CMA-ES framework, taking advantage
of the Covariance-Matrix Adaptation scheme to adaptively define the kernel of
the rank-based surrogate.

3.1 From CMA-ES to Rank-SVM kernel

By construction, CMA-ES adapts the covariance matrix describing the local
structure of the fitness landscape. After [6], CMA-ES proceeds by adapting the

3 The so-called kernel trick supports the extension of the SVM approach from linear to
non-linear functional spaces, by mapping instance space X onto some feature space.
It only requires the scalar product in feature space to be computable on instance
space X through a kernel function K: K(x, x′) =def ⟨ Φ(x), Φ(x′) ⟩.



problem encoding, and performing a Cumulative Step-size Adaptation algorithm
in the transformed space. The change of coordinates, defined from the current
covariance matrix C and the current mean value m, reads:

x′
j = C−1/2(xj −m), (2)

Notably, the CMA information was directly used in [11] to building quadratic
surrogate models; when training a quadratic surrogate model centered on x∗,
the weight of each sample x was set to

√
(x− x∗)TC−1(x− x∗).

In the case of a kernel-based surrogate model, it thus comes naturally to set
the Radius-Based (RBF) kernel directly to the covariance matrix, with σ > 0:

KC(xi, xj) = e−
(xi−xj)

T C−1(xi−xj)

2σ2 (3)

Fig. 1 (left) illustrates the potential gain of using such transformation for the
simple case of the ellipsoid function, where the matrix C is exactly known.
Interestingly, the change of coordinates is already computed within CMA-ES,
therefore the transformation comes at almost no additional cost. Kernel width
σ is set to the average distance between training points in the experiments.
Another possibility, left for further work, could be to tie σ to CMA step size.

3.2 Overview of ACM-ES

Having chosen its kernel after Eq. (3), the integration of a rank-SVM as surrogate
model within CMA-ES raises three main issues: i/ how to train the surrogate
model, i.e. how to select the current training sample in the set of all points
evaluated with the true objective function; ii/ how to use the model within
CMA-ES, without perturbing the delicate adaptive mechanism thereof; and iii/
how to select the new points which will be evaluated with the true objective
function.

Regarding the first issue, i.e. the selection of the training sample, several re-
quirements have been identified. Firstly, the number Ntraining of training sam-
ples must increase with the dimension d of the search space. Using statistical
learning arguments, Ntraining should be of the order of the VC dimension of
the model space. Note that after transformation (Eq. 2) the decision space is a
variant of the sphere function, in the best case, or a noisy multimodal variant
thereof in the worst case. A second requirement is that the training samples
should not lie too far from the current mean m of the distribution used by
CMA-ES to generate its offspring, since the transformation defined by the cur-
rent covariance matrix only aims at the local structure of the fitness landscape
around m. Finally, the analysis of preliminary experiments on the d-dimensional
sphere function shows that Ntraining should increase proportionally to

√
d; the

proportionality constant however remains problem-dependent as will be seen in
section 4.1. These Ntraining selected points are the best points evaluated with
the true fitness function so far.

The second issue regards how to use the rank-based surrogate within CMA-
ES. Using the surrogate model in lieu of the true fitness is a risky option due
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(a) Contour plots of ellipsoid function (dotted
lines) and Rank-SVM surrogates (solid lines) ob-
tained with isotropic RBF kernel (left) or exact
transformed RBF kernel (right).

(b) λ = 12 offspring (’+’ and
’∗’) and λ′ = 4 candidates
for true evaluation (’∗’) selected
among 500 pre-children.

Fig. 1. (a) The transformed RBF kernel is more appropriate than the isotropic one.
(b) Selecting offspring from pre-children: mapping the ranks to a normal distribution.

to the lack of guarantees about errors in regions outside the training sample. A
more conservative option thus is to use the surrogate model to pre-screen the
offspring [12], generating many more pre-children than required, and keeping the
best ones after the surrogate model. Such an approach however rapidly looses the
offspring diversity, hindering the CMA-ES adaptive mechanism used to adapt
the covariance matrix. Some tradeoff between the optimization of the objective
and the adaptation of the covariance matrix must thus be found.

