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This study investigates the use of interface Peclet number P = w/(D,/V;;,), to determine the interface width
(w) used in phase-field simulations, where D; is the liquid diffusivity and Vj;, is the tip velocity. The max-
imum simulation interface width (w;,,qx) under varied growth conditions was analysed via convergence
analysis and it was found that there is a limit of P for the maximum interface width at various velocities.
Converged results can be obtained only when w < wy.x =0.075D/V;ax Where Vo is the maximum
growth velocity during transient solidification. The effect of the inclusion of finite solid diffusivity on
the P limit in selecting wpq was analysed, and little influence was observed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dendrites are one of the basic microstructural patterns in solid-
ified materials [1,2]. Due to the complex evolution of the solid/li-
quid (S/L) interface morphology during dendritic growth, the
phase-field (PF) method is now commonly used to simulate den-
dritic growth because it circumvents the direct tracking the S/L
interface. The PF method introduces a new variable ¢ to distin-
guish different fields [3]: ¢ = +1 in solid, ¢ = —1 in liquid, and inter-
mediate values correspond to the S-L interface. Thus, the S/L
interface is treated as a diffuse field with a non-zero width (w).
Various PF solidification models have been developed for binary
[4-12], ternary [13-19] and multi-phase [20-26] alloys.

Quantitative predictions using real physical length and time
scales remain a major challenge, however, because both the diffuse
interface width (w) and the characteristic interface kinetic time
scale (t) are nano-scale; w is a few angstroms and 7 is roughly
the ratio of w and the thermal velocity of atoms in the liquid
[27,28]. In contrast, diffusive solute transport in bulk phases occurs
on microscopic length and time scales, which are several orders of
magnitude larger than w and 7. Spanning from nano-scale to mi-
cro-scale length/time scale in phase-field simulations is computa-
tionally impractical.

To improve the calculation efficiency, a larger interface width,
i.e. w>w", is needed in PF simulations and the key is to maintain
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the Gibbs-Thomson relation and the mass conservation at this
expanded interface. Karma and Rappel [29-31] presented a thin-
interface asymptotic analysis for pure systems with equal diffusiv-
ities in both the solid and liquid phases to define the PF parameters
that ensure the maintenance of the Gibbs-Thomson relation and
the mass conservation. In alloys, where the ratio of diffusivities is
usually very small, the finite width of the interface traps solute
artificially, leading to erroneous results. Karma [8] introduced an
anti-trapping current to suppress the artificial solute trapping,
which was also evaluated by a similar thin-interface analysis. La-
ter, Echebarria et al. [9] extended this to the directional solidifica-
tion. The thin-interface analysis corrects for dependencies within
the solution that is linear in the expansion parameter w/dy, where

dy is the solutal capillary length scale, defined as dy = 7#51’“
o CY(1-ke

where Iy is the Gibbs-Thomson coefficient, m, is the liquidus
slope, k. is the equilibrium partition coefficient and C? is the liquid
composition at isothermal temperature. The magnitude of d, is on
the order of 1078 m. Second and higher order dependencies re-
main, which implies there is an upper limit of w, beyond which
the simulation results will not converge to the correct result.

The interface width w is selected using a “capillary selection cri-
terion” (the value of w/dp). Various values of w/dy have been used
in the literature to select the interface width in phase-field simula-
tions, as listed in Table 1. In the various cases, the validation of the
selected w/d, value was made by comparing the calculated results
with the predictions of Gibbs-Thomson relation [8] or the Mullins-
Sekerka instability calculation [9], or by performing a convergence
study [9]. It should be noted that the values of w/d, are much
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Table 1

Values of w/dy used in selecting interface width in phase-field simulations.
w/dgy Methods used to validate the selection of w/d, values Refs.
1.83 Compare with Gibbs-Thomson relation [8]
3.6 Compare with Gibbs-Thomson relation [8]
9.025 Compare with Mullins-Sekerka instability [9]
38.0 Convergence analysis [9]
54.0 Convergence analysis [9]
72.1 Convergence analysis [9]

larger than one, which deviates from the expected range for an
expansion parameter. Also, w/dy spans a large range, from 1.83
[8] to 72.2 [9], as listed in the table. In particular, no limit to the
maximum interface width (Wy,q/do) is implied by the capillary
criterion.

