
Bounded Delay in Byzantine Tolerant State Machine
Replication
(Full Paper)

Zarko Milosevic, Martin Biely, André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
Email: firstname.lastname@epfl.ch

Abstract—The paper proposes a new state machine replication
protocol for the partially synchronous system with Byzantine
faults. The algorithm, called BFT-Mencius, guarantees that the
latency of updates initiated by correct processes is eventually
upper-bounded, even in the presence of Byzantine processes. BFT-
Mencius is based on a new communication primitive, Abortable
Timely Announced Broadcast (ATAB), and does not use signatures.
We evaluated the performance of BFT-Mencius in the cluster
settings, and showed that it provides bounded latency and good
throughput, being comparable to the state-of-the-art algorithms
such as PBFT and Spinning in fault-free configurations and
outperforming them under performance attacks by Byzantine
processes.

I. INTRODUCTION

We become increasingly dependent on online services;
therefore, their availability and correct behavior become in-
creasingly important. In order to guarantee that services are
available in spite of failures one basic strategy is to use
replication: By replicating a service on multiple servers, clients
are guaranteed that even if some replica fails, the service is
still available. State machine replication (SMR) is a general
approach for replicating services that can be modeled as a
deterministic state machine [1], [2]. The key idea of this
approach is to guarantee that all replicas start in the same
state and then apply requests from clients in the same order,
thereby guaranteeing that the replicas’ states will not diverge.

Current deployments of SMR in industry handle benign
failures only, with all major players employing some sort
of replication in their infrastructure (e.g., Zookeeper [3],
Chubby [4], Dynamo [5]). Indeed, as Barroso and Hölzle point
out [6, Chapter 7] in a warehouse-scale data-center of 100’000
servers built with hardware with a mean time between failure
of 30 years, one server can be expected to crash every day.
Byzantine failures are until now considered to occur with
only negligible probability, but given growth of data-centers
it seems only a matter of time until a similar argument holds
for Byzantine failures as well. Moreover, as Driscoll et al. [7]
point out—albeit in the context of safety critical systems—the
assumption that Byzantine failures are not relevant in practice
might lead to actual Byzantine failures to be overlooked, and
miss-categorized, for instance as software bugs.

Byzantine fault-tolerant replication algorithms allow com-
puter systems to continue to provide a correct service even
when some of their components behave in an arbitrary way,

either due to faults or due to a malicious intruder. Although
Byzantine failures have already been introduced in 1980 [8],
Byzantine fault tolerant (BFT) replication protocols were
considered too expensive to be practical [9]. This changed
when Castro and Liskov introduced “Practical Byzantine faulty
tolerance” (PBFT) [10]. They showed that in the fault-free
settings BFT replication protocols can achieve performance
that is close to that of non-replicated systems. The key ob-
servation that made PBFT practical was using MACs instead
of signatures, which were the main performance bottleneck
in previous systems [10]. Indeed, while our implementation of
PBFT (cf. Section VII for details) achieves peak throughput of
52K requests per second with average client-latency of 4.5 ms,
once we introduced RSA signatures to PBFT, peak throughput
drops to 6K requests per second with 20ms latency.

After PBFT, several similar approaches continued to im-
prove performance in the fault-free case (e.g., Zyzzyva [11]).
However, like PBFT, most of these protocols are fixed se-
quencer protocols [12], i.e., a single server has a special role
to propose order of requests. Amir et al. showed [13] that this
class of protocols is vulnerable to performance attacks. The
key observation is that a malicious sequencer can delay the
ordering of requests, causing a considerable increase in latency
and a great reduction in throughput. Performance failures
were defined as Byzantine servers behaving as a “correct
but very slow” server. More precisely, a Byzantine server
exhibiting performance failures sends messages according to
the protocol, but delayed—typically just in time to avoid
triggering protocol timeouts that will get them demoted. This
makes it very hard to detect a faulty server and apply some
kind of reconfiguration mechanism, in order to reduce the
impact on the protocol. Bounding the service response time (or
having other performance guarantees) is not only of theoretical
interests. For instance, in Amazon’s Dynamo [5], there is a
formal Service Level Agreement (SLA) where a client and a
service agree on the client’s expected request rate distribution
and the expected service latency under those conditions.

Amir et al. [13] also proposed a new performance-oriented
criterion, called bounded-delay, that requires that, given a
system that is not overloaded and where servers have sufficient
bandwidth to communicate, in a (long enough) period of
synchrony the latency of updates initiated by correct servers is
eventually upper-bounded, even in the presence of Byzantine
servers. Thus ensuring bounded-delay could be considered as
capturing what one would informally describe as tolerating

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147995174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance failures.

Unfortunately, this is not entirely true, because the defini-
tion of bounded-delay does not tell us how big the upper-bound
should be. Consider for example protocols that continuously
rotate the leader, such as Aardvark [14] or Spinning [15]
(which do not consider bounded-delay as a criterion). It can be
easily seen that such protocols are able to guarantee an upper-
bound of f ·T , where f is the number of faulty servers and T
is a protocol timeout whose expiration triggers reconfiguration
mechanism such as view change. The intuition behind such
claim is simple: in the worst case, from the time a correct
server p has a request to propose (e.g., because it received it
from a client), until it can propose the request, the server needs
to wait until n− 1 instances of other servers have terminated.
Even if p broadcasts the request when its not its turn, the
next f instances may be coordinated by faulty servers. As
the timeout values are normally chosen rather conservatively1,
the guaranteed bound that is roughly f ·T can be significantly
higher than the latency in the failure-free case. Thus, providing
such bound does not necessarily match the intuition one has
for tolerating performance attacks. One would rather expect
that algorithms that tolerate performance attacks achieve the
same order of performance as in the failure-free case, where it
is in the order of the real communication delay among servers.

Apart from defining new performance criteria, Amir et al.
also proposed [13] a new BFT algorithm called Prime. Note
that what Prime provides is in accordance with our arguments
above, as its upper bound on latency is in the order of the real
communication delay. Prime is derived from PBFT by adding a
pre-agreement phase. That is, servers exchange requests using
a reliable broadcast protocol before they are actually ordered
by what is essentially PBFT. While increasing the message
complexity and the number of communication steps on the
critical path, having this pre-agreement phase is what allows
servers to compute a threshold of acceptable performance,
which is then used to judge if the sequencer is faulty. More
precisely, executing reliable broadcast allows correct servers
to come to a consistent view of what the current sequencer
should do, for example, when the next instance should start
and what requests should be proposed in a next instance.
Without a pre-agreement phase, i.e., in PBFT and similar
protocols, this knowledge is only available at the sequencer.2
Therefore, it is very hard (if not impossible) for a correct
server to determine a bound that defines an acceptable level of
performance in such centralized protocols. In a sense, adding a
pre-agreement phase makes Prime a less centralized protocol,
as in the pre-agreement phase all servers have the same
role. So although still based on the fixed-sequencer scheme,
being more decentralized allows Prime to reduce the impact
a faulty sequencer can have on the protocol, by demoting
the sequencer if it does not provide the acceptable level of
performance that is in the order of real communication delay
among correct servers. When comparing Prime with PBFT we
see that ensuring the stronger performance criteria comes at
a price: reintroducing signatures makes it costly for cluster

1For example, the timeout in Aardvark is set to 40ms, which is order of
magnitude bigger than a duration of a single instance during synchronous
period.

2Note that rotating the sequencer is of no help as a correct server has a
complete picture only when it is its turn.

settings, and adding the pre-agreement phase strongly affects
performance in the failure-free case.

In this paper, we propose a new BFT SMR protocol, BFT-
Mencius, that ensures bounded-delay that is in the order of real
communication delay among correct servers, but does not incur
additional costs (as Prime). The key to do so is to go one step
further: Instead of adding a decentralized pre-agreement phase
to PBFT as in Prime, BFT-Mencius is a fully decentralized
protocol where all servers propose in different instances of
a sub-protocol called ATAB (explained below) concurrently.
Because these instances are tightly coupled, servers can use
their own progress in proposing requests to estimate the
progress others should make.

In more detail, BFT-Mencius is inspired by Mencius [16],
an efficient multi-leader SMR protocol that tolerates (only)
crash faults, originally designed for WAN settings. Mencius
uses an (infinite) sequence of instances of a subprotocol
referred to as simple consensus, where only a pre-determined
initial leader can propose any value; the others can only
propose a special no-op value. A basic idea of Mencius is
to partition the sequence of instances among the servers such
that each server is the coordinator in an infinite number of
instances. For instance, servers can take the role of coordi-
nating instances in round-robin fashion. As servers take turns
proposing values, Mencius itself is a moving sequencer atomic
broadcast protocol. As such, the difficult part of Mencius is (i)
preventing servers that do not have requests to propose from
blocking the protocol and (ii) dealing with instances where the
coordinator is a faulty server. While the latter is handled inside
simple consensus, the former is handled by servers allowing
to skip their turns by proposing a special no-op request. The
key to Mencius’ performance is that simple consensus allows
servers to skip their turns without having to execute the full
agreement protocol, thereby requiring to wait for messages
from a majority of servers. In fact, Mencius even allows servers
to skip implicitly by participating in higher numbered instances
started by “faster” servers.

As Mao et al. [16] pointed out, such a mechanism does
not work in the Byzantine tolerant systems, because not all
decisions are communicated through a quorum3. Therefore,
we designed BFT-Mencius using an abstraction that we call
Abortable Timely Announced Broadcast (ATAB). ATAB is a
new broadcast primitive, that is similar to Timely Announced
Broadcast [18] and Terminating Reliable Broadcast (TRB).
In contrast to these two, it is specified such that it can be
implemented in the partially synchronous system model. Like
these two primitives (owing to the fact that it is a broadcast
abstraction) each instance of ATAB has a dedicated sender
server. BFT-Mencius let servers skip their turns by proposing
no-op requests, and relies on ATAB to terminate instances with
faulty dedicated sender within bounded time. Furthermore, its
announcement property allows to tie the start times of different
instances together thereby enabling correct servers to compute
during the synchronous period a threshold for ”acceptable
speed” with which servers should start and terminate its ATAB
instances during synchronous period. This knowledge is used
in the blacklisting mechanism that ensures that faulty servers
behave according to this bound; otherwise they get blacklisted
and their subsequent ATAB instances ignored.

