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Harmonic Active Contours
Virginia Estellers, Dominique Zosso, Xavier Bresson, and Jean-Philippe Thiran

Abstract— We propose a segmentation method based on the
geometric representation of images as 2-D manifolds embedded
in a higher dimensional space. The segmentation is formulated
as a minimization problem, where the contours are described by
a level set function and the objective functional corresponds to
the surface of the image manifold. In this geometric framework,
both data-fidelity and regularity terms of the segmentation are
represented by a single functional that intrinsically aligns the
gradients of the level set function with the gradients of the
image and results in a segmentation criterion that exploits
the directional information of image gradients to overcome
image inhomogeneities and fragmented contours. The proposed
formulation combines this robust alignment of gradients with
attractive properties of previous methods developed in the same
geometric framework: 1) the natural coupling of image channels
proposed for anisotropic diffusion and 2) the ability of subjective
surfaces to detect weak edges and close fragmented boundaries.
The potential of such a geometric approach lies in the general
definition of Riemannian manifolds, which naturally generalizes
existing segmentation methods (the geodesic active contours, the
active contours without edges, and the robust edge integrator) to
higher dimensional spaces, non-flat images, and feature spaces.
Our experiments show that the proposed technique improves the
segmentation of multi-channel images, images subject to inho-
mogeneities, and images characterized by geometric structures
like ridges or valleys.

Index Terms— Image segmentation, edge detection, active
contours, Beltrami.

I. INTRODUCTION

IMAGE segmentation is a first fundamental step in many
applications of computer vision and machine learning

because it simplifies the understanding of an image from
thousands of pixels to a few regions. The goal of image
segmentation is thus to partition the image domain � into
homogeneous regions corresponding to individual objects or,
equivalently, to find the contours C that define the boundaries
of these objects. To that purpose, the segmentation of an
image is formulated as a minimization problem, where the
objective functional specifies the segmentation criterion and
the unknown variables describe the contours of the different
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regions. The level set method [6], for instance, adopts an
implicit parametrization of the contours as the zero-level set of
a function φ, which becomes then the minimization variable,
and writes the objective functional in terms of this level set
function.

Two representative segmentation methods within this
context are the geodesic active contours (GAC) of
Caselles et al. [3] and the active contours without edges
(ACWE) of Chan and Vese [4]. The GAC model proposes
an edge-based segmentation criterion and defines an objective
functional that weights the length of the contour with an
inverse edge detector. On the other hand, ACWE proposes
a region-based segmentation criterion that considers the char-
acteristics of the different regions, and defines an objective
functional that measures the variance of the grey-level values
within each region in the segmentation. Both segmentation
criteria can be combined and result in a segmentation method
simple and extensively used in imaging, for which fast convex
implementations [7]–[11] have been proposed recently. The
resulting methods are extremely fast and reliable for the seg-
mentation of cartoon-like images, but fail in the segmentation
of complex images with low contrast, inhomogeneities, or
ridge structures. To tackle these cases, more complex segmen-
tation criteria are necessary, and objective functionals based
on second order derivatives of the image along the contours
have been proposed by several authors [5], [12]–[14]. The
key idea of Kimmel and Bruckstein’s robust edge integrator
[5], [12], [13] is based on the observation that the direction
of the image gradient is a good estimator of the orientation
of an edge contour, and the segmentation criterion can be
improved by introducing a geometric term in the objective
functional that aligns the normal vectors to the contours with
the gradients of the image. With a level set parametrization of
the contours, the normal vectors to the contours are described
by n = ∇φ

|∇φ| , the robust edge integrator term of Kimmel and

Bruckstein becomes − ∫
C |∇ I · ∇φ

|∇φ| | and tries to align the

normalized gradient of the level set function ∇φ
|∇φ| with the

gradient of the image ∇ I along the contour C. The inclusion
of this alignment term in the objective functionals of GAC or
ACWE leads to more accurate segmentations, but the resulting
objective functionals are not convex and suffer therefore from
local minima and slow numerical minimizations. Figure 1(a)
illustrates the main idea behind this alignment term and
Figures 1(b)–1(c) the improvement it brings to GAC and
ACWE segmentation methods.

The method that we propose goes a step further and aligns
the gradients of the image ∇ I with the gradients of the level
set function ∇φ for all the level sets of the image, not only for
the evolving active contour C. This results in a functional that
is able to also exploit the alignment of the neighbouring level
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Fig. 1. Segmentation of gray-scale image subject to inhomogeneity with different methods. Initial level set set in red, final segmentation in blue. Figure 1(a)
illustrates the mechanism of the proposed alignment term for the zero-level set of φ (in red). (a) Alignment of image gradients and level set gradients for
the zero-level set of φ (in red). (b) Segmentation with convex GAC+ACWE of [15]. (c) Segmentation with GAC+ACWE and robust edge integrator [12].
(d) Segmentation with proposed HAC.

sets to pull the contours to the right position. Compared to the
robust edge integrator, we are able to detect new contours from
the alignment of the neighbouring level sets, which makes us
more robust to local minima and less sensitive to initialization.
A clear example is shown in Figure 1(d).

Our method also answers the question “how can we align
gradients and normal vectors in images with k channels?”
Generalizing the alignment term proposed by Kimmel and
Bruckstein to multi-channel images is not trivial because, by
considering images as vector fields in the image domain �, the
coupling of the different channels must be defined heuristically
[16]–[19]. The natural way to treat multi-channel images is
to interpret them as two-dimensional manifolds or surfaces
embedded in R

k+2 and make use of differential geometry to
define equivalent alignment terms. To that purpose, we develop
our method in the Beltrami framework, originally proposed for
color image denoising by Sochen et al. [1] and later extended
to image segmentation with the subjective surfaces of Sarti and
Sethian [2]. In that sense, our method introduces an alignment
term in the subjective surface model, in the same way that
Kimmel and Bruckstein introduced an alignment term in the
GAC model.

The proposed harmonic active contours (HAC) also include
region and edge-based segmentation criteria. Our objective
functional, however, is not a sum of alignment terms with
region and edge-based functionals, but is defined through
the embedding of different image features in the Beltrami
framework. In this framework, the objective functional of GAC
has been generalized to two-dimensional manifolds in the
subjective surfaces of Sarti and Sethian [2] by embedding the
gray-level values of the image and by defining the objective
functional as the weighted surface of the embedded manifold.
Our method presents then a generalization of GAC, ACWE,
and the robust edge integrator to higher dimensional spaces
by embedding image channels, region features, and level set
function and by defining the objective functional as the surface
of the embedded manifold. This functional offers three main
advantages. First, the alignment term between the normal
vectors to the contours and the gradients of the image is
naturally extended to all the level sets of φ, and exploits
the alignment of neighbouring level sets to overcome local
minima. Secondly, the definition of images as manifolds can
naturally include and handle multi-channel images and take
into account the coupling of the different channels. Thirdly,

the proposed formulation is easily generalized to non-flat
parametric manifolds [20] and feature spaces [21], where the
usual segmentation methods cannot be directly applied. The
prize to pay for these advantageous segmentation properties
is, of course, an increase in the computational complexity
of the mathematical model; for this reason, additional efforts
have been devoted to developing an efficient minimization
algorithm for the proposed objective functional. Compared
to our conference paper [22], we have further developed the
theoretical connections to existing methods, we propose a new
and faster algorithm for the numerical minimization, and we
have extended the experimental results.

