Compositional Specification of Timed Systems
(Extended Abstract) * T

Joseph Sifakis and Sergio Yovine

VERIMAG-SPECTRE *

1 Introduction

Motivation

It is generally admitted that timed systems can be obtained as extensions of
untimed ones by adding constructs that allow to manipulate time explicitly or
implicitly. For instance, timed automata [1] are automata augmented with con-
tinuous variables, called clocks, that can be tested and modified at transitions.
Timed process algebras are languages obtained by adding constructs such asde-
lays, timeouts, watchdogs [8] to untimed languages. Finally, the various classes of
timed Petri nets are obtained by adding timing interval constraints to Petri nets.
All these formalismsrely on an assumption of o rthogonality between discrete and
continuous changes which drastically simplifies the underlying semantics: a run
of a timed system 1s a sequence of steps where continuous time progress and
timeless transitions alternate.

A subtle point in the definition of the semantics of timed systems is the man-
ner in which discrete and continuous changes interact. Thisis done in timed au-
tomata by associating with control locations invariants characterizing the states
reachable by letting time progress. Using mvariants allows, in particular, the
specification of hard deadline constraints (upper bound constraints): when a
deadline is reached for an action the progress of time is blocked by the invariant
and the action becomes urgent (its execution is forced if it is enabled). In timed
process algebras and timed Petri nets the invariants are implicit.

Specifying the interaction between continuous and discrete changes is an
important problem, especially for complex systems obtained by composition of
sequential components. Clearly, the use of invariants or other equivalent mecha-
nisms can lead to deadlocks. If for instance, two communication actions (say an
input and an output) are submitted to local deadline constraints, a time dead-
lock may occur as a result of their composition. This is not surprising and can
be interpreted as inconsistency of the specifications. However, the problem arises

*In Proc. 13th Annud Symp. on Theoretical Aspects of Computer Science, STACS’96,
pages 347-359, Grenoble, France, February 1996. LNCS 1046, Springer-Verlag.

! This work has been partially supported by CNET contract # 95 7B.

! VERIMAG is a joint laboratory of CNRS, INP G, Université J. Fourier, and Verilog
SA. SPECTRE is a joint CNRS-INRIA project. Address: Centre Equation, 2 Ave.
de Vignate, 38610 Gieres, France. Joseph.Sifakis@Qimag fr, Sergio. Yovine@imag.fr.

Untimed Timed
Sequential S —— TS

! A

Parallel SIHSQ """" > TSIHTSQ

Fig. 1. Extending compositionality from untimed to timed specifications.

of how to write complex specifications and avoid such situations. An inherent
difficulty of this problem is of course, the fact that usually timing constraints
are global constraints (as time is a global variable) and it is not clear whether
and how they can be obtained compositionally. We suggest a general approach
for tackling this problem.

Compositionality

For an untimed description language with given coordination mechanisms we
have a more or less clear insight concerning its appropriateness for the descrip-
tion of complex systems of a given type. However, this is not the case for timed
systems. Given a complex global behavior we still do not know if the avail-
able coordination mechanisms allow anatural description. Consider a sequential
untimed system S representing the behavior of a system obtained as the com-
position of two untimed components S; and S,. Furthermore, suppose that a
timed system TS is obtained from S by adding some global timing constraints
(Figure 1). The question arises whether it is possible to find timed extensions
TS: and TS of S; and S»2, and a composition operator such that the composed
system 1s equivalent to TS.

Clearly, this is a very general requirement for extending compositionality of
untimed to compositionality of timed systems. However, under some reasonable
restrictions it can be a useful criterion for evaluating the expressivity of timed
specification languages.

Overview of this work

We propose a general framework for the compositional description of timed sys-
tems. We first start with a comparison of two different models for the specifica-
tion of timed systems, namely timed automata and timed Petri nets.

The parallel composition of timed automata is defined as a timed automaton
such that the invariant associated with a product state is the conjunction of the
invariants associated with the component states [9, 4]. This rule is a consequence
of the assumption of synchronous progress of time for all the components of a
timed system.

