
Consistent Packet Processing – Because Consistent Updates Are Not Enough

Peter Perešı́ni†∗, Maciej Kuźniar†∗, Nedeljko Vasić†, Marco Canini?, and Dejan Kostić‡
†EPFL ?TU Berlin / T-Labs ‡Institute IMDEA Networks
†{name.surname}@epfl.ch ?m.canini@tu-berlin.de ‡dkostic@imdea.org

With the abstraction of a logically centralized, global
view of the network, Software-Defined Networking
(SDN) is poised to dramatically streamline network
management and enable extensibility and customization.
However, as in every software system, there is always
the risk of software faults (or bugs). OpenFlow, cur-
rently the standard SDN platform, is particularly subject
to such risk because all popular controller frameworks
(e.g., NOX, FloodLight, etc.) offer an API that closely
matches the low-level OpenFlow interface—so expos-
ing developers to all the idiosyncrasies of the underlying
asynchronous and distributed collection of switches [1].

To address several of these issues, Monsanto et al. [2]
propose programming language techniques that raise the
abstractions for managing SDNs and Reitblatt et al. [3]
propose general abstraction for managing network up-
dates. We agree with these authors this is stepping in
the right direction. In our ongoing work, we identify
an additional abstraction that previous work has so far
not considered. In particular, through the example sce-
nario below of a real bug we uncovered in POX1, we
demonstrate the need for consistent packet processing in
SDN controllers—the abstraction that guarantees that ev-
ery packet traversing the network (and its duplicates due
to flooding) is processed by one consistent state of the
controller rather than a mixture of controller states. This
abstraction is a natural complementary to the per- packet
consistency abstraction [3] which considers the network
states but not the controller state.
Harmful “amplification” bug. Here, we show that
performance and scalability issues can arise even in a
straightforward OpenFlow deployment. We examine the
use of l2 multi, a multi-switch version of a learning
switch that maintains the mapping (host, port) for every
switch in the network. Initially, the location of the des-
tination host d is not known, and the controller instructs
the first switch that encounters a packet to d to flood it.
Once host d is reached and replies, the controller sees
the reply packet and learns d’s location. However, the re-
mains of the flood could still be traversing the network.
When these duplicate packets reach switches that (still)
do not know d’s location these packets are once again
sent to the controller. If the switch application running

∗Student author. A student author will offer a demo.
1This bug also affects other controller frameworks.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120

#
 r

u
le

s
 i
n
 s

w
it
c
h
e
s

Time (s)

standard l2_multi
fixed l2_multi

in the controller is not carefully designed, the controller
will route these duplicate packets towards d. Depending
on network size, this may potentially generate a packet
storm. Moreover, the controller will install unnecessary
additional rules in the switches. Combined, these effects
ultimately hurt the performance of other flows in the net-
work, as well as the overall network scalability.

The general problem this bug exposes is the lack of
consistency of controller state when these packets are
processed—duplicate packets that arrive after the con-
troller learns d’s location are processed according to the
new controller state. To demonstrate the need for con-
sistent packet processing, we show the effect of rule am-
plification described in the previous paragraph. We mea-
sure the total number of rules installed in switches form-
ing a small fat-tree topology (20 switches) during a re-
play of several flows and repeat the experiment 3 times
(reporting avg. and std. dev.). The network is con-
trolled by the POX controller using spanning tree,
arp responder and l2 multi modules. We com-
pare against a manually fixed version of l2 multi. The
results in the Figure indicate that even in this small topol-
ogy, the controller installs more rules than needed, i.e.,
the inconsistent packet processing happens.

To address the problem of consistent packet process-
ing we propose to use transactional semantic within the
controller. In more detail, the first time a specific packet
is sent to the controller, the controller starts a new trans-
action. When the same packet is later seen by the
controller, the controller will reuse the context of the
previously-started transaction. Thus, the packet avoids
observing a new state.

References
[1] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford. A

NICE Way to Test OpenFlow Applications. In NSDI, 2012.
[2] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Com-

posing Software Defined Networks. In NSDI, 2013.
[3] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.

Abstractions for Network Update. In SIGCOMM, 2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147995196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

