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We propose a new system-level abstraction, the
lightweight immutable execution snapshot, which com-
bines the immutable characteristics of checkpoints with
the direct integration into the virtual memory subsystem
of standard mutable address spaces. The abstraction can
give arbitrary x86 programs and libraries system-level
support for backtracking (akin to logic programming)
and the ability to manipulate an entire address space as
an immutable data structure (akin to functional program-
ming). Our proposed implementation leverages modern
x86 hardware-virtualization support.

1 Introduction

Operating systems and programming languages serve
fundamentally different purposes: operating systems ab-
stract hardware, manage resources, and provide applica-
tions with familiar abstractions such as address spaces,
threads of control, and file descriptors. From an appli-
cation perspective, the operating system ensures that the
application can make forward progress by granting it re-
sources and serving its system calls in an efficient and
fair manner.

Programming languages, on the other hand, generally
provide a level of abstraction that separates the represen-
tation of the computation—i.e., how the programmer ex-
presses a problem—from its underlying execution—i.e.,
how the program gets executed on hardware. For exam-
ple, logic programming languages such as Prolog enable
the succinct description of exponential search problems
by automating the backtracking process within the lan-
guage runtime. Similarly, functional programming and
its use of immutable data structures enables the natural
decomposition of complex problems into tasks that can
be executed in parallel [12].

Because they focus on different issues, commod-
ity operating systems provide general-purpose abstrac-
tions and are generally oblivious to the specific require-
ments of programming language runtimes, and specifi-

cally when that runtime provides backtracking support
as a first-order primitive.

We propose a new operating system abstraction:
lightweight, immutable execution snapshots, which con-
sist of a copy of the register file and an immutable logical
copy of the entire address space of a process. They differ
from a traditional address space abstraction because of
their immutability. Unlike classic checkpoints [14], these
snapshots are directly integrated into the virtual mem-
ory subsystem to enable the rapid creation (and destruc-
tion) of snapshot trees, and to initiate execution from any
given snapshot. The snapshots are not scheduled by a
traditional OS scheduler, but instead by one of the vari-
ous well-understood search strategies, such as DFS, BFS
or A?, which provide a controlled exploration through a
problem space. For example, we use the DFS scheduler
to provide system-level support for fast backtracking of
user-space programs. We can also use this snapshot ab-
straction to convert a program’s address space into an
immutable data structure of its own.

We argue that such an OS-level primitive can pro-
vide competitive performance for realistic problems by
exploiting hardware virtualization, and propose an im-
plementation sketch based on Dune [1]. Unique to our
system, the exploration steps (the partial candidate ex-
tension step in backtracking terms) can be implemented
in any language and runs as arbitrary x86 code without
requiring any user-space bookkeeping. For example, a
search problem can be written in any programming lan-
guage as a simple “single path to solution” program with-
out having to worry about undoing any side-effects. In-
stead, it simply relies on the system software to guess (or
appear to guess) each decision along the path.

By moving backtracking and lightweight, immutable
data structures from the field of programming languages
and runtime libraries into the operating system space, we
see opportunities to broaden the scope of solutions that
can benefit from the approach, for example with many
applications that currently rely on ad-hoc mechanisms to
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emulate snapshots or backtracking operations.

2 The Need for Speed

Our interest in the systematic, controlled exploration of
an exponential search space was triggered by the rising
(practical) use of symbolic execution in testing and ver-
ification [6, 9]. In such an approach, some (hopefully
many, ideally all) possible paths of a program or system
are explored systematically to validate or invalidate as-
sertions about a particular program [6] or an entire vir-
tual machine [9]. We show here two different applica-
tions that could benefit from lightweight snapshots and
system support for backtracking:

Testing and verification of program binaries.
S2E [9] is a platform for writing tools that analyze the
properties and behavior of software systems. So far, we
have used S2E to develop a comprehensive performance
profiler, a reverse engineering tool for proprietary
device drivers [8], a bug finding tool [13], and a tester
for file system code [7]; others have used S2E for a
number of other tools [15, 18, 17]. The platform enables
developers to simultaneously analyze entire families of
execution paths, instead of just one execution at a time,
and to perform these analyses in-vivo within a real and
complete software stack of a virtual machine.