The proposed approach finally is a two-step process. In order to prevent pre-
mature convergence, and interfere as little as possible with CMA-ES cumulative
step-size adaptation, a large number Ntest of pre-children is drawn using the
standard CMA Gaussian distribution; let them be noted x1, . . . xNtest , assuming
with no loss of generality them to be ranked after the surrogate model. The λ
offspring are obtained by iteratively drawing a real number a < Ntest from dis-
tribution N (0, σ2

sel0) (where σsel0 is a parameter of the algorithm), and retaining
the pre-child with rank ⌊a⌋. The same procedure is followed to select the points
to be evaluated according to the true objective function, with the same rationale:
on the one hand, one should select the best points according to the current sur-
rogate model; on the other hand, some diversity must be preserved. Finally, i/
the point with top rank is selected and always evaluated (as in the approximate
ranking approach [13]); ii/ other (λ′-1) points selected among the pre-children
using a rank distribution N (0, σ2

sel1) are evaluated, using the same process as for
the offspring selection albeit with a larger standard deviation (σsel1 > σsel0). A
typical distribution of the ranks of the λ offspring is depicted on Fig. 1 (right),
legend +, for Ntest = 500, λ = 12, and σ2

sel0 = 0.4, while points that will be
evaluated with the true fitness are represented by ∗ (λ′ = 4 and σ2

sel1 = 0.8).
In ACM-ES, a fixed number λ′ of points is evaluated in each generation, thus

bounding the complexity in terms of true fitness evaluation. The choice of the
ratio λ/λ′ thus controls the efficiency of the approach and the speedup w.r.t. the
standard CMA-ES (where λ offspring are evaluated in each generation).
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Fig. 2. Left: the cost of model learning/testing increases quasi-linearly with d.
Right: the average speedup and speedup for all problems except Rastrigin.

4 Experimental validation

The experimental validation of ACM-ES investigates the performance of the
approach comparatively to CMA-ES and nlmm-CMA, focussing on its scalability
w.r.t. the problem dimension d, the robustness with respect to multi-modality,
and with respect to the calibration of the surrogate training.

4.1 Experimental Settings

Seven uni- and multimodal benchmark functions have been considered (see Ta-
ble 1, definitions in [11] and [3]), with dimension d ranging in [2, 40] except for
the Rastrigin function. Within ACM-ES, CMA-ES is used with its default pa-
rameters [8]. Reported results are based on 20 independent runs. The stopping
criterion is reaching target value 10−10, with a maximum of 1000d2 evaluations.

The rank-based surrogate was trained using Ntraining = 30
√
d samples for

all functions, except for Ellipsoid and Rosenbrock where it was set to 70
√
d. The

maximum number of iterations of the SVM learning algorithm was arbitrarily set
to 50000

√
d. The constraint weights Ci (Eq. 1) were set to 106(Ntraining − i)2.0,

implying that the cost of constraint violation quadratically increases for top-
ranked samples. For all functions except Rastrigin, λ′ = λ

3 , σ
2
sel0 = 0.4, σ2

sel1 =
2σ2

sel0 = 0.8, Ntest = 500. For Rastrigin function σ2
sel0 = σ2

sel1 = 0.6.

4.2 Results and Discussion

Firstly, experiments are conducted to estimate the empirical complexity of the
surrogate training and using, using 100

√
d training points, stopping after 50000

√
d

iterations and assessing the surrogated model on 500 test points. The empirical
complexity with respect to dimension d (Fig. 2 (left) in log scale) is 1.13 (thus,
slightly super-linear, contrasting with lmm-CMA complexity of O(d6)).



Table 1. Test functions, initialization intervals and initial std. dev. (from [11, 3]).