3Other option would be relying on trusted components as proposed in [17]

As we mentioned before, although BFT-Mencius provides
strong performance guarantees, this does not penalize perfor-
mance in the failure-free case, where its latency and throughput
are comparable to state-of-the-art algorithms such as PBFT
and Spinning [15]. We implemented the prototype of BFT-
Mencius and evaluated its performance in cluster settings. We
show that it provides bounded delay and good throughput,
both in fault-free configurations and under performance attacks
by Byzantine servers. For example, BFT-Mencius achieves a
throughput of 45K requests per second with latency always
below 5ms even under performance attacks.

Contribution: We propose a new BFT state machine repli-
cation protocol, BFT-Mencius, that guarantees a bounded-
delay in the order of PBFT’s latency in the failure-free case.
Thus it tolerates performance attacks. Key to achieving this
is by concurrently running multiple interlocked instances of
new broadcast-abstraction called ATAB, which does not use
signatures. This makes BFT-Mencius a modular protocol,
which, we think, makes it simpler to understand, implement
and test than other BFT SMR protocols, which are in general
monolithic and often rather complex.

The remainder of the paper is as follows: We discuss related
work in Section II. Section III defines a system model consid-
ered and gives the problem definitions. ATAB is introduced in
Section IV, and the total order broadcast algorithm based on
ATAB in Section V. The complete BFT-Mencius algorithm is
given in Section VI. We evaluate performance of BFT-Mencius
in Section VII and conclude in Section VIII.

II. RELATED WORK

Byzantine fault tolerant state-machine replication is a well
established replication technique, which has been extensively
discussed in the literature. Amir et al. [13] showed that
malicious processes can significantly reduce throughput and
increase the service latency in previous BFT protocols, by
sending valid messages but as slow as possible without trigger-
ing timeouts. In the following we focus on work that considers
such performance attacks. As we have explained before, Amir
et al. propose a protocol called Prime, in which a pre-ordering
phase is used to distribute client requests to all replicas. This is
followed by a PBFT based global ordering phase, where among
other information, the set of yet unproposed client requests is
used to detect that the malicious leader is doing a performance
attack.

Although Prime is the only protocol (before BFT-Mencius)
that considers bounded-delay as performance criteria, it is
not the only work that tolerates performance failures by
Byzantine processes. In a similar spirit, Clement et al. [14]
have advocated what they called robust BFT. That is, they
propose to shift the focus from algorithms that optimize only
best case performance, and to design algorithms that can
offer predictable performance under the broadest possible set
of circumstances—including when faults occur. To this end
they propose a set of mechanisms to increase robustness of
PBFT, in a system called Aardvark. Aardvark decreases the
impact of slow leader by constantly monitoring the throughput
sustained in the current view and by regularly performing
view-changes. The idea of always rotating the sequencer was
also used in BAR-B [19], but with different purpose. BAR-B

is a cooperative backup system designed for the Byzantine-
Altruistic-Rational model, where the leader is always changed
so that every node has the equal opportunity to submit pro-
posals to the system. Continuously changing the leader is
also used in Spinning [15], with the goal to reduce the effect
of performance attacks by Byzantine processes. In Spinning,
the leader is changed after it defined the order of a single
batch of requests, making leader change more efficient under
performance failures than with Aardvark since there is no need
for a complex view change protocol4. Spinning is also more
efficient than BAR-B because it does not use signatures and
ordering a request takes three communication steps compared
to six with BAR-B. In order to prevent a faulty process from
periodically impairing the protocol performance by requiring
merge phases, Spinning introduces a blacklisting mechanism.
Processes that are in the blacklist loose the privilege to pro-
pose, i.e., instances where they are primary are skipped. After
a successful merge phase in view v, the primary of the view
v−1 is added to the blacklist. As the merge phase is triggered
once the timeout expires in view v − 1, this blacklisting
mechanism is still vulnerable to performance failures. BFT-
Mencius also contains a blacklisting mechanism, but it uses a
different detection mechanism which makes it very effective
in detecting performance failures.

The common property of all three protocols, Aardvark,
BAR-B and Spinning, is that all servers are allowed to propose
requests only once it is their turn. As already explained in
Section I, these algorithms ensure bounded-delay, but with an
upper-bound in the order of f · T . As we show in Section VI,
BFT-Mencius does not have such limitation: its latency does
not depend on number of faulty processes, and is in the order
of the actual communication delay among correct processes.

Although most of the deterministic BFT protocols have a
process with a special role (leader, coordinator, sequencer),
there exists a deterministic consensus protocol that is fully
decentralized (leader-free) [20]. However, the algorithm ter-
minates in the order of f · T even in the failure-free case.

Contrary to deterministic BFT protocols, most randomized
BFT protocols (e.g., [21], [22], [23]) are decentralized (there
are no processes with special role) and work in the asyn-
chronous systems; therefore faulty processes can not prevent
correct processes from moving forward by delaying messages.
Although, the intuition suggests that randomized protocols
are less vulnerable to performance failures, we are not aware
of a study that validates such claim. As these protocols are
normally considered more costly in the failure-free case than
deterministic protocols, we believe that making a detailed
comparison study of these two groups of protocols is an
interesting research topic.

III. DEFINITIONS

A. Model

We consider a system composed of n server processes
Π = {1, . . . , n} and a finite number of clients processes
connected by point-to-point channels. We assume integrity of

4The equivalent of the view change protocol in Spinning is called merge
and it is executed when a sufficient number of correct processes suspect the
current leader as faulty.

channels, that is if a process p received a message m from
process q, then q sent message m to p before. We consider
a partially synchronous system model: in all executions of
the system, there is a bound ∆ and an instant GST (Global
Stabilization Time) such that all communication among correct
processes after GST is reliable and ∆-timely, i.e., if a correct
process p sends message m at time t ≥ GST to correct process
q, then q will receive m before t+∆. The bound ∆ and GST
are system parameters whose values are not required to be
known for the safety of our algorithms. However, the timing
bounds derived for our algorithm, and thus the guaranteed
latency require knowledge of ∆.

We do not make any assumption before GST . For example,
messages among correct processes can be delayed, dropped
or duplicated before GST . Spoofing/impersonation attacks are
assumed to be impossible also before GST .

We assume that process steps (which might include sending
and receiving messages) take zero time. Processes are equipped
with clocks able to measure local timeouts.

At most f processes may fail in an arbitrary way, i.e., we
consider Byzantine faults. We use the set F to denote the set
of processes that are faulty in an execution, and we assume
that the size of F is at most f . Processes in the set C = Π\F
are called correct.

B. Replicated State Machines

Following Schneider [2], we note that the following is
key for implementing a replicated state machine tolerant to
f (Byzantine) faults:

Replica Coordination. All [non-faulty] replicas receive and
process the same sequence of requests.

Moreover, as Schneider also notes this property can be
decomposed into two parts, Agreement and Order: Agreement
requires all (non-faulty) replicas to receive all requests, and
Order requires that the order of received requests is the same
at all replicas. In SMR protocols, Agreement and Order are
often ensured by servers proposing client requests using a
communication primitive known as atomic broadcast or total-
order broadcast [24]. We also follow this approach.

C. Total-Order Broadcast

Total Order Broadcast is defined in terms of two primi-
tives, to-broadcast and to-deliver. A process p that wishes to
broadcast a message m from the set of messages M invokes
to-broadcast(m). A message m is delivered by process q
by executing to-deliver(m). We assume that the sender of a
message can be determined from the message (denoted by
sender(m)) and that all messages are unique. Both can be
easily achieved by adding process identifiers and sequence-
numbers to messages. Total order broadcast fulfills the follow-
ing properties [25]:

• TO-Validity: If a correct process p invokes
to-broadcast(m), then p eventually executes
to-deliver(m).

• TO-Agreement: If a correct process p executes
to-deliver(m), then every correct process q eventually
executes to-deliver(m).

• TO-Integrity: For any message m, every correct pro-
cess p executes to-deliver(m) at most once. Moreover,
if sender(m) is correct, then it previously invoked
to-broadcast(m).

• TO-Order: If correct processes p and q execute
to-deliver(m) and to-deliver(m′), then p delivers m
before m′ if and only if q delivers m before m′.

IV. ABORTABLE TIMELY ANNOUNCED BROADCAST

In this section we introduce a new broadcasting primitive
called abortable timely announced broadcast (ATAB), that
we will use later to solve Total-Order broadcast. ATAB is
defined in terms of four primitives: atab-cast(m), atab-abort ,
atab-announce , atab-deliver(m). The first two primitives are
invoked by processes, while the latter two are triggered by
ATAB. Moreover, there is a dedicated sending process s and
no correct process p 6= s executes atab-cast . If s is correct
and it has a message m to broadcast it executes atab-cast(m).
Note that while we define ATAB as a one-shot problem with a
fixed sender, we will use multiple instances of ATAB, with dif-
ferent sending processes for different ATAB instances. When
a process delivers a message m it executes atab-deliver(m).
Like with timely announced broadcast (TAB) [18] a process is
notified of an ongoing broadcast by atab-announce before a
message is actually delivered. In contrast to TAB we require all
correct processes to eventually execute atab-deliver , much like
terminating reliable broadcast (TRB). Like TRB we also allow
delivery of a special value ⊥. Unlike TRB which is designed
for synchronous systems5 and benign faults, ATAB is designed
to tolerate Byzantine faults in partially synchronous systems.
Therefore, we allow ⊥ to be delivered only if some correct
process aborts the broadcast by invoking atab-abort . Typically,
this occurs when the protocol using ATAB suspects the sending
process s. It is known that in the presence of Byzantine faults
failure detection requires application knowledge [26]. The idea
of atab-abort is to make this knowledge explicit, and the idea
of atab-announce is to help with failure detection.