S2E combines symbolic execution based on KLEE [6]
with the QEMU virtual machine [2]. S2E employs back-
tracking when exploring multiple paths of execution of
a virtual machine that has a combination of symbolic
and concrete inputs. Conceptually, S2E is an automated
path explorer with modular path analyzers: the explorer
drives the target system down all execution paths of in-
terest, while analyzers check properties of each such path
(e.g., to look for bugs) or simply collect information
(e.g., count page faults). When searching for bugs, e.g.,
one may direct the S2E explorer down the paths that are
likely to have such bugs and let analyzers check whether
the desired properties hold.

At the core of S2E exploration is a conceptual fork
of the entire state of the VM. This is currently im-
plemented by snapshotting in software all QEMU data
structures and the VM. The snapshot is optimized by
emulating copy-on-write behavior within QEMU itself.
Even though S2E can scale to large systems, such as a full
Windows stack, it faces significant inefficiencies result-
ing from the fact that multiple (relatively fat) software
layers need to be “tricked” into doing the right thing to
implement copy-on-write of symbolic system state.

System-level hardware-assisted backtracking would
dramatically cut the implementation complexity of S2E
and increase performance. S2E currently modifies about

2 KLOC spread in the QEMU’s code base (about 800
KLOC) in order to catch all register and memory writes.
These changes implement copy-on-write and ensure that
accesses to symbolic data call the S2E emulator. System-
level backtracking can remove all the ad-hoc instrumen-
tation and cut several layers of indirection, including the
software MMU emulation. The resulting performance
gain would allow S2E to verify larger software, find more
bugs, and achieve higher code coverage faster.

SAT/SMT solving. Finding values for variables of a
given Boolean formula that make the formula evaluate
to true (i.e., the SAT problem) is a fundamental goal for
much of computing. SAT’s younger cousin, SMT (“sat-
isfiability modulo theories”) is a similar decision prob-
lem, but for logical formulas in classical first-order logic
with equality; examples of theories under which SMT
can be formulated include the theory of real numbers, of
integers, of lists, arrays, bit vectors, etc. SAT and SMT
solvers are extensively used in software and hardware
verification, constraint solving in artificial intelligence,
operations research, electronic design automation, and
many other areas. Both SAT and SMT are NP-complete
problems (SMT can even be undecidable in certain situ-
ations). As a result, solvers generally implement either
a systematic backtracking search procedure to explore
the (exponentially sized) space of variable assignments
looking for satisfying assignments, or take a random-
ized heuristic approach. In essence, they are one of the
quintessential users of backtracking.

While our proposal cannot magically turn NP into P,
it can help make solvers faster. For example, modern
SMT solvers (like Z3 [10]) can reduce the time it takes
to find a satisfying assignment by leveraging the inter-
mediate data structures and results of previously solved
constraints. Specifically, an incremental solver given for-
mula p immediately followed by formula p∧q can solve
both in less time than solving p and then solving p∧ q
from scratch without leveraging the knowledge of p. By
creating a lightweight snapshot for solved problem p, we
can ensure that p∧q is solved incrementally.

3 System-level backtracking

Logic programming allows applications to seemingly ex-
ecute multiple paths through a search space in a deter-
mined order, while providing the simple programming
model of executing through a single path. System-level
backtracking aims to provide the same illusion though
operating system primitives. Figure 1 uses the classic
n-queens problem to illustrate how to use system-level
backtracking: first, the main function selects DFS as a
search strategy; then, for every column, the sys_guess
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system call returns an index between 0 and N − 1 and
provides the user-space program with the illusion that
the operating system has guessed the path to the solution;
extension steps backtrack using the sys_guess_fail
system call, similar to the use of fail in Prolog. Once
a puzzle is completed, the answer is printed to stdout.
As in Prolog, we can simply use backtracking to print all
answers to the puzzle. We note that the implementation
appears to execute in linear time, and does not require
any manual instructions to undo changes to the state.