The rest of the paper is organized as follows. Section II
reviews basic concepts of differential geometry and introduces
the Beltrami framework. In Section III we define our seg-
mentation criteria as a minimal surface manifold, specifying
the proposed embedding, features, and metric. Section IV
describes a fast numerical algorithm for the minimization
problem, and Section V shows experimental results. Finally,
conclusions are drawn in Section VI.

II. DIFFERENTIAL GEOMETRY IN IMAGE PROCESSING

In order to understand the Beltrami framework, it is neces-
sary to formalize two basic concepts of differential geometry:
smooth manifolds and the metric tensor. In this section we
review basic definitions of differential geometry to provide
the reader not only with the set of resulting equations, but
with a more intuitive understanding of the proposed geometric
segmentation model. We introduce the Beltrami framework
by particularizing the definitions to images in order to draw
connections with the previous literature. We refer the reader
to [23] for a more detailed description.

The simplest manifold that we can consider is a curve in
the plane, which corresponds to a one-dimensional manifold
embedded in R

2. Intuitively, a curve in the plane is a flexible
cord that can be straightened to locally look like the real
line R. Formally, we describe it by means of a smooth
parametrization between R and the embedding space R

2,
ensuring that there are no critical self-intersections in the curve
by constraining the parametrization to be locally invertible.
In order to measure the length of the curve, we consider its
trajectory in R

2 and measure length in terms of the usual
coordinates and scalar product of R

2. In this Section, we gen-
eralize these concepts to n-dimensional manifolds embedded
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Fig. 2. Left: stereographic projection of the sphere from the south pole.
Right: image of the Earth resulting from the stereographic projection.

in R
m, m > n. The definitions, however, just formalize the

previous intuitive explanation of a curve in R
2 (the manifold)

and how we measure its length (the metric).
Definition 2.1: M ⊂ R

m is an n-dimensional smooth
manifold in R

m if for every point p in M there is a local
chart (σ, U) satisfying

1) U ⊂ R
n and V ⊂ R

m are open sets with p ∈ V .
2) σ is a parametrization of M around p such that

σ : U ⊂ R
n −→ V ⊂ R

m

(u1, . . . , un) �→ σ (u1, . . . , un) . (1)

• σ is a differential function with rank J σ = n, where
J σ is the Jacobian of σ .

• σ : U −→ V ∩ M is an homeomorphism i.e it has
a continuous inverse function σ−1.

The collection of local charts {σ, U} of M is called an atlas.
The inherent idea of the definition is the same as for the

one-dimensional curve in R
2. The first point is only a technical

condition to ensure differentiability. The second condition
formalizes the idea that an n-dimensional smooth manifold is
something that locally looks like R

n and can be parametrized
with a set of differential functions (the atlas) that are locally
invertible (i.e., the manifold has no critical points associated
with self-intersections).

For instance, the plane R
2 is a 2-dimensional manifold

that can be parametrized with local coordinates (x, y) and a
single atlas {id, R

2}. A more interesting case is the sphere
S2 ⊂ R

3, a 2-dimensional manifold in R
3 which cannot be

covered by one single atlas and has curvilinear coordinates.
In this case we can construct an atlas with the stereographic
projections from the north and south poles, which cover all
the sphere except the projecting point. The stereographic
projection from the north pole, for instance, reads σ(x, y) =(

2x
1+x2+y2 , 2y

1+x2+y2 , x2+y2−1
1+x2+y2

)
. This is illustrated in Figure 21

and will be useful later.
In the Beltrami framework introduced in [1], images are

considered as 2-dimensional Riemannian manifolds embedded
in the so-called space-feature manifold. For a two-dimensional
grey-scale image defined over a rectangle � ⊂ R

2, for
instance, the manifold is parametrized with the following

1commons.wikimedia.org/wiki/File:Stereographic_Projection_Polar_Extreme

single chart:

σ : � ⊂ R
2 −→ � × R ⊂ R

3

(x, y) �→ (x, y, f (x, y)) , (2)

where f (x, y) is the grey level associated to point (x, y).
Assuming f to be differentiable, it is trivial to prove that
σ verifies the properties of a local chart and the image can
be considered a two-dimensional manifold M embedded in
a higher dimensional space M ⊂ � × R. The potential
of this geometric framework lies in the general definition
of the space-feature manifold and the choice of its metric.
The features are not restricted to scalar values but include
vector features encountered in color, texture, or multi-spectral
image analysis [24]. Similarly, the embedding is not lim-
ited to 2-dimensional space � and generalizes naturally to
n-dimensional manifolds associated with volumetric data or
time varying images. Moreover, the choice of the metric
enables the study of complex geometries inherent to scale-
space methods [25] and non-flat images from omnidirectional
cameras [20].

To measure distances and areas in the manifold M, we
require the concept of a metric, that is, a scalar product in the
natural vectorial space associated with the manifold.

Definition 2.2: Given an n-dimensional smooth manifold
M ⊂ R

m and p ∈ M, v ∈ R
m is a tangent vector to M

in p if there is a parametric curve γ : (−ε, ε) −→ M with
ε > 0, γ (0) = p and γ ′ (0) = v.

The collection of all tangent vectors to M in p is called the
tangent space TpM. It is easy to prove that TpM is a vector-
ial space of dimension n, with basis { ∂σ

∂u1
, . . . , ∂σ

∂un
} |u=σ−1(p).

As with the curve in R
2, distances in the manifold M are

inherited from the standard scalar product in the embedding
space R

m . This operation is known as pull-back of the metric
of R

m to the manifold, and it is denoted as the operator σ�.
Definition 2.3: For every point p ∈ M we consider the

vectorial space TpM ⊂ R
m with the inner product · induced

by R
m . The pull-back σ� on the metric of R

m results in linear
symmetric definite positive form Ip for every p ∈ M, that we
call the metric or first fundamental form of the manifold

Ip : TpM × TpM −→ R

(u, v) �→ u· v. (3)
Given a local chart (σ, U) and the basis { ∂σ

∂u1
, . . . , ∂σ

∂un
} =

{σ1, . . . , σn} of TpM, we can compute the expression of Ip

in that basis. The resulting n ×n matrix G� has entries g�
i, j =

σi · σ j . As a bilinear form Ip does not depend on the local
coordinates, but its matrix expression G� depends on the basis
used for TpM and, consequently, on the local chart.

In our previous examples, the plane is described by one
single atlas {id, R

2}, TpR
2 = R

2, and the metric reduces to
the identity matrix I2. The sphere S2, on the contrary, requires
multiple atlases and the induced metric with the stereographic
projection is the diagonal matrix G� = 4

(1+x2+y2)2 I2.

In the case of images with the parametrization defined in
Equation (2), we have {σ1 = (1, 0, fx ), σ2 = (0, 1, fy)} and
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the induced metric is given by

G� =
(

1 + fx
2 fx fy

fx fy 1 + fy
2

)

. (4)

Naturally, the distance between two points p1 = (x, y) and
p2 = (x +dx, y +dy) in the manifold is measured by the
length of vector −−→p1 p2 = v in metric G�. Therefore, the squared
distance between these two points is given by vT G�v = dx2+
dy2+(Dv f )2, where Dv f = ∇ f ·v is the directional derivative
of f in the direction v. As a consequence, two points in the
manifold are close if they are physically close in the coordinate
space and their grey level values are similar. In other words,
the notion of distance between two points in the image refers
not only to the spatial distance, but also to the information
available in the feature space. In this case, a scaling factor
α is usually introduced in order to bring feature and space
variables to the same scale.