An algorithm solves ATAB with parameters d1, and d2,
such that d1 ≥ d2, if the following properties hold:

• ATAB-Agreement: If a correct process executes
atab-deliver(m), then every correct process eventu-
ally executes atab-deliver(m).

• ATAB-Integrity: A correct process executes
atab-deliver(m) at most once. Furthermore, if
s is a correct process and s executed atab-cast(b)
then m ∈ {⊥, b}.

• ATAB-Termination: If all correct processes execute
either atab-cast , or atab-announce , or atab-abort
then every correct process eventually executes
atab-deliver .

• ATAB-Validity: If a correct process s executes
atab-cast(m) at time T ≥ GST and no correct
process calls atab-abort before T+d1, then all correct
processes execute atab-deliver(m) before T + d1.

• ATAB-Announcement: If a correct process p exe-
cutes atab-deliver(m) at time T , then it executed

5TRB has been shown to require synchronous systems or an asynchronous
system with a perfect failure detector.

p1

p2

p3

p4

PRE-PREPARE PREPARE COMMIT

Fig. 1: Solving ATAB: message pattern of initial view. Process p1 is the correct sender; its sending event (atab-cast) is indicated
by the circle. Delivery of messages (atab-deliver) is indicated by triangles, while diamonds indicate atab-announce events.

atab-announce before T . Furthermore, if at time T ,
p executes atab-deliver(m) or atab-cast(m′), then
every correct process executes atab-announce before
max{T,GST}+ d2.

A. Solving ATAB

Algorithms that solve ATAB are similar to algorithms
that solve consensus. In fact, we can solve ATAB by us-
ing a coordinator based consensus algorithm that tolerates
Byzantine faults [27] and adding the atab-announce up-call
and the atab-abort down-call. The sender process execute
atab-cast(m) where it would execute propose(m) in the
consensus protocol, while atab-deliver(m) is triggered at the
point the consensus protocol invokes decide(m). As consensus
protocols normally proceeds in a sequence of views (sometime
also called rounds, ballots or phases), the protocol would
normally react on atab-abort call by changing the view.

We now present an algorithm that solves ATAB in the
partially synchronous system model with Byzantine faults. The
algorithm requires n > 3f processes to tolerate at most f
Byzantine faults. The code of the algorithm is given as Algo-
rithms 1 and 2. The upon rules of Algorithm 1 and Algorithm 2
are executed atomically. Since we allow messages-loss before
GST, we use the p-send primitive which denotes periodic
broadcast to all processes with ∆ as an interval between two
broadcast events. Processes can stop re-broadcasting once they
have decided.

The algorithm is inspired by the PBFT SMR algorithm by
Castro and Liskov [10], therefore we call it CL-ATAB. Con-
trary to PBFT which solves SMR (multiple instances problem),
CL-ATAB solves the single instance problem ATAB.6

The algorithm proceeds in views, such that in every view
there is a single process that is the coordinator (of the view).
The assignment scheme of views to coordinators is known to
all processes and is given as a function coord(v) returning the
coordinator for view v. The sender s is the coordinator of the
initial view (view = 1).

B. Normal case

The initial view is very similar to the ”normal case”
protocol of PBFT with addition of atab-announce upcalls as

6Thus, the relation between ATAB and PBFT can be considered similar to
that of the Synod and Parliament protocols of [28].

shown in Figure 1. All subsequent views of CL-ATAB are
very similar to the ”view change protocol” of PBFT. We now
explain the protocol of initial view (Algorithm 1), and the
procedure for changing view is discussed for Section IV-C.

Once a process p wants to broadcast a message m using
ATAB, it executes atab-cast(m) (line 10 of Algorithm 1).
Upon atab-cast(m), a process sends 〈INIT, 1,m〉 message to
all processes (line 11 of Algorithm 1). Once a process receives
〈INIT, 1,m〉 from the sender for the first time, and it is in
the view 1, it sends 〈ECHO, 1,m〉 message to all processes
(line 14).

Once a process p receives 〈ECHO, 1,m〉 message from
d(n + f + 1)/2e processes, and it is in the view 1, it up-
dates votep and tsp (lines 17-18) and sends 〈COMMIT, 1,m〉
message to all processes (line 19).

A process receiving 〈COMMIT, 1,m〉 message from
d(n + f + 1)/2e processes, while being in the view 1,
it executes atab-deliver(m) (line 23). A process can also
atab-deliver(m) by receiving f + 1 〈DEC,m〉 messages
(line 20).

The algorithm also needs to execute atab-announce such
that the ATAB-Announcement property of ATAB is fulfilled.
The correct process always executes atab-announce before
it executes atab-deliver (line 21). Furthermore, the algo-
rithm need to ensure that once a correct process executes
atab-deliver all correct processes will eventually announce.
This is ensured by the second part of the rule at line 24.
Informally speaking, the idea is the following. Once a correct
process executes atab-deliver , then at least single correct pro-
cess received 〈COMMIT, v,m〉 messages from d(n+f+1)/2e
processes. Since messages are sent using p − send, and we
assume that n > 3f , at least f + 1 correct processes sent
〈COMMIT, v,m〉 message to all. Therefore, all correct pro-
cesses will eventually also receive this messages and execute
atab-announce by the rule at line 24.

C. Changing view

In this section we explain the part of the protocol that
processes execute when changing view. The protocol is given
as Algorithm 2. There are several ways why a process can
enter a new view, making execution of the view-change sub-
protocol necessary:

Algorithm 1 CL-ATAB (part A)
1: Initialization:
2: votep := noop
3: tsp := 0
4: historyp := ∅
5: viewp := 1
6: statep ∈ {init = 1, echoed = 2, changingV iew = 3}, initially init
7: decisionp = null
8: timeout1 := 3∆
9: timeout2 := 6∆

10: upon atab-cast(m) do
11: p-send 〈INIT, 1,m〉 to all

12: upon receiving 〈INIT, viewp,m〉 from coord(1) while statep = init do
13: historyp ← {(m, viewp)}
14: p-send 〈ECHO, viewp,m〉 to all
15: statep ← echoed

16: upon receiving 〈ECHO, viewp,m〉 from d(n + f + 1)/2e processes while
statep ≤ echoed do

17: votep ← m
18: tsp ← viewp

19: p-send 〈COMMIT, viewp,m〉 to all

20: upon receiving (〈COMMIT, view,m〉 from d(n + f + 1)/2e processes or
〈DEC,m〉 from f + 1 processes) while decisionp 6= null do

21: Announce()
22: decisionp ← m
23: atab-deliver(m)

24: upon receiving 〈INIT, 1, v〉 from coord(1) or 〈COMMIT, v,m〉 from f + 1
processes do

25: Announce()

26: upon receiving any message 6= 〈DEC,−〉 from q while decisionp 6= null do
27: send 〈DEC, decisionp〉 to q

28: Function Announce :
29: atab-announce()
30: if viewp = 1 then
31: after timeout1 execute OnTimeout(1)

32: Function OnTimeout(v) :
33: if decisionp = ⊥ then
34: ProgressToV iew(v + 1)

• The process leaves the initial view in case atab-abort
is executed (line 35).

• The process enters a new view after the timeout ex-
pires, and it has not yet learned what message should
be delivered (lines 32-34). The timeout is triggered
after process executes Announce function (line 28),
or when process receives 〈VC,−,−,−,−〉 message
for the current view from d(n+ f + 1)/2e processes
(line 39).

• Finally, the process can move to the higher view if
it receives 〈VC,−,−,−,−〉 message from a correct
process that is in a higher view (line 37).

As mentioned above changing the view is handled in a
similar way as in PBFT. The processes exchange its state by
sending 〈VC, view, vote, ts, history〉 messages upon entering
view. When a process p receives 〈VC,−,−,−,−〉 message
from a process q for the first time in the current view, it
acknowledges its receipt by sending 〈VC-ACK,−, q〉 message
to all (lines 41-44). The coordinator of the new view will
consider only 〈VC,−,−,−,−〉 messages for which it is re-
ceived acknowledgments by at least 2f + 1 processes. This
ensures that at least f + 1 correct processes received the same
〈VC,−,−,−,−〉 message from a process q (that is potentially

Algorithm 2 CL-ATAB (part B) — Changing view

35: upon atab-abort() do
36: ProgressToV iew(2)

37: upon receiving 〈VC, view,−,−,−〉 with view > viewp from f + 1
processes do

38: ProgressToV iew(view)

39: upon receiving 〈VC, viewp,−,−,−〉 from d(n + f + 1)/2e processes do
40: after timeout2 execute OnTimeout(viewp)

41: upon receiving 〈VC, viewp, v, ts, history〉 from q do
42: if viewChangep[q] = ⊥ then
43: viewChange[q]← (viewp, v, ts, history)
44: p-send 〈VC-ACK, viewChange[q], q〉
45: CheckFLV

46: upon receiving 〈VC-ACK, viewp, v, ts, history, q〉 from r do
47: if viewChangeAckp[q][r] = ⊥ then
48: viewChangeAck[q][r]← (view, v, ts, history)
49: CheckFLV

50: upon receiving 〈VC-INIT, viewp, v, V C[]〉 from coord(viewp) do
51: if statep = changingV iew ∧ newPrePreparep = ⊥ then
52: newPrePreparep ← (viewp, v, V C[])
53: CheckFLV

54: Function ProgressToV iew(v) :
55: if viewp < v then
56: viewp ← v
57: viewChange[] := ⊥; V C[] := ⊥; viewChangeAck[][] := ⊥;

newPrePreparep := ⊥
58: statep ← changingV iew
59: p-send 〈VC, viewp, vp, tsp, historyp〉