A naive implementation of sys_guess and
sys_guess_fail would simply use the POSIX
fork, wait and exit system calls. Sequential
depth-first-search (DFS) exploration of a search problem
could be implemented by simply issuing a fork before
exploring any extension off that partial candidate, and
having the child process explore the subtree while the
parent waits for completion. A parallel depth-first-
search strategy might simply fork without waiting,
with possibly dire consequences.

However, using fork as the foundation for system-
level backtracking is inappropriate for a number of rea-
sons. First, fork creates both a new address space and
a new thread of control. Although the former is required
to ensure isolated execution, the latter is undesirable.
Instead, search algorithms require the systematic, con-
trolled exploration of the problem space. Second, forked
processes are neither isolated from each other nor en-
capsulated, e.g., shared file descriptors provide problem-
atic communication channels and changes made to files
are visible to other processes. And last but not least,
the large performance overheads of this naive approach
would likely dwarf any benefit in most circumstances.

3.1 Concepts and Abstractions
Our proposed system-level abstractions use the classic
backtracking terminology: a partial candidate is an im-
mutable state abstraction, and collectively, the partial
candidates form the vertices of the search graph; a can-
didate extension step is a deferred computation abstrac-
tion that, when evaluated against its parent partial candi-
date, can generate a new partial candidate and new ex-
tensions. The extensions form the directed edges of the
search graph. Finally, the algorithm is controlled by a
search strategy (such as DFS), which schedules the eval-
uation of extensions.

We apply backtracking to the system-level abstraction
of a single-threaded process:

Partial candidates. A partial candidate is a state ab-
straction, which consists of the combination of an im-
mutable register file, an immutable address space, and
immutable files. Each sys_guess system call creates

void nqueens(int N)
{
for (int c=0;c<N;c++) {
int r = sys_guess(N); // a little magic;
if (row[r]||ld[r+c]||rd[N+r-c])
sys_guess_fail(); // backtrack;

col[c] = r;
row[r] = c+1;
ld[r+c] = 1;
rd[N+r-c]= 1;

}
printboard(N);

}
main() {
if (sys_guess_strategy(DFS)) {
nqueens(8);
sys_guess_fail(); // print all answers;

}
}

Figure 1: N-queens with system-level backtracking.

a new partial candidate that is the lightweight immutable
snapshot of the currently executing thread. Each par-
tial candidate also has an immutable relationship with its
parent, which can be leveraged to encode the state in a
space-efficient manner.

Candidate extension steps. A candidate extension
step consists of the execution of arbitrary x86 code in
a controlled environment: the starting point is the com-
bination of a lightweight snapshot with a return value
from sys_guess corresponding to the extension num-
ber. Candidate extension steps subsequently execute in
an isolated fashion to not violate the immutability of the
parent partial candidate, and to not accidentally commu-
nicate with other extension steps currently executing, or
any external entity. This implies that all system calls is-
sued by the extension step are appropriately interposed
on.

Failure. Reaching a contradiction is intrinsic to back-
tracking problems. The sys_guess_fail system
call, similar to Prolog’s fail, simply discards the cur-
rently executing extension steps and never returns.

Flexible search strategies. The search strategy is im-
plemented separately from the extensions or the partial
candidates. It implements a policy that schedules the
next extension to be evaluated on a given thread. This
includes classic search strategies such as DFS, BFS and
A?. These are all internally driven strategies where the
search exploration process generates a stream of candi-
date extension steps to be evaluated. In addition, we can
support externally controlled search strategies where an
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external entity can generate new extension steps for any
given partial candidates, and schedule their execution.