Dendrites do not grow under steady-state condition but under
transient growth condition in practice. Under conventional casting
conditions, the dendrite growth velocity is highest near the chilling
wall, and decreases with distance from it [32,33]. The dendrite
growth velocity varies significantly with position in a weld pool
[34]. To select a proper interface width to simulate the transient
dendrite growth, the w/d, criterion becomes insufficient because
this criterion is not related to the solidification condition under a
certain alloy system.

Echebarria et al. [9] suggested the possibility to use the inter-
face Peclet number P = w/(Dy/Vy;,), where Dy is the liquid diffusivity
and Vy, is the tip velocity, as a small expansion parameter, to sub-
stitute the role of w/dy, in the thin-interface analysis. The P crite-
rion can correlate the interface width with growth velocity (V).
However, this option was not pursued in their derivation because
of the interface stretching and surface diffusion terms appearing
at second order and third order in an expansion in the interface
Peclet number. In this study we examined the limit of the interface
Peclet number to the maximum interface width through numerical
simulations instead. It should be pointed out that using the inter-
face Peclet number to select an interface width prior to the simu-
lation is limited because Vy, is not known a priori. In such a case,
the interface Peclet number criterion can be used to evaluate the
appropriateness of the selected interface width. As an extended
application for modelling solidification in Fe-C alloys, the effect
of solid diffusivity on selecting P limit corresponding to the maxi-
mum interface width was also investigated.

2. Methods description
2.1. Thin-interface phase-field solidification model

In this section, the PF model is summarized, and we refer the
interested reader to the original article for further details [9,10].
The phase field variable is ¢; ¢ =+1 in solid, ¢ = —1 in liquid, and
it changes from +1 to —1 across S/L interface. For a dilute binary al-
loy under isothermal solidification, the PF governing equations
consist of solute diffusion equation and phase field equation. The
solute diffusion equation without convection is based on Fick’s
law, expressed as:

-V a@Dive 1)

where C is the solute concentration, ¢ is time, and V is the gradient

operator. q(¢)D; is the solute diffusivity for the entire solidification

domain; q(+1) = D,/D, in solid, q(—1) = 1 in liquid. We next define

the dimensionless variable u as:

u=I——; < 0_ 0 (2)
(G +C)/2+h($)(C - C)/2]

where (7, C? is the equilibrium solute concentration in liquid and
solid at the isothermal solidification temperature, and it has
C? = k.C}. The interpolated equilibrium composition C° across the
entire solidification domain is (C? + C?)/2 + h(¢)(C? — C?)/2 with
the interpolation function h(¢) defined below. Eq. (2) shows that
u is a measure of the deviation of solute concentration C from the
equilibrium concentration C°. Then, Eq. (1) becomes:

§V~h@uw

0
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2
To reduce the artificial solute trapping, an anti-trapping term
was added and Eq. (3) becomes:
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with the anti-trapping current term expressed as:

. a v
Ju = —a(@)w(1 — ke)CP uai(f ﬁ ;

with a(¢) described further below. The anti-trapping current is pro-
portional to the interface width w and 9¢/dt that implies the veloc-
ity of every point, and is related to equilibrium partition coefficient
k.. See [9] for further details.

The phase-field evolution equation is given as:

¢

o 2 3
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where 7 is the characteristic kinetic time constant and 2 is a dimen-
sionless parameter that relates the phase-field length scale (w) to
the physical length scale (dp). To correctly describe the S-L interfa-
cial energy, 4 = a;w/dp is established, where a, is a constant with
the value dependent on the definition of the interpolation function
h(¢) in Egs. (3) and (4).