60: Function CheckFLV :
61: for i = 1 to n do
62: if | {j : viewChangeAck[i][j] = viewChange[i]} | > 2f + 1 then
63: V C[i] = viewChange[i]
64: if p = coord(viewp) then
65: select← FLV (V C[])
66: if select 6= null then
67: historyp ← historyp ∪ {(select, viewp)}
68: statep ← prePrepared
69: p-send 〈VC-INIT, viewp, select, V C[]〉
70: p-send 〈ECHO, viewp, select〉
71: else if newPreparep 6= ⊥ and isV alid(newPreparep) then
72: historyp ← historyp ∪ {(newPreparep, viewp)}
73: p-send 〈ECHO, viewp, newPreparep〉
74: statep ← echoed

75: Function isV alid(m) :
76: for i = 1 to n do
77: if m.V C[i] 6= ⊥∧ 6= viewChangep[i] or

| {q : viewChangeAck[i][q] = m.V C[i]} | < f + 1 then
78: return false
79: if FLV (m.V C) = m.v then
80: return true
81: else
82: return false

83: Function FLV (V []) :
84: possibleV otesp ← { (vote, ts,−) ∈ V :

|{(vote′, ts′,−) ∈ V : vote = vote′ ∨ ts > ts′}| ≥ d(n + f + 1)/2e
85: correctV otesp ← {v : (v, ts,−) ∈ possibleV otesp ∧

|{(vote′, ts′, history′) ∈ V : (v, ts) ∈ history′}| > f }
86: if |correctV otesp| > 0 then
87: return min{v s.t. (v,−,−) ∈ correctV otesp}
88: else if | {(vote, ts,−) ∈ V : ts = 0} | ≥ d(n + f + 1)/2e then
89: return ⊥
90: else
91: return null

Byzantine process). The array of messages that satisfies this
condition is passed to the FLV function (line 83) that is
responsible for selecting a value that the new coordinator
will propose such that ATAB-Agreement and ATAB-Integrity
properties are not violated.

The FLV function ensures that in case some correct process
atab-deliver(m) in the previous views, it can select only m
or null. The value null is returned to indicate that not enough
information was provided to the FLV function. As processes
receive more information, i.e., more view-change messages,
they will retry to obtain a previous decision value by calling
FLV again. If there was a decision, FLV is guaranteed to
eventually return the value decided. In case no correct process
decided in the previous views, FLV returns ⊥.

Once the FLV function returns the value that is not null,
the coordinator of the new view sends 〈VC-INIT,−,−,−〉
message to all processes (line 69). The other processes verify
if 〈VC-INIT,−,−,−〉 message sent by the new coordinator
is valid using isV alid function (line 75). This mechanism is
needed because the new coordinator can be faulty process.
In case isV alid function returns true, the process sends
〈ECHO,−,−〉 message (line 70) and the protocol continues
as in view 1.

D. Proof of correctness

Lemma 1. Let vm be the highest view entered by some correct
process up to time t. If n > 3f , then at least f + 1 correct
processes are either in the view v or in the view v− 1 at time
t.

Proof: Let denote with p a first correct process that started
view vm. There are two cases to consider: (i) vm = 2 or (ii)
vm > 2. In case (i), the lemma trivially follows since all correct
processes are in at least view 1. In case (ii), since vm is the
highest view started by some correct process, the process p
entered view vm upon timeout expiration. Since vm > 2, the
timeout is set at line 40. By line 39, p received 〈VC, vm −
1,−,−,−〉 from d(n + f + 1)/2e processes. Since n > 3f ,
d(n+f+1)/2e > f . Therefore at least f+1 correct processes
sent 〈VC, vm−1,−,−,−〉 message, i.e., at least f + 1 correct
processes are at least in the view vm − 1 at time t.

Lemma 2. If n > 3f , and f + 1 correct processes start view
v ≥ 2 at time t > GST such that no correct process is in
the higher view and owner(v) is a correct process, then all
correct processes will decide in view v the latest at time t+6∆.

Proof: Let denote with Cf the set of f + 1 correct
processes that start view v, and let assume that p is the
last among correct processes from Cf that starts view v.
Furthermore, let assume that it starts view v at time t > GST .
Then the latest at time t + ∆ all correct processes receive
〈VC, v,−,−,−〉 message from processes Cf . Because of rule
at line 37, all correct processes then start view v at time t+∆,
and send 〈VC, v,−,−,−〉 message. Note that process start
timeout for view v once it receives 〈VC, v,−,−,−〉 messages
from d(n+f+1)/2e processes (line 39). Therefore, the earliest
time when timeout for view v is started at some correct process
is t.

At time t + 2∆, all correct processes are in view v and
receive 〈VC, v,−,−,−〉 message from all correct processes.
Upon receipt of 〈VC, v,−,−,−〉 message, 〈VC-ACK,−,−〉
message is sent (line 44). Therefore, at time t + 2∆ all
correct processes acknowledge receipt of 〈VC, v,−,−,−〉
messages from correct processes by sending the corresponding

〈VC-ACK,−,−〉 message. This mean that owner(v) send
〈VC-INIT, v,m,−〉 message before t + 3∆ (line 69) and all
correct processes receive it and have the condition at line 71 of
Algorithm 2 evaluates to true at latest at t+4∆ (at processes
that are not owner(v)). Then they send 〈ECHO, v,m〉 message
(see line 73 of Algorithm 2) that is received before t + 5∆.
Since n > 3f , n − f ≥ d(n + f + 1)/2e, so once a cor-
rect process receives 〈ECHO, v,m〉 message from all correct
processes, it sends 〈COMMIT, v,m〉 message (line 19). All
correct processes then decide before t + 6∆. Since the value
of timeout is 6∆, no correct process will leave view v before
t+ 6∆ and therefore all correct processes will decide in view
v.

Lemma 3. If up to time T , all correct processes executed ei-
ther atab-announce or atab-abort , then all correct processes
are in view v ≥ 2 the latest at time T + 3∆.

Proof: The correct process that executed atab-abort move
in view 2 the latest at time T (line 36). After correct process
executes atab-announce , the timer is started (line 31). Once
timeout expires, the process move in view 2 (if it is not already
in view higher than 1). Therefore, all correct processes are in
view 2 the latest at time T + 3∆.

Lemma 4. If at least f + 1 correct processes are in view
v ≥ 2 at time t > GST , then all correct processes will start
the same view v, such that no correct process is in the higher
view, the latest at time t+ 16∆.

Proof: Let denote with p the correct process that is in the
highest view vm at time t. We have two cases to consider: (i)
there are at most f − 1 other correct processes p in view v at
time t or (ii) there are more than f other correct processes in
view v at time t.

In case (i), at time t + ∆ (due to retransmission that
takes place every ∆ time) all correct processes resend their
〈VC,−,−,−,−〉 messages, so all correct processes receive
those messages before t+ 2∆. Because of rule at line 37, all
correct processes enter at least view v − 1 at time t + 2∆
and send their 〈VC,−,−,−,−〉 messages for view v − 1 at
that point. They start timer for view v − 1 at time t + 3∆
(line 39). Therefore, they will enter view v the latest at time
t+ 9∆ since timeout value is 6∆. Note however, that at time
t + ε a correct process from view v − 1 can move to view
v. Therefore, it can happen that some correct process receives
〈VC, v,−,−,−〉 message from d(n + f + 1)/2e processes at
time t+ε and start timer for view v. Therefore, at time t+6∆
he will leave view v and start view v+ 1. Therefore, we need
to calculate the point in time when other correct processes
will start view v + 1. Since all correct processes start view v
the latest at time t + 9∆, they will receive 〈VC, v,−,−,−〉
message from d(n+f + 1)/2e processes before time t+ 10∆.
Therefore, they will start timer for view v the latest at t+10∆,
and therefore start view v + 1 the latest at time t+ 16∆.

In case (ii), at time t + ∆ (due to retransmission that
takes place every ∆ time) f + 1 correct processes resend their
〈VC, v,−,−,−〉 messages, so all correct processes will receive
them before time t + 2∆ and enter view v. They start timer
for view v the latest at time t+ 3∆. Since at any time after t
there can be correct process that leaves view v and start view
v+ 1 we need to calculate what is the latest point when other

correct processes will enter view v+ 1. Since they start timer
for view v the latest at time t+ 3∆, they will start view v+ 1
the latest at time t+ 9∆.

Therefore, all correct processes will start the same view v,
such that no correct process is in the higher view, the latest at
time t+ 16∆.

Lemma 5. If at least f+1 correct processes are in view v ≥ 2
at time t > GST , then all correct processes decide the latest
at time t+ 16∆ + f · 7∆ + 6∆.

Proof: By Lemma 4, all correct processes start the same
view v, such that no process is in the higher view, the latest
at time t + 16∆. If owner(v) is a correct process, then by
Lemma 2 all correct processes decide the latest at time t +
16∆ + 6∆. In case owner(v) is a faulty process, then all
correct processes will start timeout for view v the latest at
time t + 17∆. Therefore, they will start the view v + 1 the
latest at t + 17∆ + 6∆. Since we apply rotating coordinator
strategy for owner(v) function, we will have correct process
being owner of the view v + f . The correct processes start
view v + f the latest at time t+ 16∆ + f · 7∆. According to
Lemma 2, all correct processes decide in the view v + f the
latest at time t+ 16∆ + f · 7∆ + 6∆.

Lemma 6. For all f ≥ 0, any two sets of size d(n+f+1)/2e
have at least one correct process in common.

Proof: We have 2d(n+f+1)/2e ≥ n+f+1. This means
that the intersection of two sets of size d(n+f+1)/2e contains
at least f + 1 processes, i.e., at least one correct process. The
result follows directly from this.

Lemma 7. If m 6= null is the only value that can returned by
FLV function at correct processes in view v, then a correct
process p can set votep only to m in view v.

Proof: If m is the only not-null value that can be that
can returned by FLV function at correct processes in view v,
then if a correct process sends 〈ECHO, v, value〉, value = m.
Because there are at most f Byzantine processes, and f <
d(n + t + 1)/2e, for all correct processes holds that if exists
some value that satisfies the condition at line 16, then it must
be m. So if a correct process p set votep in view v, it set it
to m.