New system calls. As extensions run arbitrary x86
code, they communicate through system calls that map
directly to the backtracking framework. The three sys-
tem calls of Figure 1 provide the minimal API required
for simple search strategies such as DFS and BFS. In ad-
dition, search strategies that rely on goal-distance heuris-
tics such as A? and SM-A? require that the distance vec-
tor of the extension steps be communicated via an ex-
tended guess system call. Additional APIs can be envi-
sioned to allow a richer interaction with the system, e.g.,
to selectively encapsulate I/O interactions, control exe-
cution timeouts, or create explicit sharing mechanisms
between lightweight snapshots.

3.2 Applications

Our two motivating examples map to the concepts as
follows: in S2E, each partial candidate corresponds to
a different state of the VM (consisting of the concrete
state augmented with symbolic data and symbolic con-
straints), executed up to the point where a symbolic
branch condition is encountered, i.e., a branch whose
condition depends on symbolic values. The evaluation
of an extension is the simulation of the virtual machine
execution (by QEMU and KLEE) until it terminates or
reaches the next symbolic branch. At that point, it cre-
ates a partial candidate together with the two extensions
corresponding to the branch taken and branch not-taken
constraints. S2E uses a search strategy (such as DFS or a
coverage-optimized strategy) to select partial candidates
according to problem-specific heuristics.

With incremental solvers, partial candidates corre-
spond to solved SAT/SMT problems, complete with
their intermediate data; extensions represent incremen-
tal clauses that are logically combined with the parent
partial candidate clauses. When incremental solvers are
used by symbolic execution systems, they typically run
as a library loaded within the address space of the sym-
bolic execution engine. Then, the natural positive side-
effect is that the incremental solver will be able to build
upon the prior solved problem since it is its parent’s.

Alternatively, one could use lightweight snapshots
directly to create a multi-path incremental SAT/SMT
solver service, built using a single-path incremental
solver. In this case, the service waits for client requests
consisting of of an opaque reference to a previously
solved problem p and an incremental constraint q, and
returns to the client the solution to p∧ q together with a
opaque reference to that new problem.
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Figure 2: System architecture. Filled triangles represent
partial candidates; arrows represent extensions.

4 Implementation Sketch

Although we here claim that adding system-level back-
tracking support can help with a number of relevant ap-
plications, the community is also aware of the difficulty
of getting any operating system modifications into the
mainstream. Fortunately, we are building our lightweight
snapshots and system-level backtracking support directly
on top of the Dune framework [1], which loads as a stan-
dard Linux kernel module and leverages hardware vir-
tualization to safely expose hardware features to library
operating systems (libOS). However, and unlike prior-
generation libOS-es that were designed to run on top of
exokernels [11] or virtual machine monitors [5], Dune
enables our libOS to run as an application on top of an
unmodified commodity OS like Linux.

Dune directly takes advantage of two hardware fea-
tures introduced in x86 CPUs to support virtual ma-
chines: (i) VT-x [19] (or AMD-v), which supports CPU
virtualization and (ii) nested page tables [3]. The for-
mer enables the creation of a protected libOS, which can
intercept all system calls, whereas the latter enables the
libOS to directly create and manipulate address spaces
and efficiently handle page faults. The original evalua-
tion of Dune [1] is promising, showing for example that
memory protection events and forks can be implemented
via a specialized libOS with an order of magnitude better
performance than corresponding Linux abstractions.

Figure 2 describes the architectural building blocks
involved in our proposed implementation. Lightweight
snapshots and system-level support for backtracking
are implemented as a Dune libOS running at ring 0
(non-root). The libOS builds on the Dune sand-
box application, in particular to load the application in
ring 3. From the perspective of the host OS, the libOS
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runs as a single multi-threaded process, with the num-
ber of threads typically corresponding to the number of
hardware threads. The libOS manages the internal struc-
tures of the search graph: each partial candidate is a
lightweight immutable snapshot consisting of the register
file, a logical copy of the guest-virtual address space ac-
cessible to applications, and a logical copy of open disk
files; unevaluated extensions are simply a reference to
their parent partial candidate and the extension number;
the libOS’s scheduler selects the next unevaluated exten-
sion, restores the lightweight snapshot, sets the extension
number into %rax, and resumes execution at ring 3.

