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Abstract—We introduce irregular product codes, a class of
codes where each codeword is represented by a matrix and
the entries in each row (column) of the matrix come from a
component row (column) code. As opposed to standard product
codes, we do not require that all component row codes nor all
component column codes be the same. Relaxing this requirement
can provide some additional attractive features such as allowing
some regions of the codeword to be more error-resilient, pro-
viding a more refined spectrum of rates for finite lengths, and
improved performance for some of these rates. We study these
codes over erasure channels and prove that for any 0 < ε < 1,
for many rate distributions on component row codes, there is a
matching rate distribution on component column codes such that
an irregular product code based on MDS codes with those rate
distributions on the component codes has asymptotic rate 1− ε
and can decode on erasure channels having erasure probability
< ε (and having alphabet size equal to the alphabet size of the
component MDS codes).

I. INTRODUCTION

Product codes were introduced in 1954 by Elias [1]. A
product code can be viewed as a special case of a Tanner
construction [2] in which smaller constituent codes make a
larger code with low complexity decoding. An m×n product
code is defined by a row code C of length n and rate rC , and
a column code C ′ of length m and rate rC′ . Codewords are
represented by m×n matrices which satisfy the constraint that
every row belongs to C and every column to C ′. Product codes
are decoded in an iterative fashion, where rows and columns
are recovered in successive rounds using the decoders for C
and C ′. The rate of the product code is the product of the
rates rC and rC′ .

In this work, we present irregular product codes, a general-
ization of product codes in which we do not require that the
rows (columns) belong to a single code. We will show that
while these codes still retain the advantages of product codes,
they present some additional attractive features.

One of the main advantages of product codes is the fact
that decoding takes place over the smaller component codes,
which can result in a speedup of decoding. Furthermore, by
combining Reed-Solomon component codes, one can obtain
product codes which have length equal to the square of the size
of the component codes for the same field size, while taking
advantage of the MDS properties of the small component
codes.

Another (more application-specific) feature of product codes
is that they perform well on bursty channels. Indeed, for a
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product code which is transmitted row by row, a burst error
will corrupt several consecutive rows, but then other rows are
received with a higher quality, allowing decoding to start from
these other rows and continue with the columns.

Irregular product codes are based on the simple idea that we
need not restrict ourselves to a single row and column code,
but instead allow row and column codes of multiple rates.
The intuition behind this is that allowing for a few low-rate,
highly error-resilient codes might boost the decoding process,
while other high-rate codes ensure that the overall irregular
product code has good rate. With a careful design of the rate
distributions, one can hope to achieve better performance than
for regular product codes. Irregularity has been a powerful
concept in many contexts; e.g., irregular degree distributions
for LDPC codes, LT codes, etc. This idea fully exploits the
inherently interactive nature of the decoding of product codes.
Indeed, round-based decoding of product codes lets some rows
and columns “help” others to recover and go on with the
decoding process. Allowing for various decoding capabilities
for different rows and columns only taps further into this
property of the decoder 1.

Irregular product codes retain the advantages of product
codes, while presenting attractive additional features. Decod-
ing still takes place over smaller codes and the field size is still
allowed to grow slower in the case of MDS component codes.
Further, not only do irregular product codes still perform well
on bursty channels, they can also be more powerful than
regular product codes when some parts of the codeword are
known to be more vulnerable to bursts than others, since the
row and column codes error-correction capabilities are tunable.

Moreover, for short-length linear codes, there do not exist
product codes of every desirable dimension, since fixing the
dimension of the product code leaves few choices for the
dimensions of the component codes. Irregular product codes,
on the other hand, allow for many more dimensions due to the
numerous choices for the rate distribution of the component
codes.

