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Abstract—In this paper, a method is proposed for controlling
a hopping monopod. It takes dynamics of the robot into account
to have better nominal tracking of desired trajectories and more
compliant environmental interactions at the same time. We have
incorporated also natural dynamics of the robot into the system
by using off-line gaits extracted from optimizations on energy.
The main control loop consists of the projected inverse dynamics
that generates actuator torques given desired trajectories and
also a feedback loop designed and tuned specifically for the
structure of the robot. A trajectory generator uses known optimal
trajectories together with some stabilizing control laws that
modify these trajectories to have better robustness in different
situations. The average speed of the robot is also regulated by
means of a self-organizing controller. We apply soft transitions
in trajectories from phase to phase to avoid sharp actuator
input profiles. Our method is successfully tested on a monopod
hopper robot in simulation. It can handle slightly rough or sloped
terrains while maintaining a given average speed. Simulation
results suggest that our method is a promising candidate to
control a real robot under construction.

I. INTRODUCTION

Although wheeled robots are widely used for different
applications, legged ones have also their own advantages in
locomotion. They can potentially perform better on rough
terrains and complex environments. These robots are mostly
inspired from animals, but with simpler structures. However,
the complexity of structure, considerable number of actuators
and degrees of freedom have made the control problem a
great challenge for engineers. There are various intelligent
approaches developed that control the robot for different tasks,
but not so general to handle every kind of terrain or obstacle
potentially existing in a complex environment. Control of a
robot may require different tasks such as balance control,
locomotion control, compliant interaction with environment
and self collision avoidance. In addition to these general tasks,
problem constraints are also important: for instance, actuator
saturation and joint limits. These are constraints on inputs or
states of the system and should be considered when designing
a controller. Each method therefore has its own advantages
and disadvantages regarding task properties.

In this study, we aim to control a monopod robot. Dif-
ferent approaches are described in literature to handle above
mentioned tasks. Virtual model control considers virtual com-
ponents applying external forces to the robot at different
points which are then translated into actuator forces/torques

to perform the desired task [23]. Operational space control
[19][20] is similar in the sense that it also applies these
forces externally, but produces them in a different manner.
In humanoid robotics context, people use Zero Moment Point
(ZMP) [21] approach to maintain stability of the robot. How-
ever, these approaches mostly rely on kinematic model of the
robot and do not include any information about dynamics
which helps to improve nominal tracking and optimality of
the robot motion. These requirements are important for a
legged robot as it can harm itself by having stiff interactions
with environment or falling over. Among existing model-based
control approaches, we use projected inverse dynamics method
proposed by Aghili [14], because it relies less on mass matrix
measurement. Recent works [3][4] also try to generate actuator
profiles that minimize contact forces, meaning more compliant
environmental reactions. Knowing the dynamics of the robot,
we can calculate actuator variables such that they induce
energy-optimal actuator inputs.

Pre-optimized gaits that include dynamics of the robot [2]
are used as the basis for trajectory generation. Other ap-
proaches generate parametric trajectories (for example [8][9]).
Generally, transitions of trajectories in legged robots are
inevitable due to hybrid states. Parametric trajectories have the
benefit of being tunable to preserve continuity in transitions,
but they are not optimized for the natural dynamics of the sys-
tem. [10], [11] and [13] use Splines specifically for the same
purpose, but they also lack optimality. In [12], the concept of
gait transition is used for AIBO using CPG controllers which
is not applicable in our case, since it does not tackle with
hybrid states and trajectory errors. Therefore, a challenging
part of our study would be handling transitions in the off-line
solutions.

The proposed method in this paper is different from previous
works as it imitates energy-optimized periodic solutions. It
takes advantage from a new adaptive phase transition method
and introduces few control laws in flight phase to stabilize
an under-actuated robot. Acceptable tracking of desired tra-
jectories is expected while consuming the same levels of
energy compared to the optimal solution. We want it to be
robust against discretizations in computation, roughness in the
terrain, sloped terrains and also potential instability of the
optimal solution. It should also be capable of maintaining a
given average speed over successive hops. In the next section,
we first introduce the dynamics of our robot. We describe
the structure and principles of the controller. Underlying
mathematics are also included together with a short study978-1-4673-5643-5/13/$31.00 c©2013 IEEE
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on under-actuated behaviour of this robot. In the last section,
we will then show the effect of different controller blocks
step by step. The performance of the robot regarding tracking,
robustness and also versatility will be shown quantitatively.