To measure areas in the manifold, we recall first that,
given u, v two non-parallel vectors in R

3 the area of the
parallelogram they form is given by

√|u ∧ v| =
√

‖u‖2‖v‖2 − (u· v)2 =
√

det (u, v)T (u, v),

where (u, v) is the matrix of columns u and v. Consequently,
for a 2-dimensional manifold the area of a bounded region
R ⊂ M is measured by

∫

σ−1(R)

√
‖σ1‖2‖σ2‖2 − (σ1· σ2)

2 =
∫

σ−1(R)

√
det G�.

In general, for higher dimensional manifolds
∫
�

√
det G�

measures the hyper-surface of the manifold in its metric. As a
result, g� = det G� is defined as the squared hyper-surface
element on the manifold.

In the case of two dimensional grey-scale images, the
surface of the manifold is given by

∫
�

√
1 + α2|∇ f |2 and

reduces to a regularization term on the grey-level values
of the pixels. The role of the scale parameter α allows us
to consider different norms. If α → ∞, the 1 inside the
square root becomes negligible, and the energy approaches
the total variation regularizer used in image denoising. On
the other hand, if α → 0 the minimizing flow approaches the
isotropic heat diffusion. Intuitively, therefore, the hyper-suface
of the manifold associated with an image measures both the
smoothness in spatial and feature coordinates, and the weight
given to each coordinate space is controlled by the metric
parameter α.

For images with k feature channels f 1, . . . , f k , we make
use of Einstein’s summation convention2 to write the surface
element as g� = 1 + αi

2|∇ f i |2 + αiα j
[∇ f i ,∇ f j

]2
, which

takes into account the coupling of the different channels
in the surface measure. Indeed, the terms

[∇ f i ,∇ f j
] =

f i
x f j

y − f i
y f j

x correspond to the magnitude of the cross product
of the vectors ∇ f i and ∇ f j and measure the coupling of
feature channels f i and f j in terms of their gradients. As a
consequence, in [24] Kimmel noted that the determinant of
the induced metric works as a generalized edge indicator:

2Summation is assumed for variables with the same sub- and super-indexes

when the determinant of the metric has a value larger than
unity, it indicates the presence of a strong gradient on the
manifold; while a value close to unity indicates a region where
the manifold is almost flat. In the case of vectorial images,
this geometric view does not only exploit the gradient ∇ f i

in terms of its norm, but also in terms of its direction, that
is, it preserves the information on orientation to take into
account the coupling of the different image channels in the
definition of edges. In fact, this is the main advantage of
the Beltrami framework for image segmentation: it offers a
general tool for the evaluation of feature gradients in terms
of an image manifold regardless of the nature of the features
used.

Finally, the notion of metric and distances in M, allows
us to define differential operators on functions defined on the
manifold. The differential operators are then defined taking
into account the metric of the manifold G = (gi j ). For
instance, the gradient is defined imposing that the directional
derivative of function f in direction v, denoted as Dv f ,
verifies Dv f = ∇ f ·v with the scalar product defined with the
metric of the manifold. The gradient operator corresponds then
to ∇M f = gi j f j dui and the squared norm of the gradient of
a function is given by ‖∇M f‖2

M = gi j fi f j , where (gi j ) is
the inverse of the metric matrix G and fi = ∂ f

∂ui .

III. HARMONIC ACTIVE CONTOURS

We formulate our segmentation method as a minimization
problem. Our minimization variable is the level set function
that describes the contours of the segmentation, and the
objective functional is the surface of the manifold associated
with the image and level set function. Consequently the
minimizing function is an harmonic map: it can be interpreted
as a generalization of a geodesic curve to higher dimensional
manifolds and identifies our technique as an harmonic active
contour.3

In our experiments we consider two-dimensional images
defined in the plane, but the proposed method extends to
higher dimensional spaces and images defined on the sphere.
For this reason, we keep the initial formulation general and
particularize it later for two dimensions.

A. Proposed Manifold Metric for Robust Image
Segmentation

In our formulation, the segmentation is defined by the zero-
level set of a function φ and the segmentation criterion is
given by the contour of the features f 1, . . . , f k , which might
depend on φ. Both the features f 1, . . . , f k , and level set
function are defined in the same space manifold 
 as the
images, take values in R and are considered as differentiable
functions in 
. The space manifold 
 has coordinates u =

3Harmonic maps and harmonic functions are different but related concepts
in mathematics. An harmonic function is a twice continuously differentiable
function that satisfies Laplace’s equation. A map ϕ : M → N between
Riemannian manifolds is called harmonic if it is a critical point of the
functional

∫
M ‖dϕ‖2, where ‖ · ‖ is measured in the metric of the manifold.

When the target manifold N = R
n with the standard metric, then ϕ is an

harmonic map if and only if it is a harmonic function.
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(u1, . . . , un), with metric G = [gμν] on these coordinates.4

For instance, for a flat two-dimensional image, we have u =
(x, y), 
 = �, and G = I2; while for omnidirectional
images in the sphere, G = 4

(1+x2+y2)
2 I2 with the stereographic

projection.
We now make use of the Beltrami framework and consider

an n-dimensional manifold M associated to each possible
segmentation of the image. This manifold M is defined by
the following embedding into the space-feature 
 × R

k+1

σ : 
 −→ 
 × R
k+1

u �→ (u, f 1, . . . , f k, φ). (5)

Compared to previous approaches, our space-feature manifold
includes both image features and level set function in the
embedding. We keep the name “space-feature” manifold for
simplicity, but we point out that the inclusion of both level
set function and features is the key point that allows the
definition of an alignment term between the gradients of
the level set function and the gradients of the image.
We pull-back now the metric defined in M by space and
features together. In 
 × R

k+1 we consider the metric
⎛

⎜
⎜
⎜
⎜
⎜
⎝

G 0 . . . 0 0
0 α1 . . . 0 0

0 0
. . . 0 0

0 0 . . . αk 0
0 0 . . . 0 β

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (6)

which offers the following interpretation. The distances on
the coordinates u associated with the space manifold are
measured in the corresponding metric G of 
, which is
considered orthogonal to the features’ space. Similarly, the
different feature channels f i and the level set function φ live
in the Cartesian space R

k+1 and are considered orthogonal
to each other. We use the pull-back operator to induce the
space-feature metric (g∗

μν) on the image manifold M and
obtain

g∗
μν = gμν + αi f i

μ f i
ν + βφμφν. (7)

With the proposed embedding both the image features and
level set function are included in the induced metric, leading
to terms weighted by αi and β. Previous geometric schemes
for image segmentation [2], [25] include only the level set
function in the embedding and weight the surface element
by an edge detector in order to drive the active contour
to the edges of the image; this results in a generalization
of GAC to two-dimensional manifolds, but does not allow
for a region-based segmentation criterion. We avoid this
issue by introducing additional dimensions on the embed-
ding. The extra dimensions in the feature space, however,
do not affect the intrinsic dimension of the image mani-
fold M, which does not depend on the embedding but on the
space 
.

4To simplify notation, we use Greek indexes μ, ν to refer to space
coordinates in 
 and Latin ones i, j for the features. To that purpose also, the
usual gradient and norms are assumed in R

n and we specify with a sub-index
∇
 , ‖.‖
 any other case.