Noisy Sphere fNoisySphere(x)= (
∑d

i=1 x2
i )exp(ϵN (0, 1) [−3, 7]d 5

Ellipsoid fElli(x)=
∑d

i=1 10
i−1
d−1 x2

i [1, 5]d 2

Schwefel fSchwefel(x)=
∑d

i=1(
∑i

j=1 xj)
2 [−10, 10]d 10

Schwefel1/4 f
Schwefel1/4

(x)= (fSchwefel(x))
1/4 [−10, 10]d 10

Rosenbrock fRosenbrock(x)=
∑d−1

i=1

(
100.(x2

i − xi+1)
2 + (xi − 1)2

)
[−5, 5]d 0.5

Ackley fAckley(x)= −20exp

(
−0.2

√
1
d

∑d
i=1 x2

i

)
+exp( 1

d

∑d
i=1cos(2πxi)) [1, 30]d 14.5

Rastrigin fRastrigin(x)= 10d +
∑d

i=1(x
2
i − 10.cos(2πxi)) [1, 5]d 2

Secondly, the comparative validation of ACM-ES, nlmm-CMA and standard
CMA-ES on all benchmark functions is reported in Table 2; lmm-CMA and
nlmm-CMA results have been taken from original papers [11] and [3] when avail-
able; those of CMA-ES have been recomputed. Overall, ACM-ES outperforms
lmm-CMA and nlmm-CMA algorithms on most problems, particularly so for
problems with dimension d > 4. The invariance of ACM-ES w.r.t. monotonous
transformations of the fitness is witnessed by its almost identical results on
fSchwefel and fSchwefel1/4 functions, when the stopping criterion is adjusted ac-
cordingly (which is not the case for the results of Table 2). Likewise, the results
on fElli confirm that ACM-ES also retains the good behavioral properties of
CMA-ES with respect to the ill-conditioning of the fitness function. The speedup
w.r.t CMA-ES is depicted on Fig. 2 (right) versus the problem dimension d. In-
terestingly, the speedup reaches its peak for d ranging in 8..10, then it decreases
– except on the Noisy Sphere function. A possible explanation is that the noise
level is comparatively less when the dimension increases (as in [3]), enabling the
regularization involved in the model optimization to counteract the noise effects.

On the negative side, ACM-ES performs poorly on fRastrigin function, and
only solves it marginally for dimensions d > 8. This failure is attributed to the
fact that ACM-ES does not handle well multi-modal diversity at the moment; it
tends to accelerate the premature convergence to a local optimum, thus ampli-
fying the weakness of CMA-ES on this benchmark problem: the best-performing
versions of CMA-ES require an increasing population size [7]. Further work will
consider the use of niching techniques to overcome this weakness.

5 Conclusion and Perspectives

The main contribution of the paper, ACM-ES, is a surrogate-based CMA-ES
preserving invariance with respect to both monotonous transformations of the
fitness function and orthogonal transformations of the search space. Comparison-
based invariance is enforced by using rank-based Support Vector Machines to
learn the surrogate model; coordinate invariance is enforced through using the
covariance matrix adapted by CMA-ES as SVM kernel. Experimental validation
confirms both invariance claims, and demonstrates the merits of the approach
in terms of fitness evaluations and scalability w.r.t. the space dimension.



The main weakness of the approach is due to the failure of the surrogate
model to account for multi-modal landscapes, as shown on the Rastrigin func-
tion; some improvements, e.g. related to niching, have been mentioned in the
previous section and their validation is under way. Another issue regards the
surrogate model hyper-parameters, which have been calibrated after prelimi-
nary experiments on the Sphere function conditionally to the carefully tuned
hyper-parameters of CMA-ES [8]. A global approach, considering both sets of
hyperparameters in an integrated way, would be appropriate. Another perspec-
tive, pointed out in [13], is to extend the approach to constrained optimization.
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Table 2. Computational effort SP1 (i.e. average number of function evaluations of suc-
cessful runs divided by proportion of successful runs), standard deviations and speedup
performance (spu) of ACM-ES, (n)lmm-CMA-ES and CMA-ES. Results in the (n)lmm-
CMA column are the best of those in [11] and [3] (marked with leading “n:” for the
latter). Successful runs are those who reached the target fitness value of 10−10. The
proportion of successful runs is given in parentheses if less than 100%. ϵ is the noise
level (when relevant).