II. METHODS
In this section, we will first introduce the dynamics of the

robot and then formalize the mathematical background behind
our novel control approach.

A. System Dynamics
Among various legged robot structures, a monopod one is

interesting to begin testing locomotion algorithms due to its
simplicity. The dimensionality of the system is low and also
states to be controlled, either continuous or discrete are not
so complicated. The challenge in control of these robots is
the fact that they do not have static stability. However, hybrid
states play an important role to keep the robot hopping contin-
uously and thus, to maintain dynamic stability. We begin with
applying our algorithm to a 2D monopod platform in order
to find key elements and strategies required for controlling
a legged robot. We will apply it to more complex legged
robots in future. The real robot is now under construction in
LocoMorph project at BioRob and will be used in future to test
this method. It has in fact 2 legs working identically and also
being attached to a rotating boom with large enough radius.
A leg of this robot consists of a prismatic joint (acting as a
knee to change the leg’s length) and a rotary hip joint both
with series elastic components (spring and damper). Inspired
by the previously presented leg models [1] and [22], the trunk-
leg dynamics is modelled with three inertial components: one
presenting the trunk dynamics and two presenting the leg
dynamics (upper one as the thigh and lower one as the shank).
In total, there are 3 degrees of freedom for translation and
attitude of the base and 2 degrees for joints fully describing
the state of the robot. All these variables are depicted on Fig.1.
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Fig. 1: The schematic of the leg model, its generalized coordinates and the
sequence of hopping. The rough terrain used in simulation experiments is a
spatially sampled Gaussian sequence.

For this robot, hybrid states consist of flight and stance
phases. In the flight phase, there is no contact generating
a force that helps to control the robot. Also, we have no
actuation on the centre of mass location and orientation as
it has a ballistic motion. Whereas in the stance phase, we
assume two translational constraints imposed by the contact
point resulting in an under-actuated system.

ẋ f oot = 0, ẏ f oot = 0 (1)

Where x f oot and y f oot indicate the position of the foot. The
rigid body dynamics formulation for this system implies:

M(q)q̈+h(q, q̇) = τττ +JT
C(q)λλλ (2)

With n = 2 as the number of degrees of freedom. Variables
are defined as:
• q = [x,y,φ ,α, l]′: x, y and φ are the floating base position

and orientation while l and α are the leg and hip joint
positions.

• M(q) ∈ Rn+3×n+3: the floating base inertia matrix
• h(q, q̇)∈Rn+3: the floating base centripetal, Coriolis and

gravity forces
• τττ = [01×3 τ1 τ2]

′: joint torques/forces
• JC ∈ Rk×n+3: the Jacobian of k linearly independent

constraints
• λλλ ∈ Rk: the vector of k linearly independent constraint

forces
We simulate the robot dynamics with an extended version

of [1] in MATLAB which uses orthogonal decomposition in
driving the dynamics. Within the simulator, this dynamical
system is described by five continuous variables of q and their
derivatives together with a discrete variable corresponding to
the hybrid states. So, λλλ and JC(q) depend on the hybrid
state, being 0 in flight phase or introducing k = 2 linearly
independent constraints in stance phase. All the variables are
normalized in order to make simulations independent of SI
dimensions. But the ratios are held the same as the real robot
under construction. To give an intuition, the total mass of the
robot is 2.423 kg and the leg has a normal length of 29 cm.
Regarding actuator limitations, we consider maximum possible
torque/force to be produced (7 N.m and 242 N for hip joint and
knee respectively). This is verified off-line after the simulation.