In this work, we first derive bounds on the rate and
minimum distance of irregular product codes, and give con-

1Indeed, in product codes that achieve rates close to Shannon limit (say
on erasure channels), either the row/column code (say row code) should have
rate close to 1. In this case, the decoding happens first in the column codes
whose rate is far from 1, and then the row codes play a “complementary”
role. As we will see, there exist irregular product codes with rate vs. decoding
capacity matching these product codes in which the row codes and column
codes have the same distribution of rates, and the decoding process involves
a longer and gradual interaction between row and column component codes.
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structions that achieve these bounds. We then give explicit
families of irregular product codes that can get rates arbitrarily
close to 1 − ε on channels with erasure ε based on MDS
component codes. Note however that this does not mean that
these codes are capacity-approaching in the sense of Shannon
capacity because the field size for MDS codes can grow as a
function of the length2.

We give simulation results for finite-length codes that show
that irregular product codes have better thresholds than product
codes of the same or close dimension for some specific
lengths.

Related works: Since the introduction of product codes
[1], many extensions have been proposed and these codes
have found many applications from magnetic recording [3] to
deep space communication [4], mainly because of their simple
construction and low-complexity decoding.

The use of different component codes for rows (columns) is
not new. In fact, [5] and [6] consider product codes for image
transmission where the rows are LDPC codes and the columns
are RS codes with different rates. They determine the optimum
rate of the RS codes by a dynamic programming. However,
to the best of our knowledge, irregular product codes with the
generality considered in this paper together with some of their
asymptotic behavior have not been previously explored.

Multidimensional product codes are investigated in [7] and
[8]. However, the component codes are restricted to be single
parity and extended Hamming codes. In these papers, the
authors devise a low complexity soft decoding algorithm for
AWGN channels.

The weight distribution of some instances of product codes
is known. For example, [9] analyzes the error floor region
of an extended Hamming product code by means of the
weight enumerator of the code and the union bound. Some
characterization of the stopping sets over the erasure channel
is obtained in [10] based on the minimum distance of the
component codes. [11] optimizes the design of a product code
where the component codes are limited to single parity codes
and certain extended Hamming and BCH codes.

The asymptotic decoding-failure probability of product
codes is well understood in erasure case [12], [13]. The
performance of the product codes on noisy channels was
first analyzed using a hard-decision algorithm [1] and further
was improved (for example in [14]). However, product codes
can be decoded iteratively using a message passing algorithm
in noisy channels which outperforms hard-decision decoding.
Because of this, they are also referred to as turbo block codes
[15] in the literature of coding theory.

The Tanner graph of the product code is regular. [16] con-
siders product codes as structured generalized LDPC codes.

For a thorough survey on product codes refer to [17]. [13]
discusses and analyzes product codes and related structures on

2On the other hand, one can show that our analysis can be extended to
the situation where instead of MDS codes as component codes, we use
nested capacity-approaching codes having similar rate but over a fixed erasure
channel, say BEC. In this case, the resulting product code will be truly
capacity-approaching.

binary symmetric channels using hard-decision decoders.
Organization of the Paper: The remainder of the paper

is organized as follows. In Section II, we define irregular
product codes. In Section III, we derive an upper bound on
their dimension, and prove that under certain conditions, this
upper bound can be achieved. In Section IV, we also derive
a lower bound on the minimum distance of irregular product
codes and show that sometimes this lower bound is achieved.
In Section V, we turn to the asymptotic analysis of irregular
product codes on erasure channels under the iterative decoding
which switches back and forth between rows and columns.
In Section VI, we give explicit families of irregular product
codes based on MDS component codes that achieve rates close
to what capacity-achieving codes achieve. In Section VII, we
give some irregular product code constructions for specific
code lengths and show by simulation that these constructions
outperform regular product code of the same (or approximately
the same) dimension. We discuss some pointers to future work
in Section VIII.

We omit all the proofs in the conference version of the
paper for the sake of space. Full proofs can be found in the
full version of the paper [18].

II. DEFINITION

We denote the set {1, . . . ,m} by [m].

Definition 1. Let F be a field and let m,n be positive integers.
For each i ∈ [m] let Ci be a code of length n over F and for
each j ∈ [n] let C ′j be a code of length m over F.

The m× n irregular product code C = C({Ci}i, {C ′j}j) is
the code of length mn over F such that

C = {(cij)i∈[m],j∈[n]|
∀i (ci1, . . . , cin) ∈ Ci;∀j, (c1j , . . . , cmj) ∈ C ′j}.