In this work we limit ourselves to 2-dimensional images,
i.e., u = (x, y) with g∗ = g∗

11g∗
22 − g∗

12g∗
21, and the squared

hyper-surface element reads

g∗ = g + αi ggμν f i
μ f i

ν + βggμνφμφν

+1

2
αiα j

[
∇ f i ,∇ f j

]2 + αiβ
[
∇ f i ,∇φ

]2
. (8)

In Equation (8), ∇ f is the gradient computed in coordinates
u, g is the surface element associated with the original
metric tensor (gμν) on 
, and (gμν) its inverse. If we take
into account the definition of differential operators in the
manifold 
, Equation (8) simplifies to

g∗ = g + αi g‖∇
 f i‖2

 + βg‖∇
φ‖2




+1

2
αiα j

[
∇ f i ,∇ f j

]2 + αiβ
[
∇ f i ,∇φ

]2
. (9)

This allows us to interpret the terms ‖∇
 f i‖2

 and ‖∇
φ‖2


 as
a simple measure of smoothness of the features and level set
function in the original metric of the space 
. On the other
hand, the terms

[∇ f i ,∇ f j
]2 = ( f i

x f j
y − f i

y f j
x )2 correspond

to the magnitude of the cross product of the vectors ∇ f i

and ∇ f j and measure the coupling of the different features
f i and f j . An equivalent term for the coupling of the level
set function and the different feature channels5 is present in[∇ f i ,∇φ

]2
. As these features are orthogonal to each other

in the space-feature manifold, their associated terms do not
involve the metric of the space manifold (gμν). In higher
dimensional spaces, the coupling terms generalize to the
magnitude of the exterior product of the gradient vectors,
that is, [∇ f,∇φ] becomes |∇ f ∧ ∇φ| and measures the area
of the parallelogram of sides ∇ f and ∇φ in the higher
dimensional space. For images in R

3, for instance, the cross
product [∇ f,∇φ]2 reads ( fxφy − fyφx )

2 + ( fzφx − fxφz)
2 +

( fyφz − fzφy)
2.

For images on two-dimensional manifolds conformally
equivalent to the Euclidean metric, i.e. whose metric matrix
is diagonal G = √

gI2, the squared surface element simplifies
to

g∗ = g + αi
√

g‖∇ f i‖2 + β
√

g‖∇φ‖2

+1

2
αiα j

[
∇ f i ,∇ f j

]2 + αiβ
[
∇ f i ,∇φ

]2
. (10)

This type of manifolds are commonly encountered in image
processing, from the usual images defined on the plane
(
√

g = 1) to non-flat images on the sphere (
√

g = 2
1+x2+y2

with the stereographic projection). In this paper, we focus our
analysis on images on the plane, (10) simplifies to

g∗ = 1 + αi‖∇ f i‖2 + β‖∇φ‖2

+1

2
αiα j

[
∇ f i ,∇ f j

]2 + αiβ
[
∇ f i ,∇φ

]2
, (11)

and efficient minimization algorithms can be developed. The
proposed variational model is valid for spherical images, but

5By the use of Einstein’s notation, αi β
[
∇ f i ,∇φ

]2
compactly summa-

rizes the sum of the coupling terms between each feature channel and the
level set function, which should otherwise be given by the explicit sum
β

∑

i=1,...,k

αi ( f i
xφy − f i

yφx )2. This justifies the use of Einstein’s notation.
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the resulting minimization problem is slightly more difficult
to solve, as will be explained in Section IV.

B. Segmentation as a Minimization Problem

We formulate our segmentation technique as the following
minimization problem

min
φ

∫

�

√
g∗. (12)

We claim that the optimal segmentation function φ corre-
sponds to the level set function that minimizes the surface of
the image manifold. Indeed, as can be seen in Equation (11),
minimization of the surface element aligns the gradients of
the level set function φ with the gradients of the embedded
features and, in fact, leads to a piece-wise constant level
set function. Let us analyse it in more detail. In regions
of the image where edge information exists, the gradients
of the features f 1, . . . , f k are large and minimization of
the cross-terms attracts the level sets of φ to the edges of
the image, the spatial gradient of φ increases, and the level
set function develops a discontinuity. On the other hand,
inside homogeneous regions the minimization is driven by the
smoothness penalty ‖∇φ‖, the level set function tends to be flat
because

√
g∗ ≈ √

1 + β‖∇φ‖2, and the objective functional
approximates total variation or isotropic diffusion depending
on the value of parameter β. It is interesting to analyse regions
in the image corresponding to weak edges and fragmented
contours. As discussed above, in regions with well defined
edge information, the level curves of φ accumulate and the
spatial gradient ∇φ increases. Due to the regularity constraint
on the level set function and the coupling terms

[∇ f i ,∇φ
]
,

the information about size and orientation of the fragmented
edge is smoothly extended from the neighbouring pixels, and
the level set function completes the missing boundaries.

The trade-off between gradient fidelity and level set reg-
ularity is controlled by the metric parameters αi , β, and the
segmentation criterion is defined by the choice of features.

C. Segmentation Criteria and Feature Definition

Contour-based segmentation is obtained by choosing the
features to be local image descriptors. In the easiest case, we
simply embed the pixel’s grey level or color intensities, but
more elaborate features like texture descriptors, or Wavelet
coefficients could be equally used. For simplicity, given an
image with channels I 1, . . . , I k̄ we define a set of edge
features f i (x, y) = I i (x, y), for i = 1, . . . , k̄.

At the same time, in order to detect objects that are
not defined by local gradients but by homogeneous regions,
we introduce region-based features. We adopt the piece-
wise constant instance of the Mumford-Shah model [26]
and approximate each image channel I i by a piece-wise
constant function with two constant values. To this purpose,
we define two image regions R+ = {(x, y)|φ (x, y) > 0} and
R− = {(x, y)|φ (x, y) < 0} and characterize them by the mean
values of the local features inside the region, μi+ and μi−. The
resulting region features partition the image into two regions

in terms of the zero-level set of the function φ, which results
in an implicit parametrization of our harmonic active contours.

For each channel, the associated region features are inspired
by ACWE and introduce the following region descriptor
associated to R+

f i+k̄ =
(

I i − μi+
)2

H (φ)= si H (φ) i = 1, . . . , k̄, (13)

where H (·) is the Heaviside function and f i measures the
variance of the intensity values of the image channel I i inside
the region R+. The region descriptor for R− can be included in
a similar manner, but we omit it here to shorten the equations.
Its treatment and minimization are analogous to the region
descriptor R+.

The proposed segmentation method combines contour and
region-based criteria by including both contour and region-
based features in the embedding; the segmentation features
are thus split into two sets, the original pixel intensity for
each image channel (I 1, . . . , I k̄ ) and the variance of its piece-
wise decomposition ( f 1, . . . , f k̄). To simplify notation, we
denote the set of image features as I 1, . . . , I k , f 1, . . . , f k

in the following. The resulting squared surface element then
reads

g∗ = 1 + αi‖∇ I i‖2 + γi‖∇ f i‖2 + 1

2
αiα j

[
∇ I i ,∇ I j

]2

+ αiγ j

[
∇ I i ,∇ f j

]2 + 1

2
γiγ j

[
∇ f i ,∇ f j

]2 + β‖∇φ‖2

+ αiβ
[
∇ I i ,∇φ

]2 + γiβ
[
∇ f i ,∇φ

]2
, (14)

where ‖∇φ‖2 controls the smoothness of the level set function,
‖∇ f i‖2 the smoothness of the region decomposition of the
image,

[∇ I i ,∇ f j
]2

measure the coherence between region and

contour criteria, and the key terms
[∇ I i ,∇φ

]2
and

[∇ f i ,∇φ
]2

the alignment between the level set function and the edges of
the original image and its region decomposition.