B. Control Architecture

As discussed before, we want to incorporate the state of the
art projected inverse dynamics in our method. It brings better
environmental interactions and more accurate nominal tracking
while relying less on sensitive measurements of mass matrix.
In [3] and [4], this method is used to control a humanoid robot
in simulation and also the LittleDog robot, on a sloped terrain.
They deal with optimality by minimizing torque commands
and also minimizing ground reaction forces. They use simple
sinusoid profiles for joints and also a ZMP-based method
to keep the humanoid robot stable. However these sinusoid
profiles are not guaranteed to be optimal for locomotion.
Mistry [15] also uses operational space trajectories to guide a
manipulator. The purpose is to understand better how under-
actuation and constraints interact with the dynamics of the
task. His method can realize desired trajectories at the end
effector, while minimizing the kinetic energy of the articulated
arm. Despite being optimal, this method is not yet applied
to a floating based robot. Our proposed control approach
in contrast is based on optimal gaits found off-line. Based
on the work presented by [1], this work [2] has extracted
some off-line open-loop periodic solutions for controlling this
robot on flat terrain. These solutions include both the gait



initialization parameters and periodic actuation profiles which
result in a periodic solution of this non-linear hybrid system
(so called gait). These off-line solutions are optimized either
for forward velocity or cost of transportation (COT), resulting
in open-loop unstable behaviour. Having these solutions at
hand, one may think of using simple feedback loops to control
the system. However, this approach requires a lot of effort
to properly design the feedback due to non-linearity and
hybrid behaviour of the system. In addition to all advantages
enumerated, to avoid high-gain position control and therefore
stiff performance, inverse dynamics which acts as a feed-
forward block will help.

For a constrained system, the manifold of unconstrained
movements lies in a Rn+3−k dimensional space, determined
by constraint Jacobian at each moment. For our 2D robot,
as k < 3, the system is under-actuated, meaning that it has
more DOFs than the number of actuators. Our robot has hybrid
states and is basically different from [14], but it is worth seeing
why the controller of Aghili cannot work in stance phase. He
deduces the controllability condition of the system under his
quite similar proposed control law as (for the proof please see
[14]):

controllability⇔N ∩B⊥ ⊆N ⊥∩B⊥ (3)

Where:
• N : free space (or null space of constraints)
• N ⊥ : constrained space
• B : actuated space : {l,α}
• B⊥ : passive space : {x,y,φ}

N and N ⊥ are calculated on-line based on constraint Ja-
cobian JC. As this matrix is 2× 5 and non-zero in stance
phase, N should be a 3 or 4 dimensional subspace. It cannot
have 5 dimensions since JC is non-zero, and consequently
N ⊥ is non-empty. The condition for (3) to hold is therefore
N ∩B⊥=∅. Clearly, we cannot find dq= {dx,dy,dφ ,0,0}∈
B⊥ that induces no movement on foot. Physically, this means
to lock the two joints and since dq is a movement of a rigid
body, it includes the foot too. Therefore, (3) can never be
satisfied in stance phase. Worse is the flight phase where
N ⊥ =∅ and thus N =Rn. We should have B⊥ ⊆∅ which
is not the case for the floating-base systems.

The way we deal with this problem is to take advantage
of hybrid states like [6]. We design a separate controller for
each hybrid state and they cooperate to stabilize the robot. In
the rest of this section, we will introduce the features of each
controller.

1) Stance controller: We will develop this controller in
three steps.

a) Feed-forward inverse dynamics as a core: Consider-
ing Eq.(2) again, the main problem is the coupling between
actuator forces, contact forces and also dynamics of the robot.
There exist other methods that depend on either measurement
or estimation of contact forces from previous step. The former
suffers from noise and delays in sensor reading and filtering.
The later is an approximation and requires fast enough control
loops; however it can become unstable in adverse situations.

A recent work [3] decouples these forces by projecting the
main equation of motion onto null space of actuators. By doing
so, it obtains two equations where contact forces do not appear
in one. This equation is therefore used for calculating required
forces to be applied by actuators knowing desired acceler-
ations. The only sensor required is thus contact detection to
determine the discrete state (in addition to encoders and torque
sensors). Being in stance phase implies that the position of the
foot should be on the ground and its velocity should be zero.
The acceleration should be consistent with these conditions
too. So we have:

Jcq̇ = ẋc = 0 (4)
Jcq̈ =−J̇cq̇

which introduces two translational constraints in 2D.
The inverse dynamics algorithm calculates QR decomposi-

tion of JT
C which is done quite fast with modern libraries:

JT
C = Q

[
R
0

]
(5)

Q is an orthogonal matrix (QQT = QTQ = I), and R
is an upper triangle matrix of rank k. Then it projects (2)
onto null-space of actuators by multiplying with QT. The
result is decomposition of the rigid-body dynamics into two
independent equations:

ScQT(Mq̈+h) = ScQTST
τττ +Rλλλ (6)

SuQT(Mq̈+h) = SuQTST
τττ

Where Sc and Su are matrices used to select the top and
lower portions of the full equation (there are 5 equations for
our robot).