The thin-interface limit analysis is performed to define the
interface width w and the magnitude of the anti-trapping term
a(¢) in the governing equations to recover the Gibbs-Thomson
relation and reduce the artificial solute trapping by assuming zero
solid diffusivity. In [9], g(¢) is expressed as:

(1-9¢)

q(¢) = Tk —(1-k)o (7)
If we choose h(¢) = ¢, then w and a(¢) satisfy:
w?
poafi-a ] ®)
a() == ©)
S 2V2

where B is the kinetic attachment coefficient, a; =0.8839 and
a, =0.6267

Anisotropy for the cubic symmetry crystal is considered in sim-
ulations. The S/L interfacial energy is y,, = ya, with the anisotropy
term, a,, expressed as:

4 4 oph
ny + 1y + 15

p=1-36 +464 X ———"———
(nZ +n2 +n2)

(10)

where &4 is the strength of anisotropy. ny, n, and n, are the Cartesian
components of the crystalline direction in the reference frame. The
anisotropy is incorporated into the phase-field model by defining
W =woa, and T = Toa? [31].
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Fig. 1. Adaptive meshes in the in the growing dendrite. Red region represent the
solid, grey region the liquid, and otherwise the interface. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

2.2. Numerical implementation using adaptive meshing algorithm

A developed code for three-dimensional (3D) PF simulations
was used in this study, in which finite element method was used
to solve the partial differential equations, i.e. Egs. (4) and (6). How-
ever, to save calculation time and to compare with other simula-
tions in the literature, we preferred two-dimensional (2D)
simulations. The transition from the 3D to 2D due to the refine-
ment in one direction were observed [1], and therefore thin sam-
ples with L, =L, > L, were used to realize 2D simulations. L, and
L, were chosen to be long enough for the dendrite to grow freely
to steady state. Simulations started with an initial seed with
radius ro = 22dg and thickness h = 25d, growing in a supersaturated
melt with initial concentration C,, .The supersaturation, i.e.
Q= (C"-C..)/[C’(1 — k)], varied from 0.45 to 0.60. The equilib-
rium partition coefficient of the alloy was 0.15, i.e. k. =0.15, and
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four-fold anisotropy coefficient ¢4 = 0.02 was used. In the calcula-
tions, time step was At = 0.01t, where T = a;a,/w? /D, with vanish-
ing kinetics according to Eq. (8).

Because the variables, ¢ and C, changed rapidly only in a narrow
region around the interface, the field equations were solved on an
adaptive grid to improve the calculation efficiency. The refinement
criterion in the simulations is based on a local error estimator that
is sensitive to variations in the gradients of both field variables. A
detailed description of the adaptive meshing technique and the
validation of the error estimator can be found in Refs. [35,36]. In
the simulations, the maximum grid spacing (AxX)mex €quated h
and the minimum grid spacing (Ax)mi» was in the range of (0.4/
1)w to assure numerical convergence.

Fig. 1 provides an example of the adaptive meshing setting in
the numerical tests. €2 = 0.55 and w = 5d, in this case. In the figure,
the maximum grid spacing (AX)mnax = 5w, the finest grid spacing
(AX)min = 0.625w, and the refinement level is 3. As shown in
Fig. 1, the field of the finest grids is about 15w in width, which is
not a broad region. A comparison was made between the results
using adaptive grids and those using fixed grids in which
AX = (AX)min = 0.625w. At time t=400t, the tip radius obtained
using adaptive grids is 21do, within 2% of Ry =20.7d, obtained
using fixed grids, indicating that the adaptive meshing algorithm
in simulations could lead to creditable simulation results even
when the finest grids are only in a narrow region. The narrow re-
gion of the finest grids in this case was due to the use of high Q
in the simulation which led to the high growth velocity meaning
the concentration varied in a narrow region based on Dy/Vy,.

Steady-state tip radius and tip velocity were computed for the
various cases. Fig. 2 shows the typical evolution of the tip radius
and tip velocity with time. In the example case, the supersatura-
tion is 0.55 and the interface width is 5do. As shown in Fig. 2, the
tip radius increased with time while the tip velocity decreased
with time until the steady state was achieved. The selection con-
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Fig. 2. Evolution of (a) tip radius, (b) tip velocity and (c) selection constant with time. The supersaturation is 0.55 and the interface width is 5d, in the simulation.
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and Vi, The result is shown in Fig. 2¢, where we see that (as is
commonly observed) ¢* reaches a constant value well before the
tip velocity and radius reach their steady state values. We use
the steady-state tip radius and tip velocity to examine the conver-
gence behaviour as a function of the simulation parameters.