In the above definition, when all the row codes Ci are equal
and all the column codes C ′j are equal, we obtain a standard
product code.

III. RATE OF IRREGULAR PRODUCT CODES

We define a systematic encoding procedure for irregular
product codes similar to the encoding of standard product
codes. The basic idea is to fill as many codeword coordinates
as possible with information symbols and generate the remain-
ing coordinates according to the corresponding row or column
code. This encoding procedure (which we state more formally
in the full version of the paper [18]) naturally gives rise to
the upper bound on the code dimension given by the first part
of Theorem 2. The second part of the theorem states that this
upper bound on the dimension is achievable under additional
conditions on the row and column codes, namely, that the row
(column) codes are nested.

Theorem 2. Consider an m × n irregular product code C =
C({Ci}i, {C ′j}j). Let 0 ≤ a1 ≤ . . . ≤ am ≤ n and 0 ≤ b1 ≤
. . . ≤ bn ≤ m be two integer sequences. For i ∈ [m], assume
that the value of the first ai coordinates of any codeword in
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Ci can generate the remaining coordinates3. Similarly, for each
j ∈ [n], assume that the first bj coordinates of any codeword
in C ′j can generate the remaining coordinates. Then

1) C has dimension at most

kC :=

n∑
j=1

bj∑
i=bj−1+1

max(ai − j + 1, 0), (1)

where we define b0 := 0.
2) If furthermore for all i ∈ [m], j ∈ [n], Ci is a linear code

of dimension ai and C ′j is a linear code of dimension
bj , and C1 ⊆ · · · ⊆ Cm and C ′1 ⊆ · · · ⊆ C ′n, then C has
dimension exactly kC as given by (1).

IV. MINIMUM DISTANCE OF IRREGULAR PRODUCT CODES

The following theorem gives the best general lower bound
on the minimum distance of an irregular product code in terms
of the minimum distances of the individual row and column
codes. Notice that this does not preclude the possibility of
obtaining better lower bounds if we know more about the row
and column codes.

Theorem 3. For two integer sequences n ≥ d1 ≥ . . . ≥ dm ≥
1 and m ≥ d′1 ≥ . . . ≥ d′n ≥ 1, let C = C({Ci}i, {C ′j}j)
be an m × n product code such that mindist(Ci) = di and
mindist(C ′j) = d′j . Then mindist(C) ≥ D, where D is defined
as

D = min
1≤i≤m−dj+1;1≤j≤n−di+1

max
i−1≤i′≤m;j−1≤j′≤n

− (i′ − i+ 1)(j′ − j + 1) +

i′∑
k=i

dk +

j′∑
k=j

d′k.

On the other hand, for any two sequences n ≥ d1 ≥ . . . ≥
dm ≥ 1 and m ≥ d′1 ≥ . . . ≥ d′n ≥ 1, there exist row
codes Ci and column codes C ′j with mindist(Ci) = di and
mindist(C ′j) = d′j , such that mindist(C) = D.

The number D defined in Theorem 3 is the minimum weight
of a binary nonzero m × n matrix where every nonzero row
i has weight ≥ di and every nonzero column j has weight
≥ d′j .

V. ASYMPTOTIC ANALYSIS OF DECODING IRREGULAR
PRODUCT CODES ON ERASURE CHANNELS

We now turn to the analysis of the asymptotic behavior of
an m×n irregular product code C = C({Ci}i, {C ′j}j). We thus
think of C not individually but as one member of a family of
irregular product codes where m and n grow.

Definition 4. Let C = C({Ci}i, {C ′j}j) be an m×n irregular
product code and let α, β : [0, 1] → [0, 1] be non-decreasing
real functions. We say that the row and column codes have
asymptotic normalized minimum distance distribution α and β
if for every δ1, δ2 > 0, for large enough m and n, for each i ∈
[m], j ∈ [n] we have |mindist(Ci)/n−α(x)| ≤ δ1 for some x

3in the sense that the values of these remaining coordinates are a function
of the values of the first ai coordinates.

such that |1−i/m−x| ≤ δ2 and |mindist(C ′j)/m−β(y)| ≤ δ1
for some y such that |1− j/n− y| ≤ δ2.