Sc = [Ik×k0k×n+3−k] (7)
Su = [0n+3−k×kIn+3−k×n+3−k]

The main point here is that contact forces are not appearing
in the second equation. This allows to calculate actuator
torques without knowing contact forces.

Pre-optimized trajectories are used to obtain desired ac-
celeration. These optimal trajectories are discrete samples of
continuous time-variables of the system. An interpolation is
therefore needed to calculate desired values at an arbitrary
moment. We use the Spline method to generate smooth inter-
polations, however we will replace it by linear interpolation to
be computationally less expensive while the system is tested
to remain stable. Having calculated desired trajectories (here
only accelerations), we use the known Moore-Penrose pseudo-
inverse method shown by ()+ which calculates joint torques
that induce optimal actuator command (refer to [3]).

τττ = (SuQTST)+SuQT[Mq̈des +h] (8)

This is the main equation used inside our feed forward
block (refer to Fig.2). It requires only a sensor of discrete
phase detection. The aim is to eliminate deteriorating effects of
sensor uncertainties, noises and delays in feed-forward torque



calculations. However, due to existence of uncertainties in
modelling parameters and also un-modelled dynamics of the
robot, a feedback term is necessary to compensate for devia-
tions from desired trajectory. Note that thanks to normalization
done inside the simulator for this model, we do not need to
deal with inhomogeneity of variables as addressed in [14] and
[3].

b) Feedback: In general, when the system is not under-
actuated, a feed-forward controller may work together with
a feedback law. This loop is used to sustain the desired
trajectories. The stance controller is supposed to do its job
well as there is no control in the ballistic motion of the next
phase. The controller here is of PD type with the control law
defined as:

q̈fb = Kp(qdes−q)+Kd(q̇des− q̇) (9)

Where Kp,Kd ∈ R2×5. q̈fb is then passed through projected
inverse dynamics, modifying (8) as:

τττ = (SuQTST)+SuQT[M(q̈des + q̈fb)+h] (10)

There are different scenarios to configure these blocks.
However, projecting the acceleration in (10) leads to more
stable and smoother actuator profiles. Aghili [14] uses this
projection as it yields simpler error dynamics which could be
stabilized using enough feedback gains. The properties of this
method is also investigated in this book [5].

By now, the controller has two blocks which are supposed
to sustain our optimal trajectories. We will show the good
performance of these blocks in results section. However, these
blocks do not stabilize the robot hopping due to numerical
deviations and moreover, they may not work robustly on
more complex terrains like sloped or rough ones. So one may
think of modifying desired trajectories in order to obtain more
robustness and stability with the potential cost of getting far
from optimality.

c) Desired trajectories: Uncertainties in modelling,
noises in sensor readings and also under-actuated nature of
the robot may cause it to deviate from the off-line trajectories.
Phase transitions could also take place at different moments
compared to the off-line solution. We basically need to solve
these problems adaptively while generating desired trajecto-
ries.

There could be two kinds of discontinuities. First, due to
touch down strike a jump in variable derivatives and also
actuator profiles is expected which actually exists in our off-
line solution. Second, as we design feedback gains separately
for each phase, the same error in both phases may lead to
different actuator inputs generated by feedbacks. Our strategy
will therefore minimize this effect. Other methods like [8],
[9], [10] and [11] change parameters of their polynomials or
splines to preserve continuity which could not be applied here,
as we use off-line non-parametric optimal trajectories.

