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In this paper we present a closed-loop optimal control approach for the online
control of a legged robot locomotion, particularly the hopping of a simulated

monoped robot. Modeling is done based on the spring loaded inverted pendu-

lum (SLIP) model suggested as the animal and human running gait template.
The key idea is to efficiently inject energy to the system so that the monoped

can track the desired apex height and forward velocity. The state of the system

is observed in the Poincaré section at the apex point and the corresponding
discrete dynamics is formulated by using available analytical solutions. The

goal is then to synthesize an optimal control law which can bring the apex
state at any step to the desired state at the next step. We show the controller

performance in providing fast and accurate response in the presence of noise

and through different scenarios while minimizing the control effort.

1. Introduction

Modeling and control of legged locomotion has been the field of interest

and research from both biology and robotics viewpoints to understand the

underlying locomotor mechanisms, as well as take inspiration to build effi-

cient and powerful robotics platforms. Studies have been done at different

levels of abstraction from very simplified models to sophisticated neuro-

mechanical models (Ref. 1). For animal and human running gaits, the

Spring-Loaded Inverted Pendulum (SLIP) has been proposed as an archety-

pal model, predicting correctly ground reaction forces and center of mass

trajectories (Ref. 2). The SLIP model is a two-state hybrid dynamical sys-

tem consisting of a point mass attached to a massless springy leg. Control

laws can be added to this model to set the leg orientation at touchdown

and can extensively improve the running stability (Ref. 3). In comparison

to static robotic locomotion, this model presents dynamic and more effi-

cient legged locomotion by exploiting the leg natural dynamics. The role

of exploiting compliance in the legged locomotion has long been pointed

out (Ref. 4). Raibert and his colleagues have successfully used this idea
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by using SLIP-based simple control rules for the control of their hopping

and running robots (Ref. 5). Saranli et. al. (Ref. 6) proposed a deadbeat

control approach using the inverse return map of SLIP model (Ref. 7) and

compared the controller performance with the modified Raibert decoupled

control laws. Their coupled control approach shows better performance in

tracking the desired jumping height and forward velocity while not need-

ing tedious tuning of controller parameters. In this paper, we show how

one can use closed-loop optimal control methods for this tracking problem

while minimizing the control effort (energy consumption). Open-loop opti-

mal control methods have been used to produce stable and efficient periodic

gaits (Refs. 8 and 9). Tedrake (Ref. 10) has suggested an optimal control

approach to optimize the region of initial conditions from which the robot

can recover. Our focus however is to enable the system to track the input

commands in an efficient way. We use the same analytical return map as

(Ref. 7) for the later comparison. The controller tracking performance is in-

vestigated in the presence of noise and through different scenarios including

step, sinusoidal, complex and random commands. We first briefly explain

the methods used for return-map modeling and optimal control formulation

and finally present the results obtained for the different scenarios.

2. Mathematical Modeling of System Dynamics

The modeling of the leg dynamics is performed in the discrete form by de-

grading the continuous dynamics to one less dimension of Poincare map.

Control of the system state variables is also performed in the discrete fash-

ion. The key idea is to exploit the natural dynamics of the system and only

manipulate the behavior by injecting energy at specific moments of the

natural motion. This approach stands between the passive dynamic walk-

ers where no actuation is involved and the static walkers such as Asimo with

continuous and high accuracy control. Accordingly we base our modeling

tools on the Poincare map also called return map formulation. Mathemati-

cally speaking we collapse the dimensions of the system by transecting the

system at one characteristic point resulting a discrete map called Poincare

map. The general form of such a system can be stated as follows:

x[k + 1] = f(x[k], u[k]), y[k] = h(x[k], u[k]) (1)

where x[k] ∈ Rn is the state of the system at time k (an integer), u[k] ∈ Rp

is the control input and y[k] ∈ Rq is the system output. Functions f and h

are the mapping functions which should be extracted for the system. For

our system, the characteristic point selected is the apex point where the
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Table 1: physical properties and the initial values.

Physics Initial States

Hip Mass (m) 50.48 kg θlo[0] 25◦

Gravity (g) 9.81 m/s2 Elo[0] 500 J

Rest Leg Length (l0) 1 m ψlo[0] 1

Control Bounds ([umin, umax]) Initial Controls Guess

θtd[i] [π/4, π/2] rad θtd[0] 20◦

kc[i] [100, 500] N.m3 kc[0] 250 N.m3

kd[i] [100, 500] N.m3 kd[0] 250 N.m3

leg reaches to the highest point in its trajectory and its vertical velocity is

zero. The state of the system consists of the position and the forward ve-

locity at the apex point. Closed form solutions for this system is not trivial

in contrast to its simple dynamical model. We use the analytical solutions

presented in (Ref. 7) together with a definition of energy consumption mea-

surement to perform the task. We present the overall formulation and more

detailed equations can be found in Ref. 6.