The parameters of the metric associated to each feature are
αi for the image channel I i and γi for its associated region
term f i . We can further simplify the metric to αi = α

mi
α

for the contour features and γi = γ
mi

γ
for the region ones,

where mi
α and mi

γ normalize the feature range of each channel
I i and f i . We have now three parameters controlling the
segmentation: α controls the contour criterion associated to the
edge detector of the image features, γ controls the region cri-
terion corresponding to a piece-wise constant decomposition
of the image and β regularizes the segmentation function φ.
The role of these parameters is illustrated in more detail with
several experiments in Section V, but can be summarized as
follows: the ratio α/β controls the weight given to edge or
region segmentation criteria, and β depends on the size of the
image’s structures to be segmented.

D. Relation to Subjective Surfaces and Anisotropic Diffusion

We analyse now the relation of the proposed technique
with existing geometric methods proposed in the Beltrami
framework [1], [2], [24], [25], [27] in order to understand the
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advantages of the proposed technique. For simplicity we limit
the analysis to two-dimensional images in the plane.

We start by reviewing the embedding and resulting metric
proposed for anisotropic diffusion and texture denoising in [1],
[24], [27], [28]. Given a multi-valued image in the plane with
features f 1, . . . , f k , the natural embedding for denoising is
given by

σ f : � −→ � × R
k

(x, y) �→
(

x, y, f 1, . . . , f k
)

. (15)

The metric induced in the image manifold is then

G f =
(

1 + αi f i
x

2
αi f i

x f i
y

αi f i
x f i

y 1 + αi f i
y

2

)

. (16)

The resulting surface element is given then by g f = 1 +
αi

2|∇ f i |2 + αiα j
[∇ f i ,∇ f j

]2
and works as a robust edge

detector. It measures the gradients of each feature channel and
defines the edges of the image considering both of the norms
of the gradients (terms |∇ f i |2 in g f ) and the coupling of the
different channels (terms

[∇ f i ,∇ f j
]
).

A similar geometric framework has been applied to segment
images in [2], where the level set function is interpreted as
a subjective surface. Sarti and Sethian in [2] substitute the
previous image features f 1, . . . , f k by the level set function
φ to define the embedding, that is,

σφ : � −→ � × R
k

(x, y) �→ (x, y, φ) . (17)

With the usual scalar product in the space-feature �×R ⊂ R
3,

the induced surface element in the image manifold is given by
gφ = 1+β‖∇φ‖2 and measures the area of the image surface.
In order to detect contours, the authors weight this surface
element with an inverse edge detector w (x, y) and minimize
the weighted surface of the manifold

∫
� w

√
1 + β‖∇φ‖2.

Consequently, this method is a generalization of GAC to
two-dimensional manifolds, as shown in [25]. An equivalent
formulation of this functional is obtained by weighting directly
the elements of the metric of � × R by the edge detector,
that is, considering the scalar product given by the following
symmetric positive semi-definite matrix

⎛

⎝
w 0 0
0 w 0
0 0 βw

⎞

⎠. (18)

The edge detector w is usually a simple function of the
image gradient, like w = 1

1+a|∇ I |2 , and exhibits none of the

properties of the robust edge detector g f used in diffusion.
However, embedding of the level set function φ in the defini-
tion of the manifold results in a segmentation technique able
to cope with weak edges or fragmented boundaries [2]. The
subjective surface model, however, does not include a region-
based term in the objective functional nor does it explicitly
define a contour (the level set of φ that describes the contour
is not specified in the objective functional). The inclusion of
our region features of Equation (13) overcomes these two
limitations, i.e., the ability to segment images based on the

homogeneity of the regions and the explicit parametrization
of the contour as the zero-level set of function φ.

In fact, it is easy to prove that our embedding corresponds to
a generalization of the subjective surfaces with the following
metric in the space-feature � × R

(
G f 0
0 β

)

=
⎛

⎜
⎝

1 + αi f i
x

2
αi f i

x f i
y 0

αi f i
x f i

y 1 + αi f i
y

2
0

0 0 β

⎞

⎟
⎠ . (19)

Compared to subjective surfaces, our metric in the space-
feature �×R substitutes the edge detector w with the induced
metric given by the embedding used in diffusion [1], [24], [27].
Interpreting the metric G f as a robust edge detector, we can
easily see that the proposed technique combines the advantages
of both geometric approaches: diffusion methods for the robust
detection of edges and subjective surfaces for its ability to
detect weak edges and close fragmented boundaries.

E. Relation to Kimmel’s Robust Alignment Term

The proposed HAC shares a strong connection with the
segmentation method proposed by Kimmel and Bruckstein
in [5], [12], where a geometric alignment term between the
normals to the contour and the gradient of the image is
combined with the objective functionals of GAC and ACWE
to improve image segmentation. In the following, we analyse
the differences between the proposed HAC and Kimmel’s
alignment term in more detail.

In [5] Kimmel and Bruckstein observe that the direction
associated to the gradient vector of an image, ∇ I , is a good
estimator of the orientation of the edge contour. Based on
this observation, they introduce a robust edge integrator in the
objective functional that encourages the alignment between the
normal vector to the contour and the gradient of the image
along the contour. With an implicit parametrization of the
contours C = {φ(x, y) = 0}, this alignment term or robust
edge integrator reads

−
∫

C
|∇ I (x, y) · ∇φ

|∇φ| |dxdy. (20)

From this equation it is clear that this alignment term is
only active in C for the zero-level set of φ. On the other
hand, the HAC aligns the gradients of the level set function
(not the normals) with the gradients of the image for all
the level sets of φ by integrating the cross-terms

[∇ f i ,∇φ
]2

throughout the whole image domain �. This gives us two
theoretic differences with respect to the robust edge integrator
for grey-scale images: 1) the weight given to the alignment
term in HAC is proportional to the norm of the gradient of the
level set function, which gives more weight to the alignment
of gradients when the level set function has larger gradients,
i.e., stronger edges. 2) HAC aligns the gradients of all the level
sets of the level set function, not only along the active contour,
and is therefore less likely to get trapped in local minima, see
Figures 1(c) and 1(d) and the experiments of Section V.

Moreover, HAC naturally generalizes to multi-channel
images, where both the coupling of the different image chan-
nels and the coupling of their alignment with the level set
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function are taken into consideration by the manifold’s surface
of Equation (14). Finally, the proposed HAC can also be
applied in non-flat parametric space and feature spaces.

In terms of implementation, Kimmel in [13] proposes an
efficient algorithm to minimize the resulting objective func-
tional with a PDE descent flow in the level set function.
The algorithm combines additive operator-splitting (AOS) and
a narrow-band implementation, but requires periodic redis-
tancing of φ as a signed distance function. As a result, and
despite the level set formulation, the alignment term is only
active in a narrow band close to the zero-level set of φ.
On the other hand, HAC uses modern optimization techniques
to minimize the objective functional and is therefore faster.
Our objective functional is not compatible with a narrow-band
implementation or periodic redistancing because it exploits the
alignment of all the level sets of φ with the image features.

A segmentation method related to Kimmel’s edge integrator
is presented in [29], [30], where the authors adapt the edge
detector of GACs to only consider image gradients in the
direction normal to the contour. The resulting minimization
problem is not convex, and the detection of image edges
normal to the contour is only active close to the current
zero-level set; consequently, this model suffers from the same
limitations as the robust edge integrator of Kimmel for general
images.