Lemma 8. If some correct process q atab-deliver(m) in view
v0, then in all views v > v0, FLV function at all correct
processes can return either m or null.

Proof: We prove the result by induction on v.

Base step v = v0 + 1 : Assume by contradiction that p
is some correct process where FLV function returns m′ 6=
m ∧ m′ 6= null in view v0 + 1. This implies that either (i)
line 87 or (ii) line 89 was executed by p in phase v0 + 1.

For (ii), the condition of line 88 has to be true. If
the condition of line 88 is true, this implies that either (i)
|correctV otesp| > 1 or (ii) there are at least d(n+ f + 1)/2e
messages with ts = 0 in the array V . Since q has decided in
view v0, by LemmaX at least one correct process received at
least d(n+ f + 1)/2e messages 〈COMMIT, v0,m〉 at line 20.
All correct processes c who sent a message 〈COMMIT, v0,m〉

have set votec = v and tsc = v0 in view v0. Let us denote this
set of correct processes with Qc. By Lemma 6 the intersection
of two sets of size d(n+f+1)/2e contains at least one correct
process. Therefore, in the d(n+ f + 1)/2e messages received
there is at least one message sent by process from Qc, i.e., the
second part of the condition at line 88 cannot be true. So the
case (i) was executed by p.

For (i), the condition at line 86 have to be true, i.e.,
the |correctV otesp| > 0, there exists a (m′, ts′, history′)
such that m′ is in correctV otesp and because of line 85
(m′, ts′, history′) in possibleV otesp. We now show that if
(m′, ts′, history′) ∈ possibleV otesp, then m′ does not satisfy
the condition at line 85 to be added to the correctV otesp. This
establishes the contradiction.

Since the parameter passed to the FLV function consists
of 〈VC,−,−,−〉 messages, by Lemma 6, the array V contains
at least one message 〈VC, v0 + 1,m, v0,−〉 sent by a process
in Qc. So the (m′, ts′, history′) can only be added to the set
possibleV otesp if ts′ > v0.

In order to have m′ in the set correctV otesp it is necessary
to have at least f + 1 messages 〈VC, v0 + 1,−,−, history〉 in
V such that ∃(m′, ts′) ∈ history, i.e., that there is a correct
process c1 that sends such a message. A contradiction with the
assumption that c1 is a correct process.

Induction step from φ to φ+1: Lemma 7 and the arguments
similar to the base step can be used to prove the induction step.

Lemma 9. If n > 3f , Algorithm 1 satisfies ATAB-Agreement.

Proof: Let view v0 be the first view in which some
correct process p executes atab-deliver(m). By Lemma 14,
there exists a correct process c that received 〈COMMIT, v,m〉
message from d(n+f+1)/2e processes in some view v ≤ v0.
Since n > 3f , d(n + f + 1)/2e > f , so at least one
correct process c1 sent 〈COMMIT, v,m〉 message in the view
v. Therefore c1 received at least d(n + f + 1)/2e messages
〈ECHO, v,m〉 (*). We prove now that if some correct process
q executes atab-deliver(m′) in some view v ≥ v0, then
m = m′. In case v = v0, by Lemma 14, there exists a correct
process c′ that that received 〈COMMIT, v,m′〉 message from
d(n+f+1)/2e processes. Since n > 3f , d(n+f+1)/2e > f ,
so at least one correct process sent 〈COMMIT, v,m′〉 message
in the view v. Therefore it received least d(n + f + 1)/2e
messages 〈ECHO, v,m′〉. By Lemma 6, any two sets of
messages of size d(n+f+1)/2e, contains at least one correct
process in intersection. Therefore, there exists a correct process
c1 that sends 〈ECHO, v,m〉 and 〈ECHO, v,m′〉 message. A
contradiction with the assumption that c1 is a correct process
and the rule at line 12 and lines 73-74.

In case v > v0, by Lemma 8 and Lemma 7, all correct
processes can only set vote to m in views bigger than v0. Since
n > 3f , f < d(n+f+1)/2e, so the first part of the condition
at line 20 can be true only for m. This is in contradiction with
Lemma 14, so correct process q cannot atab-deliver message
different than m.

Lemma 10. If s is a correct process and executes
atab-cast(m), then FLV function at all correct processes can
return only b such that b ∈ {m,⊥, null}.

Proof: Assume by contradiction that view v is the first
view where FLV function at a correct process q returns m′
such that m′ 6∈ {m,⊥, null}. This implies that line 87 is
executed by q. By assumption we have that for all messages
〈VC, v,−,−, history〉 sent by correct processes, history =
{(v, t) : v = m ∨ v = ⊥} or history = ∅.

In order to have the condition at line 86 to be true, i.e., the
|correctV otesq| > 0, there exists m′ in correctV otesq .

In order to have m′ in the set correctV otesp it is necessary
to have at least f + 1 messages 〈VC, v,−,−, history〉 in V
such that ∃(m′, ts′) ∈ history, i.e., that there is a correct
process c1 that sends such a message, i.e., FLV returns m′ at
c1 in the view v′ < v. A contradiction.

Lemma 11. If n > 3f , Algorithm 1 satisfies ATAB-Integrity.

Proof: A correct process p executes atab-deliver only
once because the rule in which atab-deliver is executed is
triggered only if decisionp = null (line 20). After process p
executes line atab-deliver for the first time, decisionp is set
to some value m 6= null.

Now assume that s is a correct process and executes
atab-cast(m) and there is a correct process q that executes
atab-deliver(m′) such that m′ 6∈ {m,⊥}. By Lemma 14, there
is a correct process c that received 〈COMMIT, v′,m′〉 mes-
sages from d(n+f+1)/2e in some view v′ when viewc = v′.
Since n > 3f , d(n + f + 1)/2e > f , there is at least one
correct process c1 that sends 〈COMMIT, v′,m′〉 message in
view v′. Therefore, c1 received d(n+f +1)/2e > f messages
〈ECHO, v′,m′〉. Since n > 3f , d(n+f+1)/2e > f , i.e., there
is at least single correct process c2 that sent 〈ECHO, v′,m′〉
in the view v′. There are two cases to consider: (i) v′ = 1 and
(ii) v′ > 1. In case (i), the process c2 received 〈INIT, v′,m′〉
message from s. A contradiction with the assumption that s is
a correct process that executed atab-cast(m). In case (ii), the
process c2 received 〈VC-INIT, v′,m′,−〉 from some process
that is owner(v′).

Since process c2 sent 〈ECHO, v′,m′〉 after receiving
〈VC-INIT, v′,m′,−〉, this implies that the function isV alid
at process c2 returns true for message 〈VC-INIT, v′,m′,−〉
(line 73). By line 79, the function FLV returns m′ at process
c2 in view v′. A contradiction with Lemma 10.

Lemma 12. If n > 3f , Algorithm 1 satisfies ATAB-Validity
with d1 = 3∆.

Proof: If s executes atab-cast(m) at time T , it sends
〈INIT, 1,m〉 message to all (line 11), and all correct processes
receive it before time T + ∆. Since no correct process calls
atab-abort before T + 3∆, state variable at all correct
processes is init and view = 1, so the condition at line 12
evaluates to true, and all correct processes send 〈ECHO, 1,m〉
to all (line 14 and set state to echoed (line 15). Before time
T + 2∆, all correct processes receive 〈ECHO, 1,m〉 message
from all correct processes. Since n > 3f and no correct
process atab-abort before T+3∆, all correct processes receive
〈COMMIT, 1,m〉 message from d(n+f+1)/2e processes, so
the condition at line 16 evaluates to true, and every correct
process sends 〈COMMIT, 1,m〉 message to all (line 19) the
latest at time T + 2∆. If a correct process has not decided up
to time T+3∆, it will decide upon receiving 〈COMMIT, 1,m〉

message from all correct processes since the condition at
line 20 evaluates to true. Therefore, if no correct process
atab-abort before time T + 3∆, all correct processes will
atab-deliver(m) the latest at time T + 3∆.

Lemma 13. Algorithm 1 satisfies ATAB-Termination.

Proof: If all correct processes execute atab-announce or
atab-abort up to time T , by Lemma 3 all correct processes
enter view 2 the latest at time T+3∆. By Lemma 5 all correct
processes will decide the latest at time max{T +3∆, GST}+
16∆ + f · 7∆ + 6∆.

Lemma 14. If a correct process p executes atab-deliver(m)
at time T , then at least one correct process q received
〈COMMIT, v,m〉 message from d(n + f + 1)/2e processes
in view v at time t ≤ T .

Proof: Assume by contradiction that a correct process p
executes atab-deliver(m) at time T , and that no correct pro-
cess received 〈COMMIT, v,m〉 message from d(n+f+1)/2e
processes at time t ≤ T . Furthermore, assume that a process p
is a first correct process that executed atab-deliver(m). This
implies that a correct process that executes atab-deliver(m)
execute it after time T .

Since a correct process p executes atab-deliver(m) at
time T , this mean that the condition at line 20 evaluates
to true. There are two cases to consider: (i) p received
〈COMMIT, viewp,m〉 message from d(n + f + 1)/2e pro-
cesses, or (ii) p received 〈DEC,m〉 message from f + 1
processes.

In case (ii), p received 〈DEC,m〉 message from f + 1
processes. This mean that there is at least one correct process
c that sent 〈DEC,m〉 message before time T . A contradic-
tion with the assumption that p is the first correct process
that executed atab-deliver(m). Therefore by (i), p received
〈COMMIT, viewp,m〉 message from d(n + f + 1)/2e pro-
cesses. A contradiction.

Lemma 15. If n > 3f , Algorithm 1 satisfies
ATAB-Announcement with d2 = 2∆.

Proof: The first part of ATAB-Announcement property is
trivially ensured by lines 21 and 23. We now prove the second
part, i.e., (i) if a correct process p executes atab-deliver(m)
at time T or (ii) a correct process s executes atab-cast(m′)
at time T , then every correct process executes atab-announce
before max{T,GST}+ d2, where d2 = 2∆.