At the end of each phase, we assume that feedback con-
trollers have made a specific set of variables in e and ė nearly
zero. Let’s call these sets YS ∈ Rn+3−k and YF ∈ Rn for
stance and flight phases respectively. YS and YF are relating

to non-zero elements of feedback matrices. This means that
the feedback is then assumed not to generate a considerable
force. Note that due to under-actuation, we cannot control
for all variables. By design, we may not have YF = Y

′
S or

Y
′

F = YS where Y
′

S and Y
′

F are complements of YS and YF .
This means that the flight controller for example may deal
with a variable which was not controlled before. If we let the
desired trajectories of YF ∩Y

′
S be still different from their on-

line variables (right after phase transition moment), the error
may not be zero any more. Thus the feedback generates a
compensating force, leading to discontinuity of force-torque
profiles.

After a transition, in the next phase, we smoothly bring
the system back to the optimal one. To this end, we damp
each (online) variable at the beginning of a new phase while
trying to smoothly achieve the (off-line) desired value at the
end. This simply means a transition in the form of weighted
average between these values. The constraint is continuity of
the variable and its first derivative in the beginning of the new
phase (ensuring e and ė to be zero) and also having desired
off-line values at the end. So, a weighting of the form:

qdes(t) = a(t− t0)× q̃(t)+b(t− t0)×qopt(t) (11)

is used which requires these conditions on a and b:

a(0) = 1,a(T ) = 0,b(0) = 0,b(T ) = 1 (12)
ȧ(0) = 0, ȧ(T ) = 0, ḃ(0) = 0, ḃ(T ) = 0

where T is the expected period of the new phase (from
optimal solution), t0 is indicating the phase transition moment
detected by sensors, q̃(t) is determined by online variables
and qopt is the optimal solution. We calculate also the two
first derivatives of qdes(t) in the same way as required in
feedback and feed-forward blocks. It means that we use
the same weighting for both of them like (11). Using these
soft transitions, neither Kp nor Kd will produce impulse-like
outputs, while there could be discontinuities in the desired
trajectories. In (12), q̃(t) will be defined:

q̃(t) = q̇(t0)× (t− t0)+q(t0) for t > t0 (13)

as a linear interpolation of variables after phase transition.
Among various weighting choices, exponential weightings of
the form:

a(t) = e−(t/τ1)
2
,b(t) = 1− e−(t/τ2)

2
(14)

are selected because of their tunable damping nature. We
choose small τ1 and τ2 to reach the desired values at T .

The trajectory modifier restarts the desired trajectory right
after transition moment. For many reasons, the past phase may
not have the nominal duration. If it exceeds the nominal one,
the modifier continues to use trajectories from next phase.
Other methods could also be used such as linear, spline or
cubic interpolation of previous phase (outside the nominal
interval) to continue trajectories. However, using the system’s
trajectories is more natural. After transition detection however,



the modifier restarts desired trajectory from nominal phase
transition point in recorded trajectories. Fig.4 visualizes this.

So far we have introduced the mechanism for soft tran-
sitions. This trajectory modifier implicitly has an intrinsic
feedback mechanism that performs adaptive trajectory modifi-
cation. However, in case of more complex terrains like sloped
or rough ones it may fail, since the optimal solution is found
specifically for flat terrain. Remark that the major problem in
stance phase was under-actuation. In next part, we will explain
the design of controller for flight phase which collaborates
with this stance controller to keep the robot stable.

2) Flight controller: This controller will be developed in
two steps. In contrast to stance phase as discussed before,
there is no control over base position and attitude of the robot.
Therefore, we just use a feedback block and modify the desired
trajectories to make the system stable.

a) Feedback: In contrast to previous part, our feedback
term is directly applied to actuator inputs here.

Ffb = Kp(qdes−q)+Kd(q̇des− q̇) (15)

Where again, Kp,Kd ∈R2×5. The process of designing this
feedback is the same as before. The important task is to follow
desired trajectories determined in the next Step. We do not use
high gains as they will increase energy consumption, lead to
stiff behaviour and therefore less robustness.

b) Desired trajectories: Regarding under-actuation prob-
lems, we stabilize the robot benefiting from hybrid states. In
each phase, a distinct controller has to do its best to prepare the
robot for the next phase. Thus, we are looking for simple laws
that make the system stable primarily and also more robust on
complex terrains. Taking inspiration from the previous works,
the following strategies are designed to control trajectories in
operational space:
• There are different ways to shape the foot trajectory in

the swing phase like [17]. We generally decrease leg’s
length fast and extend it gradually again to have an arc-
shaped foot trajectory. This will prevent the foot from
hitting potentially available obstacles in front of it right
after lift off. The desired arc-shaped trajectory is induced
using different time constants τ1 and τ2 (in (14)).