The state of the SLIP model is selected as Xl = {Xl|Xl = [x̄, ȳ, v̄x]}
with x̄ and ȳ being the positions and v̄x the forward velocity of the apex

point. State is selected such that it can give an intuitive description of the

system behavior including the apex jumping height and forward velocity.

The control variables are selected similar to the Raibert controllers as Ū =

{ū|ū = [θtd, kc, kd]T } with θtd being the angle of attack at touchdown and

kc, kd respectively the compression and decompression spring constants

in the stance phase. The spring used for this formulation is an air spring

with the potential energy formulated as U(x) = K
2 ( 1

x2 − 1
x2
0
). Closed-form

formulation can be extracted in the liftoff coordinate system by transferring

the state to the new set of state variables Zlo = {Zlo|Z = [θ,E, ψ]Tlo}
respectively, the angle of attack, energy and ratio of forward to vertical

velocity at liftoff. The apex states can then be calculated from the liftoff

state variables as:

vxap
= sign(ψlo)

√
2Eloψ2

lo

m(1 + ψ2
lo)

; yap =
Elo

mg(1 + ψ2
lo)

+ l0 cos θlo

We use these equations to describe the system dynamics together with the

control laws detailed in the next section to perform the desired tasks.

3. Closed-Loop Optimal Control

The role of the control algorithm is to find the suitable control input

u∗ = [θ∗td, k
∗
c , k

∗
d]T which can take the current apex state Xap to the de-
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sired state X∗
ap while satisfying the problem constraints. Previous works

have suggested simple decoupled controllers (Ref. 5) or using the approx-

imated inverse map as the deadbeat control law (Ref. 7). We propose an

optimal control approach which provides a coupled control of the state and

in addition minimizes the required control effort. Moreover this approach

can replace the tedious procedure of computing the inverse return map

and particularly makes it more suitable for higher dimensional systems. We

show the effect of taking the coupled dynamics of the system as a whole

throughout the experiments in the section 4.

The optimal control problem is formulated as presented in the table 2.

The goal is to minimize the control effort while satisfying the state and con-

trol constraints. This introduces a constrained optimization problem which

can be solved by using the nonlinear programming (NLP).We formulate the

control effort as the quadratic cost of change of the spring stiffness. In other

words, we assume there is an operating point for the spring stiffness, k0,

and any change form that would need consuming energy. The cost function

therefore is formulated as J = (kc[i + 1] − k0)2 + (kd[i + 1] − k0)2. Con-

straints of the problem are formulated regarding the physical constraints on

the state variables (figure 1) and the control constraints due to the actua-

tors saturation. The boundary for the angle of attack is [45, 90] and for the

range of the air spring stiffness values we roughly rescale the spring poten-

tial energy from Ref. 7 resulting in the boundary of [100, 500]N.m3. We use

the quadratic errors of tracking the desired state trajectories as nonlinear

equality constraints. The sequential quadratic programming (SQP) solver

provided with MATLAB fmincon function is used to solve the problem. To

be able to embed this optimization problem in the control loop, we use only

one step horizon for measuring the cost function. While it works for this

simple problem, for more complex problems using a bigger horizon (such as

model predictive control methods) is suggested to improve the stability of

the solutions. Finally this proposed algorithm uses the measured values of

the state variables at each step to find the required control variables for the

next step. In other words the control is performed in closed-loop helping

the system to overcome the deviations in the presence of noise. We show

the performance of the controller with a 10% noise on the sensor data.

4. Results and Discussions

The performance of the proposed control approach is evaluated through

different scenarios assuming 10% noise on liftoff angle measurement. Figure

1 shows the results for selected scenarios each row showing one scenario:
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Table 2: Pseudo-code for the optimal control formulation

do for each step i

u[i]∗ = argmin
u

(
(kc[i+ 1]− k0)2 + (kd[i+ 1]− k0)2

)
umin < u < umax

yap[i+ 1]− ydesiredap [i+ 1] = 0

vxap [i+ 1]− vdesiredxap
[i+ 1] = 0

Zl[i+ 1] = f(Zl[i], N̄ .u[i]∗)

set u0[i+ 1] = u[i]∗ + ε
control the system with u[i]∗ and measure state Zlo

until failure or maximum successful steps

y tdyaplo td

Fig. 1: Constraints imposed on the system state variables including feasibility of the apex

height and liftoff angle (physiological constraints) and the system energy.

a-step, b-sine c-complex and d -random command inputs. The desired and

controlled state is shown in the left and the control variables in the right

graphs. It should be noted that the horizontal axis shows the steps (due to

the discrete form of the system). Results show that for the first three cases

the monoped is able to track the command accurately and after only a few

first steps. The computation time for each step is about 50-100 milliseconds

(using MATLAB on an Intel(R) quad-core PC) which is less than the flight

duration and enables the online use of this algorithm.

(i) Response to step: As the first experiment we use the simplest sce-

nario by imposing a step command for the forward velocity of the hopper

while keeping the altitude fixed. This scenario also can be used for the qual-

itative comparison of our controller performance with the one from Ref. 7.