In case (i), if a correct process p executes atab-deliver(m)
at time T , then by Lemma 14, there is at least one correct
process c that received 〈COMMIT, viewc,m〉 message from
d(n+f+1)/2e processes at time t ≤ T . Since n > 3f , d(n+
f+1)/2e−f > f , therefore at least f+1 correct processes sent
〈COMMIT, viewc,m〉 message. Since messages are sent using
p−send primitive (and therefore resent every ∆ time units), all
correct processes will receive 〈COMMIT, viewc,m〉 message
from at least f + 1 process the latest at time max{T,GST}+
2∆, and atab-announce because of the rule at line 24).

In case (ii), a correct process s executes atab-cast(m′) at
time T . By line 11, s sends 〈INIT, 1,m′〉 message to all at
time T . Since the message is sent using p − send primitive,

it is retransmitted every ∆ time units, so all correct processes
receive 〈INIT, 1,m′〉 the latest at time max{T,GST} + 2∆.
By line 24 all correct processes execute atab-announce the
latest at time max{T,GST}+ 2∆.

Theorem 1. If n > 3f , then the CL-ATAB algorithm solves
ATAB in the partially synchronous system model with known
∆, d1 = 3∆ and d2 = 2∆.

Proof: Follows from Lemma 9, Lemma 11, Lemma 13,
Lemma 17 and Lemma 15.

V. SOLVING TOTAL-ORDER BROADCAST WITH ATAB

In this section, we present the central part of our BFT SMR
protocol, which is a protocol that solves total-order broadcast,
see Algorithm 3. It is inspired by Mencius [16], an efficient
multi-leader SMR. The algorithm relies on the ATAB primitive
for sending messages and refers to the values d1 and d2.

A. Basic idea

Algorithm 3 runs an infinite sequence of ATAB instances.
We add a number i to ATAB calls to refer to ATAB instance
i. These instances are evenly partitioned among the servers.
Function owner(i), known to all processes, returns the sender
for instance i.

For every process p, indexp is the next ATAB instance
in which p is the sender. In order to to-broadcast a message
m a process p executes atab-cast(indexp,m) in the ATAB
instance indexp (line 9) and then updates indexp (line 10).

Once a process p learns that ATAB instance i terminated
(execution of atab-deliver(i,m), line 11), it executes the
following steps:

• If p was the sender in instance i, i.e., owner(i) = p,
p has sent m and p learns that m′ 6= m is delivered
(necessarily m′ = ⊥), then p to-broadcasts m again
(line 17).

• Process p executes the CheckCommit procedure
(lines 24–30), which uses the expectedp variable to
keep track of the lowest yet undecided ATAB instance.
Inside CheckCommit, p increases expectedp as far
as possible, executing to-deliver for all messages that
are not noop.

Note that according to the CheckCommit procedure, p
executes to-deliver(m) in the order of ATAB instances. There-
fore the message delivered in instance i cannot be adelivered
before all instances j < i have terminated. Since processes
might to-broadcast at different rates, we need a mechanism to
allow processes to fill the gaps so that the message delivered
by ATAB instance i is not delayed because another process
has nothing to broadcast in instance j < i. This is discussed
in the two next paragraphs.

B. Process p skipping its own instances

In order to fill these gaps, a correct process will skip its
instance j by broadcasting a special message noop. A process
could execute atab-cast(j,noop) when it sees that there is a
decision in some instance i > j. However, skipping instance

only once a higher number instance i terminates is unnecessar-
ily late: as processes know that instance i is in progress already
before decision. More precisely, in case a correct process p
sees that some other process, say q, broadcasted in instance
i > indexp (by executing atab-announce in instance i, line
20), then p skips all instances j with indexp ≤ j < i where
p is the sender (lines 21-23). Here, the other correct processes
handle instance j like any other instance owned by p. This is
not the case in the next paragraph.

C. Process p skipping instances of other processes

The skipping mechanism of the previous paragraph is
able to fill only those gaps caused by correct processes not
broadcasting. Indeed, we cannot require a (Byzantine) faulty
process to skip its instances. Therefore, a different mechanism
is needed for the instances owned by a faulty process. Put
differently, correct processes need a means to ensure that
instances owned by faulty processes will terminate. ATAB
provides the atab-abort primitive to this end. However, ex-
ecuting atab-abort too early might lead to deliver ⊥ in ATAB
instances owned by correct processes. This can be avoided
during a synchronous period, i.e., after GST, with a timeout
of d2 + d1, see lines 6 and 19. Consider some process p
that terminates instance i at time T . By ATAB-Announcement,
all correct processes execute atab-announce for instance i at
latest at T + d2. By line 22, these processes atab-cast in all
instances j < i for which they are sender (and which they
did not atab-cast before). By ATAB-Validity, these instances
will all terminate within d1, that is before T ′ = T + d2 + d1.
Since process p does not execute atab-abortp(j) for the yet
undecided instances j before T ′, instances owned by correct
processes are indeed not aborted too early (see lines 19 and
31–33).

D. Correctness proof

Lemma 16. Assume a correct process s calls atab-cast(i,m)
(in line 9) at time σ. If σ > GST +d2 then no correct process
aborts before deciding.

Proof: Assume by contradiction that some correct pro-
cesses aborted before deciding and let q be the first to abort at
time tq (line 33) before it decided. Since the process q aborted
in instance i, this means that q decided in some instance j > i
at time tq − timeout. By ATAB-Announcement, all correct
processes (including s) announced in instance j > i the latest
at time max{tq − timeout,GST} + d2. When s executes
atab-announce(j) (lines 20ff.) it updates its index until it
reaches some k > j (lines 21 and 23). If tq − timeout <
GST , then s announced at GST + d2, which means that
at time σ > GST + d2 it indexs is at least k, such that
i ≥ k > j > i. A contradiction. Otherwise, we have two cases,
either s announced before executing atab-cast(i,m), then
i ≥ k > j > i as above and we have reached a contradiction
again; or s announced after executing atab-cast(i,m), then as
s announced before tq− timeout+d2 = tq−d1, it also called
atab-cast(i,m) before this point in time, i.e., σ < tq − d1

Since q is the first to abort no process aborts before tq , that is
no process aborts before σ + d1. Therefore by ATAB-Validity
all correct processes decide before tq . Also a contradiction.

Algorithm 3 Total Order Broadcast with ATAB
1: Initialization:
2: proposedp[] := ⊥ /* initially, for all i, proposedp[i] = ⊥ */
3: decidedp[] := ⊥ /* initially, for all i, decidedp[i] = ⊥ */
4: expectedp := 0 /* lowest undecided ATAB instance */
5: indexp := min {i : owner(i) = p} /* next instance owned by p */
6: timeoutp := d1 + d2

7: upon to-broadcast(m) do
8: proposedp[indexp] = m
9: atab-cast(indexp,m)
10: indexp ← min {i : owner(i) = p ∧ i > indexp}

11: upon atab-deliver(i,m) do
12: if m 6= ⊥ ∧ owner(i) = sender(m) then
13: decidedp[i]← m
14: else
15: decidedp[i]← noop
16: if p = owner(i) ∧ proposedp[i] 6∈ {m,noop} then
17: to-broadcast(proposedp[i])
18: CheckCommit
19: after timeout execute OnTimeout(i)

20: upon atab-announce(i) do
21: while indexp ≤ i do
22: atab-cast(indexp,noop)
23: indexp ← min {i : owner(i, 1) = p ∧ i > indexp}

24: Function CheckCommit :
25: while decidedp[expectedp] 6= ⊥ do
26: m← decidedp[expectedp]
27: o← owner(expectedp)
28: if m 6∈ {noop} ∪ {decidedp[i] : i < expectedp} then
29: adeliver(m)
30: expectedp ← expectedp + 1

31: Function OnTimeout(i) :
32: for each k ∈ {j ∈ [expectedp, i] : decidedp[j] = ⊥ ∧ owner(j) 6= p}

do
33: atab-abortp(k)

Lemma 17. If a correct process s calls to-broadcast(m), then
all correct processes eventually to-deliver m from s.

Proof: When s calls to-broadcast(m), it executes
atab-cast(i,m) for some i. If it does so after GST + d2,
then from Lemma 16 it follows that instance i will not be
aborted, and therefore ATAB-Validity, ensures that all processes
will execute atab-deliver(i,m) and thus set decided[i]← m.
Eventually, all instances j < i will terminate as well, so
processes will execute CheckCommit with decided[j] 6= ⊥
for all j ≤ i, and will thus to-deliver m.

Otherwise, if s calls atab-cast(i,m) before GST + d2,
instance i might get aborted and ⊥ may be delivered. If this
is the case, processes will set decided[i]← noop. Upon doing
so, s will by line 17,re-call to-broadcast(m) implying some
i′ > i for which s executes atab-cast(i′,m). What, therefore,
remains to be shown is that there is some k such that s executes
atab-cast(k,m) and atab-deliver(k,m). (ATAB-Agreement
implies that all others will also execute atab-deliver(k,m).)

We show this by contradiction and assume that there is no
k such that s executes atab-deliver(k,m). Then line 17 entails
that there is an infinite sequence of instances that all decide ⊥
although m was proposed. Clearly, one of them must start at
some time σ > GST + d2, which by Lemma 16 implies that
s will atab-deliver within d1. A contradiction.

Proposition 1. Given a solution to ATAB, Algorithm 3 solves
Total-Order Broadcast.

Proof: TO-Validity follows from Lemma17.

From the ATAB-Agreement and ATAB-Integrity properties
it follows that if p executes 13 for some i and v ∈ M then
so will any correct q, and both will do so exactly once. Since
these non-⊥ values of decidedp determine for which messages
m and processes s that p executes to-deliverp(m) for, TO-
Agreementfollows.