3. Using interface Peclet number to determine the maximum
simulation interface width

3.1. Issues with the w/d, criterion to find the Wy

Convergence analysis is done to assess the calculation accuracy
by examining (1) concentration profile, (2) tip radius and (3) tip
growth velocity. The solute concentration in the solid part at the
point x = 800d, of the dendrite growing at the supersaturation of
0.55 was calculated using different simulation interface width
(w) varying from 1.8d, to 10do. x = 800dy is about the middle point
of the solidified steady-state dendrite. The calculated lowest con-
centration is 0.139C? when w is as small as 3.5d, the calculated
largest concentration is 0.147C] at the largest w, and accordingly
fluctuation is within 6%. Therefore, the convergence analysis in sol-
ute concentration reveals that the result of solute concentration is
not sensitive to the simulation interface width in the range from
1.8dy to 10d,. This is attributed to the inclusion of the anti-trapping
term in the solute diffusion equation of Eq. (4) [8,9].

The calculated steady-state dendrite tip radius (Ryp) vs. simula-
tion interface width (w) is shown in Fig. 3 (solid line with square
symbols) for Q =0.55. The results converge well when the inter-
face width is smaller than 6.25d, with a convergent value around
21d, and the fluctuation in this range is less than 5%. A sudden in-
crease can be observed at w = 7.2d of Ry, = 25d with a 19% varia-
tion. The calculated tip radius continues to increase with w
increasing and reaches as high as 36d, at w = 10d,. The plot of stea-
dy-state tip velocities (Vi) using different w is also shown in Fig. 3
as solid line with sphere symbols. The convergent value is about
0.015D,/dy when w < 5dy and the fluctuation in this zone is less
2%. The tip velocity suddenly increases to 0.018D,/dy with a 20%
variation at w = 5.5dy and then decreases with a sharp slope when
w increases.

Based on the results described above, it can be observed in Fig. 3
that w limit of convergence in tip velocity is smaller than that in tip
radius. At Q =0.55, the tip velocity at w = 5.5d, deviates from the
converged value by about 20% increase, while the calculated tip ra-
dius remains accurate. The Ivantsov transport solution suggests
that RypV4ip should be roughly constant [37], but the solution ob-
tained by phase-field simulation at w = 5.5d, deviates significantly.
Furthermore, the increase in calculated tip velocity means the
decrease of D;/V,, which is due to the use of the larger w. Interface
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Fig. 3. Calculated steady-state tip radius and tip velocity at different interface
width.
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Fig. 5. Calculated Vj;, vs. w at different supersaturations €.

Peclet number is expressed as P=w/(Dy/V;;) and therefore a sud-
den jump would be observed at w=5.5dy corresponding to the
jump in velocity, which will be discussed further below.

Fig. 4 shows the calculated Ry, vs. w at different supersatura-
tions. For each ©, the obtained Ry, converge well at small inter-
face widths and then increase sharply. The convergence limit of
w is 12dy at Q =045, 8.4dy at Q=0.5, 6.25dy at 2=0.55 and
then decreased to 4.0dy at €2 =0.6. Fig. 5 shows the plots of Vy,
vs. w at different supersaturations. The obtained growth velocity
increases with higher supersaturation €2; the tip velocity at
Q=0.6 is about 5 times as that at Q=0.45. Under a certain €,
the obtained steady-state tip velocity converges well at small
interface widths, then increases to a peak value which is obvi-
ously different from the convergent value, and decrease with
the increase in w. The convergence limit is 10.5d, at € =0.45,
7.2dy at 2=0.5, 5dy at Q=0.55, and decreases to 3.0dy at the
highest Q=0.6.

The maximum interface width (w;,,4x) is the limit of the conver-
gence zones in tip radius and the tip velocity to simulate the den-
drite growth accurately. By this measure, Wy,;qx = 10.5dg at Q2 = 0.45,
Wpax = 7.2dg; at 2 =0.5, Wy = 5dg at 2 =0.55, and wWy,qx = 3.0dg at
Q =0.6, which is shown as a dashed line in Fig. 5. It can be seen
that after the limit, a sudden increase in tip velocity is observed
for each Q. Fig. 5 illustrates that the maximum interface width in-
creases with the growth velocity decreases. Then there needs a
parameter that can limit w,,, even under the relatively low
growth velocity.