The libOS is in charge of handling the page faults
and system calls resulting from the evaluation of candi-
date extensions. Unique to our system, these extensions
run as arbitrary x86 code that can make arbitrary system
calls—the libOS interposes on these calls to ensure that
all visible side effects are contained within the extension.
Page faults are dominated by the copy-on-write faults
that guarantee the immutability of the parent snapshot.

5 Discussion

We implemented a proof-of-concept prototype as a Dune
libOS, which supports DFS, BFS, and A? search strate-
gies, and can run complex software such as Z3 [10]. It
is not yet optimized, has only partial support for system-
call interposition, and supports only single-threaded ex-
ecution. When applied to toy applications like n-queens,
our prototype performs (as expected) substantially worse
than a hand-coded implementation, but better than a Pro-
log implementation running on XSB [16].

Problem granularity and memory locality. One of
the primary design goals is to minimize the overheads of
system-level backtracking, for example as compared to a
native implementation that hand-codes the backtracking
or state forking logic. Clearly, problems with a trivial
instruction count per extension step (e.g., n-queens) are
best implemented by hand-coding the backtracking logic
on a stack. But our motivating examples have address
spaces measured in GB, the software that performs the
extension evaluation consists of many thousands of lines
of code and touches dozens or even hundreds of 4-KB
pages during a single extension step. The execution gran-
ularity, complexity of hand-coded logic, and page-level
memory locality will each play a role to determine when
the approach provides a performance win.

Immutable data structures. Functional programming
revolves around the manipulation of immutable data
structures, which simplify both sequential and concur-
rent programs. Although imperative languages have ex-

isting libraries that efficiently implement immutable sets,
maps, and other simple structures, domain-specific im-
mutable types can be more difficult to write. Lightweight
snapshots provide a very coarse, yet very simple to use,
immutable type: the entire address space of the program.
Our motivating example of incremental solvers is only
one of many examples of that paradigm.

System call interposition. The framework intercepts
system calls to ensure the isolated execution of the ex-
tension. At the very least, any call that changes the
address space (e.g., brk) must be logged and reversed
upon backtracking. This interposition logic can easily
be made sound by supporting only the minimal required
set of conditions (e.g., only open regular files but not de-
vices) and failing all others. Making the interposition
logic complete does not appear tractable (e.g., the chal-
lenges in interposing on socket I/O with a remote peer).

6 Related Work

Our approach builds on the Dune framework and its
sandbox libOS. Like Dune, we leverage virtualization
hardware to create new process-level abstractions.

Lightweight, immutable snapshots are a form of
checkpointing [14]. However, our approach differs in
that we establish the snapshot as a system-level abstrac-
tion, fully integrated with the virtual memory subsystem
of our libOS, and designed to both take and restore snap-
shots with very high frequency. Wedge [4] (as imple-
mented in Dune) has a similar integration, but for the
different purpose of thread recycling.

Our approach bears some similarity to the Warren Ab-
stract Machine (WAM) [20], a way of implementing in-
terpreters for Prolog, with our sys_guess calls cor-
responding to the WAM choice points. Our solution
is unique in that it operates exclusively with hardware-
defined concepts such as the register file and the paged
virtual address space, making the backtracking logic sub-
stantially simpler and more efficient.

7 Conclusion

We have presented a new system-level abstraction, the
lightweight snapshot, which directly integrates into the
virtual memory subsystem of a libOS relying on hard-
ware virtualization support. We made the case for adding
system-level support for backtracking through the com-
bination of lightweight snapshots, system call interposi-
tion, and a minimal set of new system calls. Our ap-
proach uniquely allows arbitrary x86 programs to per-
form partial candidate step extensions without any back-
tracking bookkeeping done by the program.
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