IV. NUMERICAL MINIMIZATION

To segment an image, ultimately, we need to solve the
following optimization problem

min
φ

∫

�

√
gdxdy with g given in Equation (14). (21)

In our conference paper [22], we adopted an iterative
procedure based on gradient descent. In particular, we used
Euler-Lagrange to obtain the optimality conditions for the min-
imization problem, in terms of partial differential equations,
and evolved φ with the following flow

φt = − 1

2
√

g∗

(
∂g∗

∂φ
+ 1

2g∗
∂g∗

∂σμ

∂g∗

∂φμ
− ∂

∂σμ

∂g∗

∂φμ

)

(22)

until a fixed-point was encountered and the optimality condi-
tions were met. To guarantee stability of the iterative scheme,
the time step of the flow was limited by the CFL condi-
tions [31], which resulted in a slow minimization technique.
To avoid this limitation, we make use of recent advances in
convex minimization [15], [32] and develop an efficient and
easy-to-code algorithm.

The key idea of the proposed decomposition algorithm is
to split the original problem into sub-optimization problems
which are easy to solve and combine them together. Different
options based on variable-splitting and equality constrained
optimization are possible to that purpose: quadratic-
penalties [32], Bregman iterations [15], [33] or the equivalent
augmented Lagrangian method [34]. In our algorithm, we
rewrite problem (21) as a constraint minimization and use
augmented Lagrangians to solve it. The resulting Lagrangian
is minimized with respect to each variable independently and
the multipliers are then updated in a cyclic way. Since all the

minimizations can be analytically solved or are decoupled for
each pixel, the resulting algorithm is fast, stable and easy to
implement.

Let us consider the following constrained minimization
problem

min
φ, p,ϕ, f 1,..., f k

q1,...,qk

∫
�

√
gc subject to

{ p=∇φ

q i=∇ f i 1≤i≤k
ϕ=φ
f i=si H(ϕ) 1≤i≤k

(23)

with

gc = 1 + αi‖∇ I i‖2 + γi‖q i‖2 + β‖p‖2 + 1

2
αiα j

[
∇ I i ,∇ I j

]2

+ αiγ j

[
∇ I i , q j

]2 + 1

2
γiγ j

[
qi , q j

]2 + αiβ
[
∇ I i , p

]2

+ γiβ
[
qi , p

]2
.

Problem (23) is equivalent to the original problem (21). The
segmentation of spherical images results in a similar constraint
minimization problem derived from Equation (10), where the
terms 1 + αi‖∇ I i‖2 + γi‖q i‖2 + β‖ p‖2 are multiplied by
the metric element of the sphere. Consequently, only the
minimization problems with respect to variables p and qi ,
i = 1, . . . , k are affected by the metric of the sphere.

Next, we reformulate the constrained minimization of prob-
lem (23) as an unconstrained optimization task. This can be
done with an augmented Lagrangian approach [35], which
translates the constraints into pairs of Lagrangian multiplier
and penalty terms. Let us define the augmented Lagrangian
energy L (

φ, p, f 1, . . . , f k, q1, . . . , qk, ϕ,�
)

associated to
the previous problem (23):

L=
∫

�

√
gc+λ1 ·( p−∇φ)+ r1

2
‖p − ∇φ‖2+ λ2,i · (qi −∇ f i )

+ r2,i

2
‖q i − ∇ f i‖2 + λ3(ϕ − φ) + r3

2
(ϕ − φ)2

+ λ4,i ·
(

f i − si H (ϕ)
)

+ r4,i

2

(
f i − si H (ϕ)

)2
, (24)

where the Lagrange multipliers � = (λ1,λ2,1, . . . ,λ2,k,
λ3, λ4,1, . . . , λ4,k) are functions in � and r1, . . . r4,k positive
constants. The constraint minimization problem (23) reduces
then to finding the saddle-point of the augmented Lagrangian
energy L. The solution to this saddle point problem can be
approximated by the following iterative algorithm. Given an
initial φ0, we set the Lagrange multipliers to zero and initialize
the split variables. At each iteration, an alternating minimiza-
tion method is used to find an approximate minimizer of L
with respect to the variables φ, p, f 1, . . . , f k, q1, . . . , qk and
then the Lagrange multipliers are updated with the residuals
associated to each constraint. The process is repeated until
convergence and leads to Algorithm 1. The next step is to
determine the solutions of the sub-minimization problems
(25)–(29), which can actually be computed efficiently. In the
following, we simplify notation by omitting the super-index
in the different sub-minimizations.

A. Notation

We discretize the image domain � ⊂ R
2 with a regular

grid of size n = nx × ny . We use forward differences to
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Algorithm 1 Lagrangian Method for Minimization of
HAC Method

compute the discrete gradients and backward differences for
the divergence in order to preserve the ad-joint relationship
div = −∇∗ in the discrete setting. In matrix-vector notation,
we can efficiently compute the spatial derivatives multiplying
the discrete functions arranged as a column vector with the
sparse finite difference matrices ∇x u = Dx u, ∇yu = Dyu.
Similarly, the discretization of the L2 inner product in �
corresponds to the usual dot product of vectors.

B. Minimization Associated to φ and f i

The sub-minimization problem (1) can be written as
follows:

min
φ

∫

�

r1

2
‖v − ∇φ‖2 + r3

2
(z − φ)2,

where z = ϕ + λ3
r3

and v = p − λ1
r1

. The corresponding Euler-
Lagrange equation is:

r3φ − r1�φ = r3z − r1 div z. (30)

With the notation explained above, Equation (30) is discretized
as a linear system of equations Aφφ = bφ , with matrix Aφ

and vector bφ given by

Aφ = r3 In + r1 DT
x Dx + r1 DT

y Dy

bφ = r3z − r1 DT
x vx − r1 DT

y vy .

Matrix Aφ is symmetric, definite positive and block-circulant
and we can use the Fourier transform F to decompose it as
Aφ = FT DφF , with Dφ a diagonal matrix. Consequently,
the system Aφφ = bφ can easily be solved in the Fourier
domain. In practice we use the FFT transform instead of
doing the matrix multiplications with F and FT , which gives
us the following solution φ = FT (D−1

φ Fbφ) of complexity
O(n log n).

The minimization problem associated to the features
f 1, . . . , f k have all the same form and can also be solved in
the frequency domain. Without loss of generality, we present
here the minimization associated to f 1, which reads

min
f 1

∫

�

r2,1

2
‖∇ f 1 − v‖2 + r4,1

2

(
f 1 − z

)2
,

where we have defined the auxiliary variables v = q1 + λ2,1
r2,1

and z = s1 H − λ4,1
r4,1

. The corresponding Euler-Lagrange
equation is

r4,1 f 1 − 2r2,1� f 1 = r4,1z − r2,1 div v,

which is discretized also as a linear system of equations
A f f 1 = b f . Matrix A f and vector b f are given by

A f = r4,1 In + r2,1 DT
x Dx + r2,1 DT

y Dy

b f = r4,1z − r2,1 DT
x vx − r2,1 DT

y vy,

where A f is also symmetric, positive definite and block-
circulant and the system is solved again in the Fourier domain.