The growth velocity of the dendrite varies with solidification
time. As shown by the above results, wy./do decreases with the
growth velocities increase, meaning that w;,, should be selected
according to the maximum growth velocity. It is impossible to
use w/d, criterion to select the maximum interface width for the
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transient dendrite growth because w/dy criterion has no link to the
growth velocity. By contrast, the interface Peclet number, P =w/
(DifViip), is related to the growth velocity. Thus the question is:
can a value be used to select maximum simulation width for tran-
sient dendrite growth using the interface Peclet number P = w/(D,/
Vem)?

3.2. Using interface Peclet number P =w/(D//Vyp) to determine the
Wmux

Echebarria et al. [9] expressed the possibility to use the inter-
face Peclet number, P =w/(D/Vy;,), as a small expansion parameter
in the thin-interface analysis. Because of the interface stretching
and surface diffusion terms appearing at second order and third or-
der in an expansion in the interface Peclet number, this choice was
not derived mathematically. In this study, the feasibility of using
interface Peclet number to select the interface simulation width
will be analysed by examining numerical simulation results.

The calculated steady-state tip velocity as shown in Fig. 5 are
plotted against the interface Peclet number (P) in Fig. 6. It should
be mentioned here that the larger P in Fig. 6 corresponds to larger
interface width w in Fig. 5 under each supersaturation. The plot of
Viip vs. P has the same trend of the plot of V;, vs. w; the obtained tip
velocity converges well at small P and goes to a peak value outside
the convergence zone. Again, a dash line was drawn as the bound-
ary of the convergence zone. As shown in Fig. 6, the convergence
limit of P is around 0.075 for 2 =0.55 and Q = 0.6, corresponding
to w=>5dg and w =3d, respectively. At Q=0.5 the convergence
limit of P decreased to 0.067 and continuously decreased to
0.054 at Q=0.45. The results show that the P limit slightly de-
creased with the growth velocity decreased, opposite to the w/dg
criterion. Importantly, P=0.075 is its limit; when P> 0.075, the
simulation results become unreliable.

Compared to w/d,, it makes more sense to use P = w/(D;/V;;) as
an expansion parameter because the limit of P is comparable to
zero with the value of 0.075 obtained by the above numerical re-
sults. When P > 0.075, the solution dependent on the non-linear or-
der on P could not vanish and the PF simulation results only
consider the linear order will largely deviate the accurate results.
P is proportional to the growth velocity at constant w and D,, indi-
cating that the simulation interface width used should change sig-
nificantly when the velocity changes greatly. This explains why the
value of w/d, spans a large range in the literatures, as shown in Ta-
ble 1. To examine the selected interface width w is within the P
limit, P values were calculated for the cases in Table 1 and are
shown in Table 2 plus the P values in Ref. [1]. It could be seen that
the P values chosen around the limit we obtain in Fig. 6. Having the
P limit in mind, it is straightforward to select the maximum inter-
face width for the transient dendrite growth; w < wy. = 0.075D,/
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Fig. 6. Calculated V,;, vs. P at different supersaturations €2 .

Table 2

Values of P used in selecting interface width in phase-field simulations.
P w/dg Validation methods Refs.
0.027 1.83 Compare with Gibbs-Thomson relation [8]
0.051 3.6 Compare with Gibbs-Thomson relation [8]
0.030 721 Comparison with Mullins-Sekerka theory [9]

Convergence analysis

0.040 36.1 Comparison with experimental data [1]
0.075 36.1 Comparison with experimental data [1]

Vinax Where V4, is the maximum growth velocity during transient
dendrite growth.

4. Effect of finite solid diffusivity on the P limit in selecting the
maximum interface width

P =w/[(Dy/Vyp) does not include the expression of solid diffusiv-
ity (Ds) and the effect of Ds on the P limit is important to select
the maximum interface width for Fe-C alloys. An extension of
Karma'’s thin-interface model [8,9] was proposed by Ohno and
Matsuura (OM) [10] to include the solid diffusivity. In OM
extension, Egs. (7) and (9) are modified into:

(- +kB(1+4)

1) =T = -k)o an
_ _ _ 1 Ds _ _

a(d) = (h(¢) = 1][1 = a($)] — x(s)lke 5 — a(H)][1 — ()] (12)