Function n λ λ′ ϵ ACM-ES spu (n)lmm-CMA spu CMA-ES

fSchwefel 2 6 3 186±5 2.0 81±5 4.5 370±32
4 8 3 289±9 3.0 145±7 6.0 879±60
5 8 3 344±9 3.2 1112±72
8 10 3 558±18 3.6 282±11 7.1 2010±82
10 10 3 801±36 3.3 2667±87
16 11 3 2204±74 2.3 626±17 8.2 5156±161
20 12 4 3531±179 2.0 7042±172
32 14 4 8933±337 1.7 15072±377
40 15 5 13440±281 1.7 22400±289

fSchwefel1/4 2 6 3 551±12 2.8 n:413±25 3.7 1527±76

4 8 3 783±8 3.6 n:971±36 2.9 2847±109
5 8 3 914±15 3.8 n:1302±31 2.7 3505±114
8 10 3 1366±25 4.3 5882±146
10 10 3 1774±37 4.1 7220±206
16 11 3 4193±88 3.0 12411±198
20 12 4 6138±82 2.5 15600±294
32 14 4 14796±310 2.0 29378±330
40 15 5 22658±390 1.8 41534±466

fRosenbrock 2 6 3 511±84 1.4 n:252±52 2.8 700±194
4 8 3 775±108 2.8 n:719±54 (0.85) 3.0 2187±376 (0.85)

5 8 3 854±89 3.0 n:1014±94 (0.90) 2.5 2526±308 (0.95)

8 10 3 1388±139 4.2 2494±511 (0.90) 2.3 5769±547 (0.85)

10 10 3 2059±143 (0.95) 3.7 7669±691 (0.90)

16 11 3 5255±560 3.1 7299±1154 2.2 16317±1281 (0.90)

20 12 4 11793±574 (0.75) 1.8 21794±1529
32 14 4 32261±2165 (0.8) 1.6 52671±5587
40 15 5 49750±2412 (0.9) 1.6 82043±3991

fNoisySphere 2 6 3 0.35 413±114 1.0 n:109±12 3.7 407±61 (0.95)

4 8 3 0.25 428±46 2.0 n:236±19 3.6 844±141
5 8 3 0.22 480±66 2.1 1014±68
8 10 3 0.18 630±76 2.6 n:636±33 2.6 1663±140
10 10 3 0.15 766±90 (0.95) 2.7 2058±148
16 11 3 0.13 1119±115 2.8 n:2156±216 1.4 3120±168
20 12 4 0.11 1361±212 2.8 3777±127
32 14 4 0.09 1997±247 2.9 5767±162
40 15 5 0.08 2409±120 2.9 7023±173

fAckley 2 6 3 352±39 2.1 n:227±23 3.2 735±55
4 8 3 540±29 (0.95) 2.9 1577±83
5 8 3 566±33 3.4 n:704±24 (0.90) 2.2 1904±122 (0.95)

8 10 3 800±22 (0.95) 3.8 3066±114
10 10 3 892±28 4.1 n:2066±119 (0.95) 1.8 3641±154
16 11 3 1530±39 3.7 5672±151
20 12 4 1884±50 3.5 8150±196 0.8 6641±108
32 14 4 2747±62 3.7 10063±203
40 15 5 3690±80 3.3 12084±247

fElli 2 6 3 393±19 2.0 774±73
4 8 3 582±24 2.9 1688±11
5 8 3 683±33 3.4 2342±162
8 10 3 1142±53 4.0 4542±155
10 10 3 1628±95 3.8 6211±264
16 11 3 4706±148 2.8 13177±341
20 12 4 8250±393 2.3 19060±501
32 14 4 27281±753 1.6 44562±530
40 15 5 33602±548 2.1 69642±644

fRastrigin 2 50 25 1640±242 (0.6) 1.2 n:528±48 (0.95) 3.6 1970±418 (0.85)

5 140 70 23293±1374 (0.3) 0.5 n:4037±209 (0.60) 3.0 12310±1098 (0.75)