We now turn to the first part of TO-Integrity: The while-
loop of CheckCommit ensures that p executes to-deliver(m)
for every value of expected at most once. The condition of
line 28 then entails that m was not adelivered for a previous
value of expected. Thus every to-deliverp(m) is executed
exactly once. Since we have already shown TO-Agreement,
it suffices to show for the second part of TO-Integrity, that
the correct process s = sender(m) will only to-delivers(m)
if it previously executed to-broadcasts(m). Since s executes
to-deliver(m) with m = decideds[expected] it follows that
m 6= noop. Further, since decideds[i] with i = expected can
have been set to a non-noop message only in line 13 it follows
that s executed atab-deliver(i,m) such that owner(i) = s
before. Since s is correct and m 6= noop, it follows from
ATAB-Integrityof that s executed atab-cast(i,m), which it
must have done in line 9, that is in a call of to-broadcast(m).

Total Order follows from the fact that if p executes
to-deliverp(m, s) before to-deliverp(m′, s′) then there are j
and j′ such that j < j′, decidedp[j] = m, decided[j′] = m′,
s = owner(j) and s′ = owner(j′). Now when q executes
to-deliverq(m′, s′) it does so when expected = j′, since j < j′

it follows that it executed line 29 with expected = j before.
From the argument on TO-Agreement above, it is clear that at
this point decidedp[j] = m, thus q executed to-deliverq(m, s)
before. Now TO-Order follows from TO-Integrity.

VI. BFT-MENCIUS

In this section we describe the complete BFT-Mencius
protocol for SMR that is based on the Total Order Broadcast
Algorithm 3. In BFT-Mencius clients send requests to servers
(details below), which use total-order broadcast to order re-
quests. After a request is executed by some server, the server
sends the reply to the corresponding client. A client accepts a
response only once it received f + 1 identical responses from
f + 1 servers.

In Byzantine fault tolerant state machine replication only
requests proposed by clients should be executed. This require-
ment is trivially ensured by using cryptographic signatures
to sign client requests. Request authentication can also be
achieved using MACs [10], [29]. In this paper we assume
that request authentication is done using MACs as in [10] and
in other protocols that will be compared experimentally with
BFT-Mentius.7

In BFT-Mencius every server is able to propose requests,
thus different variants of load balancing of client requests can
be used. However, finding the optimal load balancing scheme
is outside the scope of this paper. For simplicity, we assume
here a static assignment of client ids to server. Servers propose
requests they receive from client assigned by this scheme. In

7BFT-Mencius can also be used with other variants of request authentica-
tion.

the presence of faulty servers some clients will be assigned to
faulty servers. In order to ensure that requests from such clients
will be ordered and executed, an additional mechanism is
necessary: clients send each request to all servers,8 and servers
keep track of requests not assigned to them. They propose any
requests that are not executed within some time. For instance,
if a server finds a request req that is not executed after the
server has terminated k of its own ATAB instances, the server
proposes req.9 In our experiments we have set k = 3. Thus
faulty servers cannot starve clients by ignoring their requests.

Moreover, since we use a (numbered) sequence of instances
we have to prevent a faulty server from exhausting the space
of sequence numbers by starting ATAB instance with a very
large instance number. To this end, every server can have at
most one outstanding non-decided instance. Put differently, a
server will not react on messages received for some instance
j owned by a process q if it has not terminated in all instance
k < j owned by q.

BFT-Mencius uses batching of client requests, which is
well known to be essential for good performance. In the rest
of this section we explain additional mechanisms that are
employed in BFT-Mencius in order to minimize the negative
impact a faulty process can have on the performance of the
protocol.

A. Dealing with slow servers

Algorithm 4 Blacklisting mechanism
1: Initialization:
2: blacklistp := ∅
3: ∀q ∈ Π : suspects[q]p := ∅
4: /* see also Algorithm 3 */

5: upon suspect(q) do
6: if q 6∈ blacklistp then
7: abcast(〈SUSPECT, q〉)

8: Function CheckCommit :
9: while decidedp[expectedp] 6= ⊥ or owner(expectedp) ∈ blacklistp

do
10: m← decidedp[expectedp]
11: o← owner(expectedp)
12: if m = 〈SUSPECT, q〉 then
13: UpdateBlackList(q, o)
14: else if m 6∈ {noop} ∪ {decided[i] : i < expectedp} then
15: adeliver(m, owner(expectedp))
16: expectedp ← expectedp + 1

17: Function UpdateBlackList(q, o) :
18: if q 6∈ blacklistp then
19: add o to suspectsp[q]
20: if |blacklistp[q]| ≥ f + 1 then
21: add q to blacklistp
22: suspectsp[q]← ∅

The mechanism just presented addresses the problem of
requests sent by clients assigned to faulty servers. Here we
address the problem of faulty servers slowing down the or-
dering of requests assigned to other servers. In the total order
broadcast algorithm (Algorithm 3) a faulty server can do a
performance attack by delaying its own instances. This is due
to the fact that the message of ATAB instance i is not delivered

8Since messages might be lost before GST , we actually assume clients
periodically retransmit.

9In fact it is sufficient if requests assigned to a certain server are tracked
only by f other servers (instead of all).

until all instances j < i have terminated. We address this
issue by introducing a blacklisting mechanism used as follows
(we discuss when to suspect servers in Section VI-B): ATAB
instance i waits for the termination of only those instances
j < i that are not owned by servers on the blacklist. That
is, instances whose owners are in the blacklist are skipped,
i.e., the effect is equivalent to the case where noop was
decided. Therefore, it is important that the blacklist is kept
consistently on all servers. Because the blacklist may be seen
as a state machine, we can use our SMR protocol to ensure
consistency (similar to how reconfiguration in benign systems
can be done [28]).

The blacklist is implemented as a circular buffer of size f ,
thus adding the (f + 1)-st server will rehabilitate the server
that is longest in the list. A server p adds a server q to its
(server of the) blacklist once f + 1 servers suspected q.

In order for server p to consistently inform other servers
that it suspects q to be faulty, p to-broadcasts the special
request 〈SUSPECT, q〉. This value will then be broadcasted
using p’s next ATAB instance as a normal request, and thus
stored in all correct servers decided list at the same position. In
order to avoid that p uses all its ATAB instances for SUSPECT
messages, one can either limit the rate of such messages or
piggy-back SUSPECT messages on the normal messages that
are to-broadcast.

We show pseudocode of the blacklisting mechanism in
Algorithm 4. It includes: (i) the suspect(q) function, used
by server p to locally trigger blacklisting mechanism once
it suspects some server q, (ii) a modified version of the
CheckCommit function of Algorithm 3, and (iii) function
UpdateBlackList(q, o) called by CheckCommit. The func-
tion UpdateBlackList(q, o) (line 17) maintains the blacklist
at server p: it is executed whenever p learns that server o
suspects server q. The function first checks if q is not already
in the blacklist. If this is true, o is added to suspects[q]. If at
this point there are f+1 different servers that suspect q, server
q is added to the blacklist and suspects[q] is cleared. Note
that, since UpdateBlacklist(q, o) is called by CheckCommit
when 〈SUSPECT, q〉 is decided, the correct servers always
have a consistent view of the blacklist. That is, for each value
of expected, the blacklist is the same at all servers.

Since ATAB instances of server p are ignored while p is on
the blacklist, messages to-broadcast by p cannot be delivered.
Thus once p is added to the blacklist, p’s clients are reassigned
to servers not in the blacklist. At this point all requests from
reassigned clients not executed will be proposed by the newly
assigned server.10

B. When to suspect a server

The blacklisting mechanism is very general, i.e., it can
be used to report any suspicious behaviour. As in this paper
we are interested in ensuring bounded latency, we use it
to report when a server is slow. For this we rely on the
properties of ATAB that hold during a synchronous period,
i.e., after GST. More precisely, once a correct server executes

10This mechanism is different from the delayed re-proposing of requests
mentioned at the beginning of Section VI: the reassignment mentioned here
causes instantaneous re-proposing when a server is added to the blacklist.

atab-cast(i,m) at time t in line 9 of Algorithm 3, by the
ATAB-Announcement property we know that all correct servers
execute atab-announce(i) the latest at time t+d2. Therefore,
all correct servers start their instances j, with j < i, the latest
at time t+d2. By ATAB-Validity all such instances terminate the
latest at time t+d2 +d1. Therefore, if at time t′ > t+d2 +d1,
some instance j < i has not terminated, the owner of instance
j is suspected and suspect(owner(j)) is executed. The owner
of an instance is also suspected if a server executes atab-abort
(line 33 of Algorithm 3). This solution is able to guarantee
bounded delay that does not depend on the number of faulty
servers.

However, d1 and d2 are worst case bounds. We would like
to replace the d1+d2 timeout by a smaller value, assuming that
after GST the duration of ATAB instances running concurrently
do not differ substantially between owning servers. Let dATAB

be the duration of ATAB instances measured by server p. This
leads us to estimate d1 as dATAB , and since d2 < d1, we
conservatively also estimate d2 as dATAB . This leads us to
use 2 ·Klat · dATAB as a timeout to suspect servers11, where
Klat is a system parameter that accounts for variability in
latencies on the network. As we will show in Section VII, in
the cluster settings, Klat = 1 is sufficient to reliably detect a
faulty server doing a performance attack. In less homogeneous
settings, it could be preferable to use a more complex way to
determine this timeout, for example by taking the median of
recent durations of ATAB instances owned by different servers,
by adding additional weight factors, or just by using a bigger
value for Klat.

In addition to suspecting servers based on their latency, it is
possible to use additional strategies for detecting faulty servers.
For example, one could measure the number of requests
executed in the last n instances owned by each server, and
suspect servers whose number is less than 50 percent of the
average number of requests executed by servers. Aardvark [14]
uses a similar idea to suspect the current leader. While this
and other techniques of suspecting the current leader based
on performance or fairness criteria easily carry over from
Aardvark and other protocols, we did not consider them for
BFT-Mencius, because our main goal is the ability to ensure
bounded delay. In any case, if the suspect mechanism used
leads to frequent changes of the blacklist, this can only lead
to requests being proposed by multiple servers thereby causing
performance degradation.