The following theorem gives a necessary and sufficient
condition for successful decoding of irregular product codes
on erasure channels, expressed in terms of the asymptotic
normalized minimum distances of the component codes and
the erasure parameter.

Theorem 5. Consider an m × n product code C =
C({Ci}i, {C ′j}j) with asymptotic normalized minimum dis-
tance distribution α and β, where neither of m or n grows
exponentially or faster in terms of the other one. Assume that
a codeword in C is sent over an erasure channel where each
symbol is erased with probability ε > 0. We iteratively decode
component codes of C whenever the number of erasures in a
row or column is smaller than the minimum distance of the
code corresponding to that row or column. Assume that

α−1(εβ−1(εx)) < x for all x ∈ (0, 1], (2)

where we define β−1(x) = sup(Sx) for Sx = {z ∈ [0, 1] :
β(z) ≤ x} if Sx 6= ∅ and we define β−1(x) = 0 if Sx = ∅.
We define α−1 similarly. Then for any constant δ0 > 0, for
large enough codes in the family, all except a δ0-fraction
of the symbols can be decoded except with a probability
exponentially small in min(m,n).

VI. IRREGULAR PRODUCT CODES FROM MDS CODES

In this section, we give a method to construct good families
of irregular product codes. We start by giving a construction,
for fixed m,n and minimum distance sequences {ai}i and
{bj}j , of an irregular product code with MDS component
codes that achieves the dimension upper bound of (1).

Proposition 6. Given any two integer sequences 0 ≤ a1 ≤
. . . ≤ am ≤ n and 0 ≤ b1 ≤ . . . ≤ bn ≤ m, choose n distinct
elements α1, . . . , αn and m distinct elements β1, . . . , βm of
the symbol field F. Let V be the am×n Vandermonde matrix
Vij = αi−1

j and V ′ be the bn×m Vandermonde matrix V ′ij =
βj

i−1. Let Ci be the Reed-Solomon code having as generator
matrix the first ai rows of the matrix V and C ′j be the Reed-
Solomon code having as generator matrix the first bj rows of
V ′. Then the dimension of C = C({Ci}i, {C ′j}j) achieves the
upper bound of Equation (1).

Theorem 7 now gives a generic way of constructing fam-
ilies of irregular product codes that satisfy the condition for
successful decoding given by (2), and thus can achieve rate
arbitrarily close to 1 − ε on erasure channels with erasure
parameter ε, with vanishing error probability (and growing
field size).

Theorem 7. For each ε > 0, the following is a generic
way of constructing families of irregular product codes with
asymptotic rate 1 − ε such that for any constant δ > 0 one
can decode almost all the symbols of a codeword sent over an
erasure channel having erasure probability ε− δ:

Choose any non-decreasing function β : [0, 1]→ [0, 1] with
β(1) ≤ ε and limy→0 β(y) = 0. Define α : [0, 1] → [0, 1]
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Fig. 1. Obtaining the curve for α from the curve for β in Theorem 7. We
stretch the curve for β vertically by a factor of 1/ε, and then shrink the curve
for α horizontally by a factor of ε. That is, whenever x = β(y)/ε, we have
α(x) = εy. The area of the shaded region denotes the asymptotic rate of the
code, which is 1− ε.

by α(x) = εβ−1(εx) where β−1 is defined in Theorem 5.
Choose m and n as you wish but neither of m or n should
grow exponentially or faster in the other one. Then pick 0 ≤
a1 ≤ . . . ≤ am ≤ n and 0 ≤ b1 ≤ . . . ≤ bn ≤ m as you wish
but in such a way that ai = n(1−α(1− i/m+ o(1)) + o(1))
and bj = m(1 − β(1 − j/n + o(1)) + o(1)). Finally, choose
the row codes Ci to be nested linear MDS codes of dimension
ai (for example as in Proposition 6). Choose similarly column
codes C ′j of dimension bj .