• Adjust the attack angle of the leg in proportion to
horizontal speed to improve stability by proper exchange
of energy between flight and stance phase. This law was
in fact used first by Raibert [6] in 1984, resulting an
impressive stability on a real robot.

We will show in section III that these laws can increase
manoeuvrability of the system, i.e. working robustly on flat
and rough terrains (and sloped ones). In general, we can use
more laws like amplifying y trajectories or setting φ to zero.
But we prefer to keep it as simple and generic as possible.
This will require less tuning and thus more straightforward
design of controller. One may also desire small variations of
base attitude during hopping due to restrictions of instruments
installed on the base. To this end, setting φdes to zero at the end
of stance phase will make sense. In our robot, the base mass is

1.75 kg whereas the mass of the leg is 0.623 kg. Considering
the length of the leg, these two parts have comparable inertias.
Therefore in flight phase, the swing of the leg will cause the
base to rotate considerably. It means that setting φdes to zero
may not help reduce variations.

These two steps together stabilize the robot. However,
depending on the choice of attack angle coefficient, the steady
state average speed of the robot will not remain the same as the
optimal solution. Larger coefficients may stabilize the robot
better, but result in smaller average speeds.
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Fig. 2: We have different controllers for each phase, shown with green and
yellow colors. In stance phase, the feedback contribution is passed through
projected inverse dynamics while in flight phase, feedback directly produces
actuator inputs. The trajectory modifier makes smooth transitions and applies
additional rules in flight phase.

3) Speed regulator: Till now, there was no control over the
average forward speed of the robot. After stabilizing the robot
to hop continuously without falling over, one may think of a
regulator that will adjust the forward speed of the robot. By
introducing such high level controller, some of the computa-
tionally expensive methods such as spline interpolation may
not be necessary any more (refer to Sec.III).

To adjust the speed of the robot, we have to incorporate
a high level mechanism that helps the robot approach a
given desired average speed. To this end, we use a Fuzzy
Self Organizing Controller (SOC) [7]. Our SOC controller
principally has two look-up tables. Based on measured e (error
in average speed of a cycle) and ė, the first look-up table
generates a proper ∆u as delta input of the plant. This table
is designed such that the state trajectory will follow a spiral
shape to origin in plane of e− ė. The second constant table
will update (modify) the first one based on performance of
controller according to the desired spiral shape. The advantage
of such controllers is their adaptability to the model of the
system which may change on-line. The ∆u generated by this
controller will be integrated and the resulting input u will be
used in the system as:

αopt(t) = µ(ẋ(t)−ψu)−φopt(t) (16)

which resembles the Raibert’s law [6]. ψ is set to zero in case
of disabling the regulator. After each cycle, the high level
controller will calculate the average speed and tick once. We
use Fuzzy numerical calculations in our high level controller
to have better smoothness compared to a simple look-up table
controller.



The overall control architecture proposed in this work is
shown in Fig.2. Note that since in flight phase, there is no
control over center of mass, we have disabled feed-forward
controller and all the job is done by feedback.

III. RESULTS AND DISCUSSIONS

In this section we will perform simulation experiments to
show how different blocks are performing in the controller. In
these experiments, we will test our control approach for an
open-loop unstable periodic solution of the system optimized
for energy. Instability is due to the ẋ state whose Eigenvalue is
bigger than one (Eigenvalues are calculated based on Floquet
theory and using Poincaré map calculation [1]).

First we investigate the effect of different preliminary blocks
(before using any trajectory modification) in tracking perfor-
mance. The result is shown in Fig.3, concerning scenarios
1,2 and 3 in Table.I. This table summarizes the features of
our control architecture and the scenarios used to verify the
performance.