V2(¢? - 1)

with the solute flux term in solid y(s) = 2(9,Us| ~)/va, where
(0,U4 |”°) is the solute flux going into the solid and v, is the growth
velocity normal to the interface. One problem with this model is
that prior knowledge of x(s) is needed to use as input in simulation.
However y(s) is an output of the simulation. In the numerical tests
by OM, y(s) was assumed to be zero [10,25]. When this assumption
is made, two issues arise: (1) can one still recover the Gibbs-Thomson
relation with a thin-interface width? and (2) will this change the
P limit in selecting the interface width? To examine these issues,
isothermal simulations were carried out with different Dy/D,,
including Ds/D;=0.001 of the same order of Al-Cu alloys, D/
D; = 0.1 of the same order of Fe-C alloys and Dy/D, = 1 of the symme-
try in solute diffusivity in the solid and liquid.

Fig. 7 shows the dendrite tip concentration predicted by OM
extension and by Gibbs-Thomson relation using the interface Pec-
let number P =0.055 at D/D; = 0.1. The evolution of C, calculated
by the Gibbs-Thomson relation is shown in dash line; the tip ra-
dius Ry, was obtained by PF simulation where the interface width
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Fig. 7. The dendrite tip concentration predicted by OM extension with P=0.055
and by Gibbs-Thomson relation.
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Fig. 8. Calculated Vj;, vs. P at different solid diffusivities Ds/D;.

w=4dy was used. The tip concentration calculated by the OM
extension is shown as black solid line; the tip position and tip con-
centration were obtained at times t =50ty — 6007y with the time
interval At=50rt. It can be seen that the predicted dendrite tip
concentration agrees well with that obtained by Gibbs-Thomson
relation of 2% disagreement, indicating that this model can recover
the Gibbs-Thomson relation using a thin-interface width of
P=0.055 although the assumption y(s)=0.

Convergence analysis for different Dy/D,, including 0, 0.001, 0.1
and 1.0, were subsequently performed. Fig. 8 plots Vj;, vs. P for dif-
ferent D,/D,. The convergence analysis in tip growth velocity is pre-
sented here rather than that in solute concentration and the tip
radius because the calculated growth velocity goes beyond the
convergent value first among these three quantities. As shown in
Fig. 8, under the isothermal solidification with the same supersat-
uration, the growth velocity decreases with the Dy/D, increasing.
Furthermore, the degree of the decrease is not obvious even D,/D;
is as large as 0.1 and obvious decrease could be observed at D/
D;=1.0. A line was drawn to distinguish the convergence zone. It
can be seen that this line is almost vertical to the x-axis, indicating
that the P limit at non-zero D,/D; is the same as that at zero Ds/D,. It
indicates that the consideration in solid diffusivity has little influ-
ence on the P limit to select the maximum interface width.

In our simulations, we assumed that y(s) = 0 even for non-zero
Ds/D,. If the dependence of y(s) does not vanish as the interface
tends to be zero, setting y(s)=0 will lead to an inaccurate result
even when a nano-scale interface width is set. We have carried
out a mathematical derivation that shows that the terms related
to y(s) does vanish, which will be presented in another paper.
Here, we examined the convergence behaviour of the model with
finite D/D,. The result is presented in Fig. 8, where we see that
the upper limit for P is the same as for Ds = 0.

The results shown above give a limit of the interface Peclet
number P within the convergence zone at varied growth velocities.
Simulation results within the convergence zone can be obtained
only when P < 0.075. The inclusion of the solute diffusion in solid
has little influence on the limit value of P. It indicated that when
choosing the simulation interface width for simulating dendritic
growth under transient growth conditions, the maximum interface
width needs to be selected based on the highest growth velocity to
obtain accurate results.

5. Conclusions

This study explores the use of interface Peclet number (P),
P=w/(D)/Vyp), to determine the maximum simulation interface
width for a thin-interface phase-field model. It was found that sim-
ulation results within the convergence zone can be obtained only
when P < 0.075. This reveals that a maximum interface width for
the transient dendrite growth is Wy,q < 0.075D;/Viax Where Vigy
is the maximum growth velocity. The inclusion of the solute diffu-
sion in solid has little influence on the limit value of P.
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