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FOREWORD

Electricity is the driving factor of the modern world. Humanity is demanding more and
more energy as the demand for better life quality, and industry development is increasing.
The history of modern civilization begun more than one century ago when electricity
generators and infrastructure for electricity transmission were invented. As the demand
for electrical power has increased, the electrical power systems have been expanded over
large distances and become more complex. There has been, thus, a continuous need for
innovation to create more efficient and reliable components.

Recently, the electrical power systems have gone through a deregulation process, and
electricity market has been created aiming to stimulate competition, achieve fair electrical
energy price, encourage the investments for modernization and commissioning new power
plants, etc. However, the immediate effects of the electricity market were additional
problems in power system operation.

The limited conventional energy resources and the need for environment protection, on
one hand, and the advantages of actual robust simulation hardware and software tools, on
the other hand, encouraged the humanity to successfully exploit the Aeolian, solar, and
other nonconventional resources. The share of electricity generation from renewable
energy sources has significantly increased in the last years, and the targets are very
ambitious for the future. Largewind farms are developed onshore and offshore, resulting in
significant change in the generation pattern and thus changes in the power flow. Moreover,
under the increasing share of generation from renewables, changes in power flows may
sometimes occur quite often during one hour. This problem, in effect, requires strength-
ening the transmission grid.

The power system operators are, thus, facing bigger challenges than that in the past, such
as limitations in scheduling and handling generation resources due to the electricity
market, operation of the transmission networks close to their technical limits due to
difficulties in constructing new transmission facilities, and generation uncertainties due to
the intermittency and less inaccurate forecasts of the renewable energy sources, or even due
to natural forces like earthquakes and storms.

The major grid blackouts experienced in the last years prove that investments and
innovation are always required in the power system infrastructure, management, and
education. The operational manual of the ENTSO-E network has been updated in order to
prevent major incidents that occurred in the past due to permissive rules. In a strongly
interconnected continental power system, as it is the ENTSO-E network, collaboration
between power system operators based on clear rules is critical.

As a reaction to the technical issues of power systems, new concepts are under
development. It is expected that the new ideas for more intelligent electrical networks
(Smart Grids) and creation of continental supergrids may improve the power system
security while satisfying the customers’ needs as regards the quantity and quality. This may
be seen as a new era of electricity.
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This book is a successful collection of theories and applications, from modeling for
dynamic analysis, methods for stability assessment and control strategies that finally help
the reader to understand the causes and effects of power system blackouts and, on one hand,
to understand why some preventive actions are required in order to ensure appropriate
security levels and avoid the blackouts. The authors of this book, both from academia and
industry, are active specialists in CIGRE and IEEE-PES activities.

Education has been a critical ingredient for creating a sustainable electricity industry.
Investment in education is the minimum condition to create professionals.

Andr�e Merlin
President of CIGRE
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