In scenario 1 as discussed before, because of the optimality-
stability trade-off, our open-loop solution is intrinsically unsta-
ble (due to eigenvalue of bigger than 1 for ẋ in Poincaré map,
refer to [2]). This is obviously observable in Fig.3. Unstable
eigenvalues together with discretizations are deviating the
robot from its desired trajectory. Like many control systems,
the open-loop behaviour is not needed to be stable (otherwise,
it could be too conservative behaviour) and we rely on the
closed-loop control strategies to stabilize the system.

In scenario 2, recorded trajectories which are replicated for
multiple periods are used in feed forward controller to generate
desired actuator variables. In this case, robot’s response has
considerably precise tracking of the desired value. However,
this tracking is good only for one period. Note the small
mismatch existing at the end of the first period (around t = 2)
for α and φ . So if we extend the simulation time, discretization
errors accumulate and since calculations are highly dependent
on the discrete states of robot, after 2-3 periods, the robot
falls over. The open-loop solution can continue its periodic
behaviour until it gets perturbed due to numerical problems.
Thus we do not expect stability of this response.

In scenario 3, a simple feedback is integrated to the system.
It tries to keep the system as close to desired trajectories as
possible. However, it fails to fully stabilize the system and
the robot falls over after few steps. Note that if we cancel
the feed-forward, a feedback of at least 10 times larger gains
was tested to do the same job which causes more stiffness
of the system. There could be more complex feedback design
methods like Linear-Quadratic-Gaussian (LQG) as referenced
in [18] rather than our easier and earlier procedure. It does
the same thing but with taking an objective into account. We
look to apply such methods is in future.

So in scenario 4, to have a stabilized controller we integrated
the pre-described trajectory modifier to the system according
to configuration of Fig.2. Transitions are done with less
actuator input jumps and the laws in flight control have made
the robot hopping robustly on a flat terrain. But depending on
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the system, outputs when feed forward block generates desired torques and
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trajectory following, but it can not stabilize the system forever (we consider
150s of simulation). It also results in stiff and sensitive performance.

attack angle coefficient µ of (16), it attains average speeds
different than the nominal one (the larger the µ , the smaller
the average speed). The robot could hop continuously on

1- A rough terrain (Fig.1) with σ = 4.06cm (Assuming z ∈
N(0,σ2) is the terrain height, sampled every 2.9 cm, note
that the normal length of the leg is 29 cm.

2- Slopes up to 20◦.
The response of the system in scenario 4 is similar to

the next scenario (Fig.4) in shape of trajectories. What we
expected in this stage from the robot was to show robustness
on flat terrain and also rough terrains as it is necessary for
integration of the high level controller.

To reach arbitrary desired speeds, we use a SOC high level
controller in scenario 5. This controller changes attack angle
as in Eq.(16) to reach the desired speed. The time-response of
the system after integration of the regulator is shown on Fig.4.
• On the top plot of Fig.4 showing energy, our controller

consumes more energy mostly in flight phase due to Raib-
ert’s law and desired arc shape trajectory. But in stance,
using our state of the art projected inverse dynamics
method, we can work nearly optimally, imitating the off-
line optimal solution. This plot shows that our approach is
promising for those who are looking to make their robot
energy efficient.

• Remember the discussion on the inertias of base and
leg. Generally we expect a constant φ̇ during the flight
phase because of ballistic behaviour. However, you can
see great change of base attitude resulted from actuation
of hip joint to reach the desired attack angle in Fig.4. This
actuator in fact consumes more energy than the prismatic
one.
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Fig. 4: Steady state response of scenario 5 in Table.I. Soft transitions are
observed from phase to phase and also desired trajectories are modified in
flight phase so as to stabilize the system. SOC is responsible for reaching the
desired average speed which is the same as optimal solution here. Note the top
plot showing energy (COT). Mostly in flight phase, our controller consumes
more energy compared to the nominal profile. This extra energy is the cost
we pay to stabilize the system by changing the nominal off-line solution.

Our closed loop controller (in scenario 5) consumes about
4.21 J of energy per cycle at the speed of nearly 14.5 cm/s,
compared to the optimal one which is 3.16 J. The results of
testing the high level controller over different slopes and given
different desired speeds is shown in Fig.5. The controller can
perfectly reach average speeds around the optimal solution.
Feedback gains need retuning to perform reliably in other
regions.