VII. EVALUATION

We have implemented a prototype of BFT-Mencius in Scala
using the Distal framework [30]. Distal is a new framework
that allows writing code in a domain specific language (DSL)
that is close to the protocol description. Therefore, it leads to
the implementations that really reflects the protocol specifica-
tion on paper. Finally, it leads to the efficient protocol imple-
mentation. As Distal currently does not provide authenticated
channels, we extended Distal’s messaging layer to support
message authentication based on SHA-1 HMACs. In order to
compare BFT-Mencius with the state-of-the-art protocols based
on the same code base, we have implemented the normal case

11Note that we use this estimate only for suspecting in the blacklisting
mechanism; Algorithm 3 uses worst case bounds for its timeout.

of PBFT and Spinning using Distal. We do not experimentally
compare BFT-Mencius with Prime because—as mentioned in
Section I—adding signatures to PBFT has already lead to a
significant drop in performance even without adding the pre-
agreement phase.

We make the following two points with the experimental
evaluation of BFT-Mencius. First, it shows that the modular
BFT-Mencius protocol has performance comparable to PBFT
and Spinning in the failure-free case. Second, it shows that
BFT-Mencius is able to sustain good performance (similar to
the failure-free case) even under performance attack.

A. Experimental setup and methodology

The experiments were run in the Suno cluster of the
Grid5000 testbed. This cluster consists of nodes with dual
2.26GHz Intel Xeon E5520 processors, 32GB of memory, and
1Gb/s Ethernet connections. Nodes were running Linux, kernel
version 2.6.32-5, and Oracles Java 64-Bit Server VM version
1.6.0 26.

The workload was generated by nodes located in the same
cluster as the servers. Clients send requests (20B of payload)
in a closed loop, waiting for the answer to the current request
before sending the next one. We consider a setup with n = 4
servers that can tolerate one faulty server (f = 1). Each
experiment was run for 3 minutes, with the first minute ignored
in the calculation of the results. The service is a simple
(stateless) echoing service that sends back the request as its
response.

We use as metrics (i) the throughput in requests per second
and (ii) the client response time. The client response time is the
time from the point the client sends a request until it receives
the corresponding reply from f + 1 servers. Note that client
response time includes delays incurred by queuing of requests
at servers. As mentioned in Section I, guarantees for client
latency assume a maximum client load.

B. Failure-free executions

In the failure-free executions, we are interested in the
maximum throughput and the corresponding response time
under different load (number of clients). We vary the number
of clients from 30 to 500, which were evenly distributed over
15 nodes. The the number of concurrent instances was set to
4 for PBFT, and to 1 for BFT-Mencius and Spinning. These
values led to the best results.

As we can see on Figure 2, BFT-Mencius has slightly lower
throughput and higher latency until 120 clients. This is due to
the batching policy used, as the number of clients is not enough
to fill the batch. We set the batch size to 1350B so that the
size of the frame matches the natural limits of the underlying
Ethernet network. The server timeout for proposing the batch
was set to 3ms. The same batching policy is used with PBFT,
while for Spinning we used the adaptive batching strategy used
also in the original Spinning implementation [15].12 With BFT-
Mencius 120 clients or less is not enough to fill the batch, i.e.,
the latency is dominated by the batch timeout (3ms). With
more than 120 clients, BFT-Mencius is performing comparably
to PBFT and Spinning.

12Using adaptive batching with BFT-Mencius and PBFT led to the similar
results.

100 200 300 400 500

2

4

6

8

10x 10
4

#clients

T
hr

ou
gh

pu
t (

re
q/

se
co

nd
)

bft−mencius
pbft
spinning

100 200 300 400 500
0

10

20

30

40

50

60

#clients

La
te

nc
y

(m
s)

bft−mencius
pbft
spinning

Fig. 2: Throughput and latency of BFT-Mencius, PBFT and
Spinning for different client load in the failure-free case.

0 20 40 60 80 100

2

4

6

8

10x 10
4

attack delay(ms)

T
hr

ou
gh

pu
t (

re
qs

/s
ec

on
d)

bft−mencius
pbft
spinning

(a) Throughput for different client load

0 20 40 60 80 100

20

40

60

80

100

120

140

attack delay(ms)

La
te

nc
y

(m
s)

bft−mencius
pbft
spinning

(b) Latency for different client load

Fig. 3: Throughput and latency of BFT-Mencius, PBFT and
Spinning under performance failures.

C. Executions with performance failures by faulty servers

In order to measure performance of BFT-Mencius under
performance failures, we run experiments where the faulty
server delays sending of the PRE-PREPARE message in
instances it owns. Similarly, for Spinning and PBFT, the
faulty server delays sending PRE-PREPARE whenever it is
coordinator. Otherwise, the server normally participates in all
algorithms. The number of clients for this experiment was set
to 200 for all algorithms. We have chosen number of clients
based on failure-free case where performance started to level
off for all algorithms. For BFT-Mencius, we set Klat (see
Section VI-B) to 1. Thus we use 2 ·dATAB as suspect timeout.

We have measured performance of the three protocols by
varying values for the attack delay. As we can observe on
Figure 3, the performance of PBFT and Spinning, compared
to the failure-free case, can be significantly degraded by a
faulty replica doing a performance attack. We can also observe
that always rotating the primary makes Spinning more robust
to performance attacks than PBFT: its average latency is
significantly better, albeit still dependent on the attack delay.

On the other hand, once the attack delay is above the
suspicion timeout, the blacklisting mechanism of BFT-Mencius
allows us to skip instances of blacklisted servers. Setting the
suspicion timeout as explained in Section VI-B, faulty servers
are blacklisted already with an attack-delay of 3ms. This
allows BFT-Mencius to achieve latency always below 5ms,
and throughput close to the peak throughput achieved in the
failure-free case.

VIII. CONCLUSION

We have proposed a new state machine replication proto-
col for partially synchronous systems with Byzantine faults.
The algorithm, called BFT-Mencius, is a modular, signature-
free SMR protocol that ensures bounded-delay, i.e., eventual
bounded latency during periods of synchrony, even in the
presence of Byzantine processes. BFT-Mencius is based on
a new communication primitive, Abortable Timely Announced
Broadcast (ATAB). In cluster settings, BFT-Mencius achieves
bounded latency and throughput comparable to state-of-the-art
algorithms such as PBFT and Spinning in fault-free configura-
tions. In other words, contrary to these protocols, BFT-Mencius
is able to maintain the same performance under performance
attacks.

ACKNOWLEDGEMENT

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, 1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., vol. 22, no. 4, Dec.
1990.

[3] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free
coordination for internet-scale systems,” in USENIXATC, 2010, p. 11.

[4] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in OSDI, 2006, pp. 335–350.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 205–220, Oct. 2007.

[6] L. A. Barroso and U. Hoelzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed.
Morgan and Claypool Publishers, 2009.

[7] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, “Byzantine fault
tolerance, from theory to reality,” in Computer Safety, Reliability, and
Security, 2003, vol. 2788, pp. 235–248.

[8] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234,
1980.

[9] M. K. Reiter, “Secure agreement protocols: reliable and atomic group
multicast in rampart,” in CCS, 1994, pp. 68–80.

[10] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACMTCS, 2002.

[11] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Trans. Comput. Syst.,
vol. 27, no. 4, pp. 7:1–7:39, Jan. 2010.

[12] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Comput. Surv.,
vol. 36, no. 4, pp. 372–421, Dec. 2004.

[13] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE Trans. Dependable Secur. Comput., vol. 8, no. 4,
pp. 564–577, Jul. 2011.

[14] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
byzantine fault tolerant systems tolerate byzantine faults,” in NSDI,
2009, pp. 153–168.

[15] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in SRDS,
2009.

[16] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building efficient
replicated state machines for wans,” in OSDI, 2008, pp. 369–384.

[17] ——, “Towards low latency state machine replication for uncivil wide-
area networks,” in HotDep, 2009.

[18] H. Attiya, F. Borran, M. Hutle, Z. Milosevic, and A. Schiper, “Struc-
tured derivation of semi-synchronous algorithms,” in DISC, 2011, pp.
374–388.

[19] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth,
“Bar fault tolerance for cooperative services,” in SOSP, 2005, pp. 45–
58.

[20] F. Borran and A. Schiper, “A leader-free byzantine consensus algo-
rithm,” in ICDCN, 2010, pp. 67–78.

[21] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in CRYPTO, 2001, pp. 524–541.

[22] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “Ritas: Services
for randomized intrusion tolerance,” IEEE Trans. Dependable Secur.
Comput., vol. 8, no. 1, pp. 122–136, Jan. 2011.

[23] Z. Milosevic, M. Hutle, and A. Schiper, “On the reduction of atomic
broadcast to consensus with byzantine faults,” in SRDS, 2011, pp. 235–
244.

[24] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related
problems,” in Distributed systems (2nd Ed.), S. Mullender, Ed., 1993,
pp. 97–145.

[25] ——, “A modular approach to fault-tolerant broadcasts and related
problems,” Ithaca, NY, USA, Tech. Rep., 1994.

[26] A. Doudou and A. Schiper, “Muteness detectors for consensus with
Byzantine processes (Brief Announcement),” in PODC, Jul. 1998.

[27] O. Rütti, Z. Milosevic, and A. Schiper, “Generic construction of
consensus algorithms for benign and byzantine faults,” in DSN, 2010,
pp. 343–352.

[28] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[29] A. S. Aiyer, L. Alvisi, R. A. Bazzi, and A. Clement, “Matrix signatures:
From macs to digital signatures in distributed systems,” in DISC, 2008,
pp. 16–31.

[30] M. Biely, P. Delgado, Z. Milosevic, and A. Schiper, “Distal: A frame-
work for implementing fault-tolerant distributed algorithms,” to appear
in DSN, 2013.