C. Minimization Associated to Vector Fields p and
q1, . . . , qk

We first note that the minimization problem associated to
the vector fields p and each q1, . . . , qk are decoupled for each
pixel and can be solved by point-wise minimization of the
functions being integrated. As the problems associated to the
vector fields q1, . . . , qk have all the same form, we develop
only the expressions for q1 and p, which read

min
p

∫

�

√
gc + λ1 ( p − ∇φ) + r1

2 ‖ p − ∇φ‖2 (31)

min
q1

∫

�

√
gc + λ2,1

(
q1 − ∇ f 1

) + r2,1
2 ‖q1 − ∇ f 1‖2

. (32)

The main difficulty involved in (31) and (32) is the square root
affecting the hyper-surface element

√
gc, which does not allow

for a closed-form solution. To overcome this issue, we use the
iterative re-weighted least squares (IRLS) technique, which
has been successfully used in the context of Beltrami in [36].

IRLS iteratively minimizes the square root term
√

gc by
the following process. At iteration l the square root is
approximated by the weighted hyper surface element

√
gc

l ≈
gc√
gl−1

c

= gc
wl . Each iteration the weight is fixed to the value of

the square root term from the previous iteration wl =
√

gl−1
c .
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The problem reduces to a series of a quadratic minimizations
on p (q1), for which a closed-form solution is available. For
instance, applied to (31), at each iteration the minimization
problem is equivalent to

min
p

∫

�

β

w
‖p‖2 + αiβ

w

[
∇ I i , p

]2 + r1

2
‖ p − v‖2, (33)

where v = ∇φ − λ1
r1

. By simple differentiation with respect
to each component of p = (

px , py

)
we obtain a 2 × 2 linear

system of equations A p p = r1wv for each pixel. Matrix

A p = 2β

(
A11 A12
A21 A22

)

is symmetric positive definite and has entries

A11 = 1 + αi

[
I i

y

]2 + γi

[
qi

y

]2 + r1w

2β

A12 = A21 = αi I i
x I i

y + γi qi
x qi

y

A22 = 1 + αi

[
I i
x

]2 + γi

[
qi

x

]2 + r1w

2β
,

with determinant

|A| =
(

2β

w

)2

g f + r1
2β

w

(
2αi‖∇ I i‖2 + γi‖q i‖2

)
,

where g f is the induced metric associated to the embedding(
x, y, I 1, . . . , I k, f 1, . . . , f k

)
. With a 2 × 2 linear system to

solve at each pixel, we have an equivalent to a closed-form
solution for each IRLS update. These formulas can be further
simplified by ignoring the coupling of the x, y components of
p and updating each one of them iteratively.

The same procedure is used to solve (32). In that case
we have the following linear system for each pixel B1q1 =
r2,1
2γ1

w∇ f i −λ2,1, with the symmetric positive matrix B1 given
by6

B11 = 1 +
k∑

i=1

αi

[
I i

y

]2 +
k∑

i=2

γi

[
q i

y

]2 + β
[

py

]2 + wr2,1

2γ1

B12 = B21 =
k∑

i=1

αi I i
x I i

y +
k∑

i=2

γi q i
x qi

y + β px py

B22 = 1 +
k∑

i=1

αi

[
I i
x

]2 +
k∑

i=2

γi

[
q i

x

]2 + β
[

px

]2 + wr2,1

2γ1
,

with determinant

∣
∣B1

∣
∣ = 1

w2 g f1̂ + r2,1
1

2γ1w
(2

k∑

i=1

αi‖∇ I i‖2 +
k∑

i=2

γi‖qi‖2),

where g f1̂ is the induced metric associated to the embedding(
x, y, I 1, . . . , I k, f 2, . . . , f k

)
. We have then also a closed-

form for each IRLS update. In practice, we have found that
3 to 5 iterations of IRLS are enough for both minimization
problems, when the decrease in the objective functionals of
(31) and (32) fall below the threshold 10−3.

6Einstein’s convention is not used because the summations always exclude
one index.

As we pointed out before, only the minimization problems
with respect to p and q i , i = 1, . . . , k are affected by the met-
ric of the space manifold and require adaptation for spherical
images. We will explain the adaptation of the minimization
problem for the variable p, and the minimizations with respect
to q1, . . . , qk follow naturally. As both the minimization
problem with respect to p and the surface element of the
sphere are independent for each pixel, the previous algorithm
can be directly used by modifying the term β

w‖p‖2 in Equation
(33) for βg

w ‖p‖2, where
√

g = 2
1+x2+y2 is given by the

stereographic projection of the sphere. The structure of the
minimization problem does not change, nor does the form
of the solution, but the algebraic expressions become more
cumbersome. For this reason, we omit them in the current
paper and leave the analysis of HAC in non-flat manifolds for
future work.

D. Minimization Associated to ϕ

If we define the auxiliary variables z = φ− λ3
r3

, r = r4,i
[
si

]2

and w = 1
r si

(
λ4,i + r4,i f i

)
, the minimization problem asso-

ciated to ϕ is equivalent to the following minimization

min
ϕ

∫

�

r3

2
(ϕ − z)2 + r

2
(H (ϕ) − w)2 (34)

and can again be solved by pixel-wise minimization of the
integrand F(ϕ). Observe that for practical implementations,
this minimization involves a smooth approximation Hε of the
Heaviside function. We propose two steps to find quickly a
minimizer of (34).

1) Find a solution ϕ0 of (34) for ε = 0 (i.e. for the
distributional/non-smooth Heaviside function). A closed-form
solution exists for this problem and can be computed as
follows. The first term of F (ϕ) is minimized for ϕ0 = z. As
the Heaviside function can take only values 0 or 1, the second
term is minimized for ϕ0 < 0 when w < 1

2 and ϕ0 ≥ 0
when w ≥ 1

2 . That means that both terms, and therefore the
function, are minimized for ϕ0 = z if w < 1

2 and z < 0 or
w ≥ 1

2 and z ≥ 0. Otherwise we must choose to minimize the
greater of these terms and set ϕ0 = 0 if F (0) < F (z) and
ϕ0 = z otherwise.

2) Find a solution ϕ of (34) for ε > 0 using the standard
Newton’s method with ϕ0 as initialization. The iterative New-
ton’s method for finding the minimizer of (34) is as follows:

ϕm+1 = ϕm − r3 (ϕm − z) + r (H (ϕm) − w) δ (ϕm)

r3 + r (H (ϕm) − w) δ′ (ϕm) + rδ (ϕm)2 .

Each iteration, Newton’s method finds a second order polyno-
mial approximation to the function around the current iterate
and minimizes it. Initialized close to a minimum (as our first
step assures), Newton’s method converges fast because the
second order approximation is accurate and requires only a
few iterations (usually three to five in our case) to converge.

V. EXPERIMENTS

In this Section we apply the proposed method to segment
different types of images to evaluate the different properties of
our algorithm and compare it to related segmentation methods.
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Fig. 3. First row: segmentation results with HAC and different metric parameter β for the galaxy image. Second row: segmentation results with different
ratio of the metric parameters α–γ for the MRI phantom. The zero-level set of the initial function is shown in red and the final segmentation in blue. (a) HAC
β = 5 · 10−3. (b) HAC β = 12 · 10−3. (c) HAC β = 40 · 10−3. (d) HAC α = 50, γ = 5. (e) HAC α = 50, γ = 5. (f) HAC α = 100, γ = 50.

All the code was implemented in Matlab and run on a laptop
with an Intel Core i5 at 2.3GHz for 100 × 100-pixel images,
the timings are given in seconds (s).