The general trend in first scenarios is to use computationally
heavy methods to sustain the off-line solution found by
optimizations. But we use simpler basic methods in more
complex controllers with motivation to implement them on
a real robot which works on-line. It remains stable if we
interpolate the optimal solution linearly instead of using Spline
method which is computationally expensive. Our controller has
intrinsically more compliant environmental interactions due to
integration of inverse dynamics. The robot is hopping robustly
on different terrains in simulations while being nearly optimal
as it imitates an off-line periodic solution optimized for energy.
See http://biorob.epfl.ch/page-80131.html for movies of all
scenarios.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, a method is proposed for the control of legged
robots. This method takes dynamics of the robot into account
to have better nominal tracking of the desired trajectories
and more compliant environmental interactions at the same
time. We have incorporated also natural dynamics of the robot
into the system by using off-line calculated gaits extracted
from optimizations on energy. The main control loop in
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Fig. 5: SOC performance for various (average) speeds over different slopes.
Red stars show test points where the robot is stable, blue circles show
the performance and the green one shows the off-line solution. In case of
horizontal red-blue location mismatch, the controller has a steady state error.
The horizontal width of a circle shows the variance of steady state average
speed, measured in the second half of a 150s simulation hop by hop, when
the controller is stabilized enough. The vertical width shows nothing. The
controller can perfectly reach average speeds around the optimal solution, but
needs retuning to perform reliably in other regions.

this method consists of a feed-forward block that generates
actuator torques given desired trajectories and also a feedback
block designed and tuned specifically for the structure of the
robot. A trajectory generator uses known optimal trajectories
together with some control laws that essentially modify these
trajectories to have robustness on different terrains.

The platform of the interest in this work is the well-known
planar monopod hopper modelled and studied in previous
works to study leg dynamics and control. The specific problem
with this system is two-folded; on one hand this is an under-
actuated system in stance and has flight phase where there is
no contact with the ground to control the robot through the
contact forces. We simulated our method on such robot with
two actuators and five degrees of freedom. On this robot, we
could also integrate a high level controller that made the robot
capable of performing well on sloped or considerably rough
terrains.

Overall, our method shows good tracking performance on
our monopod robot. There are two mechanisms that help the
robot having more compliant interactions with environment.
First, it uses pre-optimized trajectories that contain natural
dynamics of the robot. Second, having a feed-forward term
in the loop helps to rely less on stiff reactions of the PD
controller. The same performance is obtained with at least
10 times smaller gains. The core feed-forward method also
takes advantage from a pseudo-inverse method that basically
calculates actuator torques inducing optimal contact forces.
Different steps are considered in designing the controller.
However, to make the approach real time and implementable
on a real robot, using simpler basic methods in terms of
computation seem to have negligible effect on the performance
of robot, especially stability and optimality.

B. Future Works

In developing and tuning process of this method, it will
be more straightforward if better methods are used for feed-
back design. In addition, we will verify this method on the



TABLE I: Comparison of different scenarios used in experiments. First block shows different methods and segments used in the controller of a scenario. The
second block shows the performance of that controller, as tested in simulation experiments.

Scenario 1 2 3 4 5
Feature open-loop pure feed-forward +feedback +traj. modifier(speed≈3.2 cm/s) +regulator(speed≈14.5 cm/s)

trajectory interpolation - spline spline linear linear
stance phase controller - fwd fwd+fb fwd+fb fwd+fb
flight phase controller - fwd fwd+fb fb fb

soft transitions - no no yes yes
Raibert’s law no no no yes yes

arc shaped foot trajectory no no no yes yes
stability no no no yes yes

rough terrain (max σ ) - - - 4.06cm 2.32cm
sloped terrain - - - −45◦ to 20◦ −35◦ to 15◦

following a desired speed no no no no yes

real monopod robot as well. The next step is applying this
algorithm to a biped and then a quadruped. In such robots,
the sequence of phase changes could differ from nominal
trajectories, which makes the control problem sophisticated.
However they have less problems with under-actuation and it
is easier to formulate the problem.
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