Figure 1 illustrates the way to obtain the curve for α from
the curve for β in Theorem 7.

We note that the only regular products codes based on MDS
codes which have decoding properties asymptotically as good
as those constructed in Theorem 7 are “trivial” product codes,
in the sense that they must have either α = 0 or β = 0. These
are regular product codes in which the row codes or column
codes have rate 1− o(1).

VII. EXAMPLES OF FINITE-LENGTH IRREGULAR
PRODUCT CODES

In order to find an example of an irregular product code
for finite but not so small lengths, say 50 × 50, we used the
asymptotic irregular product code shown in Figure 2 obtained
from Theorem 7, in which α(x) = εx and β(y) = εy where
ε is the erasure probability. The area of the shaded region,
which represents the systematic part of the code, is the rate
1− ε of the code.

Next we slightly tuned the asymptotic code to a 50 × 50
irregular product code in such a way that
• the code can start decoding better, by increasing the

number of row and column codes having the highest
minimum distance by a few;

• more importantly, the code has a much higher probability
of decoding all symbols once most of the symbols have

1− ε ε

1
−

ε
ε

Fig. 2. The shaded region corresponds to the systematic or information part
of the code by choosing α(x) = εx and β(y) = εy where ε is the erasure
probability.

Fig. 3. Systematic part of a [2500, 1709] irregular product code

been decoded, by forcing that the minimum distances
of all row and column codes are at least some positive
number, in this case 3.

We chose all row codes and all column codes to be nested
MDS codes according to Theorem 6. The resulting code has
a systematic part which is shown in Figure 3.

This code is a [2500, 1709] code of rate 0.6836. We com-
pared this code to all regular product codes having rates
[0.6708, 0.684]. Note that most of these codes have rate even
lower than this code. The result of the simulation is shown in
Figure 4. This plot shows the block/word error rate of the code
in an erasure channel with erase probability ε. All constituent
row and column codes in irregular and regular cases are
considered to be MDS with the corresponding dimensions.
Each point of these curves is obtained by 106 simulations. The
erasure patterns for different values of ε have been coupled
such that the block error versus erasure probability curve is
monotonic. One can see that this code outperforms all product
codes having lower rates.

Figures 5 and 6 show another case where an irregular
code outperforms a regular code for a much smaller length.
We compared a regular [8 × 8, 4 × 7] product code with an
irregular code which is shown in Figure 6. Numbers on rows
and columns indicate the dimension of the corresponding row
and column MDS code. The block error probability of these
codes is shown in Figure 5. Both codes are [64, 28] codes.

VIII. CONCLUSION AND FUTURE WORK

We have presented irregular product codes, a class of
product codes that retains the advantages of regular product
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Fig. 4. Comparing an irregular [2500, 1709] code to almost equal rate regular
ones. The numbers in the legend indicate the corresponding row and column
dimensions.
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Fig. 5. Comparing an 8 × 8 regular and irregular product codes, both of
dimension 28.

codes while giving a better performance in several cases. We
gave two examples of finite-length irregular product codes
that outperform their regular counterparts. Our finite-length
constructions were either found by brute-force (in the 8 × 8
case) or by hand-tuning the code parameters (in the 50 × 50
case). This gives a glimpse into the performance of irregular
product codes but does not give a systematic way of producing
such codes; this is part of our future work. Once we have
a way to produce irregular product codes, we can optimize
them and then be able to compare them to other optimized

5

5

6

6

6

6

6

6

5 5 5 5 5 5 5 5

Fig. 6. The systematic part of an [8×8, 28] irregular product code is shaded.

generalizations of product codes, such as the ones presented
in [5], [6] and [11].

While irregular product codes are clearly competitive with
respect to classical product codes, it is not yet known whether
they can compete with capacity-approaching codes on various
types of channels. As noted in Section I, they can be made
capacity-achieving on the erasure channel when capacity-
achieving component codes are used. This construction by
itself is not interesting, since it only shows that irregular
product codes do no fare worse than their component codes;
however, it provides a first step toward constructing codes
which are better than their component codes on more general
channels.
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