The first set of experiments is designed to characterize
the effects of the metric parameters α, β, γ in the result-
ing segmentation and provide an intuitive interpretation to
the unavoidable tuning of parameters in every segmentation
method. Figure 3 shows the results obtained varying the metric
parameter β, which results in segmentations with different
weights associated to the smoothness criterion. As expected,
there is a trade-off between the data fidelity and the regularity
of the segmentation that depends on the image: a smoothness
parameter β too large results in blocky segmentations, see
Figure 3(c), while small values of β lead to a point-wise island
segmentations of Figure 3(a). Similarly, the metric parameters
α and γ are associated to the edge and region terms and control
the weight given to these criteria in the resulting segmentation.
The MRI phantom is used in the next experiment to show the
behaviour of the proposed segmentation methods with respect
to these parameters. As expected, larger values of the region
term γ neglect the gradient information and the inhomogeneity
present in the background leads to a wrong segmentation, as
shown in Figures 3(d)–3(f).

The next set of experiments is designed to character-
ize the properties of the proposed models. We start in

Figures 4(a) and 4(b) by showing the ability of HAC to exploit
the directional information of the image gradients to overcome
the inhomogeneities present in the images and produce correct
segmentations. We then show the ability of the proposed
method to correctly segment ridge structures, first with the
segmentation of blood vessels in a fundus image with low-
contrast in Figure 4(c) and then with a noisy image of a
car-plate in Figure 4(d). Next, Figures 5(a)–5(d) show the
ability of the proposed method to close fragmented contours
and segment medical images with weak edges. Figures 6
present the results of the segmentation of color images, where
the proposed method exploits the coupling of the different
channels to detect meaningful edges. In this case, we provide
also the segmentations obtained with the standard convex
GAC+ACWE segmentation method, where neither the cou-
pling of the different channels nor the alignment of image
gradients with the contours are exploited to overcome the
inhomogeneities of the background (Figure 6(c)) or textured
areas (Figure 6(d)).

The third set of experiments compares the proposed HAC
with the robust edge integrator of Kimmel and Bruckstein [12]
combined with the GAC and ACWE models. In particu-
lar, we adopt the narrow-band implementation proposed by
Kimmel in [13] with the fast redistancing of the level set
function of [37], and the convex formulation of GAC+ACWE
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Fig. 4. Segmentation of images with ridge structures, inhomogeneities and noise with the proposed HAC (top row) and with Kimmel and Bruckstein’s
model [12] (bottom row). Initial level set set in red, final segmentation in blue. (a) HAC 7.0s. (b) HAC 8.2s. (c) HAC 10.3s. (d) HAC 6.8s. (e) Kimmel [13]
24.7s. (f) Kimmel [13] 12.0s. (g) Kimmel [13] 24.2s. (g) Kimmel [13] 15.3s.

Fig. 5. Segmentation of medical images with the proposed HAC (top row) and with Kimmel and Bruckstein’s model [12] (bottom row). Initial level set set in
red, final segmentation in blue. (a) HAC 25.2s. (b) HAC 14.9s. (c) HAC 15.3s. (d) HAC 17.1s. (e) Kimmel [13] 15.9s. (f) Kimmel [13] 29.3s. (g) Kimmel [13]
22.2s. (h) Kimmel [13] 21.5s.

of [11]. Figures 4(e)–4(h) and 5(e)–5(h) show the results
of the segmentations for Kimmel and Bruckstein’s method.
For images not subject to inhomogeneities, Figures 5(e)–5(h),
both methods perform similarly in terms of accuracy, but
HAC is faster because we make use of variable-splitting and
augmented Lagrangians to design an efficient minimization
technique. The images of Figures 4(e)–4(g) are subject to
inhomogeneities and cannot be segmented with a simple
combination of GAC+ACWE models. In these cases, the
alignment of image gradients and level set function is neces-
sary to produce correct segmentations, and our experiments
show that the proposed HAC produces slightly better seg-

mentations in terms of accuracy (ridges of fundus image in
Figures 4(c) and 4(g), or objects with pointed corners in
Figures 4(a) and 4(e)), and speed. The key point, however, is
the robustness of HAC to different initializations, as shown in
Figure 7. In these synthetic images, Kimmel and Bruckstein’s
method cannot exploit the region term due to the image inho-
mogeneity and a balloon force is introduced to either shrink
or inflate the original contour. With the wrong initialization,
therefore, Kimmel’s method is not able to detect the outer con-
tours of the second of object of Figure 7(a) and the inner con-
tours of Figure 1(c) because they are too far from the zero-level
set of φ. On the other hand, the proposed HAC aligns the gra-
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Fig. 6. Segmentation of color images with HAC model and a the convex formulation of GAC+ACWE models. Initial level set set in red, final segmentation
in blue. Note that initialization does not affect the convex GAC+ACWE segmentation model. (a) HAC 11.6s. (b) HAC 25s. (c) GAC+ACWE 1.5s.
(d) GAC+ACWE 2.1s.

Fig. 7. Comparison of image segmentation results with HAC and the inclusion of the robust edge integrator of Kimmel and Bruckstein [12], [13] into the
GAC+ACWE model. Initial level set set in red, final segmentation in blue. (a) Kimmel [13], 8.4s. (b) Kimmel [13], 44.5s. (c) HAC 22.1s. (d) HAC, 36.2s.

dients of all the level sets of φ with the gradients of the image
features and is able to propagate the alignment of neighbouring
level sets to detect new contours. As a result, the segmentations
obtained from different initializations in Figures 4(a) and 7(c),
and Figures 1(d) and 7(d) are not qualitatively different.

A limitation of both HAC and Kimmel’s method is the
weight given to the alignment term, which is determined by
a scalar parameter that is constant over the whole image
domain. This results in merging of similar regions close to
each other when the size of the image structures varies within
the image domain, as can be observed in Figures 4(d) and 5(f)
for both the HAC and the robust edge integrator. The use of
adaptive metric parameters would overcome this limitation, but
the complexity of the resulting models would also increase.
In many real-world applications, nevertheless, the size of the
desired image structures is known a priori and this issue can
easily be avoided in practice.

VI. CONCLUSION

In this paper we have developed a new segmentation
method in a geometric framework where image segmentations
are interpreted as two-dimensional manifolds embedded in a
higher dimensional space, from which they inherit a metric.
This metric defines distances between points in the image man-
ifold that consider simultaneously the spatial distance between
the points, the values of the features at these points, and the
labels assigned to them in the segmentation. Consequently, the
resulting segmentation criterion incorporates region, edge, and
regularity terms in a single objective functional that measures
the surface of the embedded manifold and naturally takes
into account the coupling of the different image channels

and the alignment of the contours with the gradients of the
image. Our formulation extends directly to higher dimensional
spaces and non-flat images, where usual segmentation methods
cannot be applied. For flat images in the plane, we have also
developed an efficient numerical method to solve the resulting
minimization problem.

Compared to the existing geodesic active contours [3],
active contours without edges [4], and subjective surfaces [2],
our technique exploits the directional information of the gradi-
ents of the image and level set function to align the contours of
the segmentation with the edges of the image. As a result, our
method is able to segment images with strong inhomogeneities
that cannot be segmented with convex models, but the resulting
minimization problem and algorithm are computationally more
complex, which is the main limitation of the HAC model.
In comparison to Kimmel and Bruckstein’s robust edge inte-
grator [5], [12], the proposed technique aligns the gradients of
the level set function with the gradients of the image for all the
level sets of φ, not only the zero-level one. As a consequence,
the proposed harmonic active contour is able to exploit the
alignment of the neighbouring level sets to pull the contours
to the right position and discover new edges, making it less
sensitive to initialization.
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