Accordingly we use the same values including fixed altitude of 1.2m and

step increase on forward velocity from 0.5 to 2.5 m/s. Figure 2-a shows the

resulting behavior for following these commands. Similar to Ref. 7 we use

the first 10 steps to bring the system to steady-state forward velocity of

0.5 m/s. At this stage the control problem is how to use the available actu-
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Fig. 2: Results of the designed scenarios (from top to down): a-step in forward velocity

while fixing apex height, b-sinusoidal command for forward velocity while fixing apex

height, c-complex commands for both and d-random commands for both. The desired
and controlled state is shown in the left and the control variables in the right graphs.

ators to increase the velocity with 2 m/s in an efficient and responsive way.

The nonlinear programming methods embedded in the control loop solve

this control problem as an optimization problem and provide the control

variables which optimize the control effort at the same time taking both the

state and control constraints into account. The resulting control variables

are represented in the graph (a-2). As expected the angle of attack plays

the main role to increase the forward velocity and the stiffness values tend

to keep the minimum-energy values for this gait. However they have an im-

portant role to stabilize the gait when the angle of attack is in the transient

phase. This coupled dynamics which is neglected in the simplified decou-

pled control schemes can be exploited to improve the controllability of the

hopper. When the angle of attack reaches to the steady state, the stiffness

values converges to their rest value to minimize the control effort required

for this task. It is worth-noticing that the controller is using only one step

horizon to minimize the control effort. Increasing the horizon can result in

more optimized control effort by taking to account the consequences of the

current control on the N next step.

(ii) Response to sinusoidal trajectory: In the second experiment we use

a more difficult scenario by imposing a sinusoidal desired trajectory for

the forward velocity and keeping the altitude fixed. Using the same values

as Ref. 7, we set the apex height fixed to 1.2 m and change the velocity
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in a sinusoidal pattern with amplitude and offset both of 1.5 m/s. This

scenario introduces a difficult task for the hopper since it should be able

decelerate to zero speed and accelerate to 3m/s while still keeping stable

hopping to a fixed height. Again the optimal control formulation is used

to provide the right feasible control variables at each step. The results for

the state and control variables are represented in figure 2, graphs (b-1) and

(b-2) respectively. They clearly show the main role of the angle of attack in

the speed control and at the same time the complementary role of the air

springs in supplying the rest of the required energy to fulfill the task. Angle

of attack follows a similar pattern to forward velocity. A closer look at the

kc and kd patterns shows that while the hopper is speeding up, the stiffness

has slightly higher values in the decompression than the compression phase

which injects energy to the system (∆EU = Ukd
(r0)−Ukc

(r0) > 0), and the

opposite occurs while decelerating in order to remove the energy from the

system. It should be noted that this task can not be performed successfully

by using only the angle of attack taking its constraint into account.

(ii) Response to a complex pattern: In contrast to the two previous

experiments, this experiment is designed to not only excite one of the state

variables of the system but also to impose a coupled and complex pattern

to both velocity and height of apex. As depicted in the figure 2 graph (c-1),

forward velocity increases from zero to 2 m/s in a periodic fashion while

the apex height value switches every five steps (between 1.3 and 1.45 m/s).

This scenario is a good example of the situations where a more sophisticated

control law is required to be able to take the coupled dynamics into account.

As represented in the graph (c-2) of the figure 2 the angle of attack is

not selected in accordance to the forward velocity pattern anymore since

its value can derange the desired apex height. However this is still visible

that the angle of attack is mostly contributing to forward velocity control

and the change of spring stiffness is being used to inject or remove energy

respectively in each step increase or decrease in apex height. While this has

been already known and used in Raibert like control rules, we propose here

a method to take their combinational effect into account.

(iv) Response to a random task: This scenario presents an ultimate situ-

ation where both the desired apex height and forward velocity are changing

in random fashion. One can imagine it as hopping in an unstructured en-

vironment where the hopper should be quick and responsive to adjust its

speed and jumping height. Graph (d-1) of figure 2 shows a sample of such

desired apex height and speed. The results for this example shows that the

hopper is more successful to follow the desired apex height than the veloc-
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ity. This is due to the actuator saturation that is assumed for this problem.

The motor speed to adjust the angle of attack during one step is less than

what is required for some of the speed jumps. It should be noted that the

simulated values should be adapted for a new real setup and can drastically

change the tracking performance.

5. Conclusion and Future Work

We proposed a closed-loop optimal control formulation for the online control

of a single leg hopping gait. This work presents the basic approach and idea

on a very simplified model. The approach however is scalable and can be

used for higher dimensional models with not only the discrete return map

but with their continuous dynamics. We used SQP solvers provided by

MATLAB for academical applications while there have been great progress

in faster and more robust solvers. We are currently extending this work by

using the same approach for more realistic SLIP model (including energy

dissipation) and more detailed dynamics modeling for 2D monoped and

quadruped robots. In the optimal control formulation we use the horizon

with only one step. For future works using more steps can improve the

robustness of the solutions. We also plan to test the simulated algorithms

on our newly designed prismatic leg.
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