Different classes of Timed Petri nets have been defined as timed extensions
of Petri nets. Bounded Timed Petri nets can be considered as automata with

timing constraints and the question arises whether they can be obtamed as
the parallel composition of timed automata exactly as some classes of Petri
nets can be obtained as the parallel composition of automata. This question
has been partially investigated in [2] where the principle of a translation from
safe timed Petri nets to a timed process algebra is proposed. We show that
the parallel composition operations used for timed automata badly describe the
synchronization mechanisms underlying Petri nets.

Starting from this fact, we propose a general framework for compositional
description using a variant of timed automata called timed automata with dead-
lines. In this modelinvariants are replaced by deadline conditions associated with
transitions. These are timing constraints specifying when a strict deadline is met
for atransition that is, when the transition must be executed if it is enabled. We
show that replacing invariants with deadline conditions associated with the tran-
sitions simplifies the problem of compositional description. However, invariants
can be obtained from deadline conditions and a timed automaton with deadlines
can be considered as a standard timed automaton.

On timed automata with deadlines we define two parallel composition oper-
ations: a stiff parallel composition which is close to usual parallel composition
of timed automata and timed process algebras and a flemble parallel composi-
tion which allows to express synchronization of transitions m several classes of
Timed Petri nets. These composition operators differ in the way deadlines of the
composed system are obtained from the deadlines of its components.

The paper is organized as follows. In sections 2 and 3 we present timed automata
and timed Petri nets and argue that timed automata and their associated parallel
composition operator are not well adapted for the compositional description of
timed Petri nets. Timed automata with deadlines are presented in section 4
where we present a compositional translation method from 1-safe timed Petri
nets to this model. In section 5 we present basic ideas for a general compositional
specification framework. Further and future work is discussed in section 6.

2 Timed Automata

Definition

Let X be a finite set of real-valued variables called clocks. A valuation v € V
of the clocks is a function that assigns a non-negative real-value v(z) € IRt to
each clock # € X. A timing constraint ¢ € ¥ over X is a boolean combmation
of atoms of the form x#u, where 2 € X', u € IN, and # € {<, <, =,>,>}.
We say that v satisfies ¢ if ¢(v) evaluates to true. For v € YV and X C X, we
define v[X = 0] to be the valuation v' € V such that v'(z) = 0 if « € X, and
v'(z) = v(z) otherwise. For § € IRY, we define v+ d to be the valuation v/ € V
such that v'(z) = v(z) +4d for all z € X.

Let A be a set of action names. An automaton A over A is a tuple (S, &)
where § is a finite set of locations and £ C 8§ x A x § is a finite set of edges. A
timed automaton TA isatuple ((S, &), X, G, R,I) where (§,£) is an automaton,

z <5 |x<5\/w>5| true x> 5

a b a b a b a b
x <5 r =5 x <5 r=5 =< r=5 <5 r=25
a delayable a delayable a delayable a immediate
b immediate b immediate b delayable b immediate
time diverges ‘e d; time diverges
for z > time diverges for z >5
@ (b) (© (d)

Fig. 2. The role of invariants.

X is a finite set of clocks, G : £ — ¥ associates with every edge e € £ a timing
constraint called the guard of e, R : £ — 2% associates with every edge e € £
the set of clocks to be reset to zero, and I : § — ¥ associates with every location
s € § a timing constraint called the invarant of s.

A state of a timed automaton is a pair (s, v) defined by a location and a
clock valuation. At any state, TA can evolve either by a discrete state change
corresponding to a move through an edge that may change the location and reset
some of the clocks, or by a continuous state change due to the progress of time
at a location. For a € A and for § € IRT we define the relations % C (S x V)2

and 5 C (8 x V)2 characterizing respectively the discrete and the continuous
state changes as follows:

(s,a,s") € &, G(e)(v) vé' e RY 6 < 8. I(s)(v +d)
(S’U)i> (Sl’v[R(e) = 0]) (S,U) i)(s,v—l—(s)

The role of invariants. As time progresses, the values of the clocks increase pro-
vided the state satisfies the invariant. For states that do not satisfy the invari-
ant, the progress of time is “stopped”. This mechanism allows the specification
of hard deadlines: when for some action a deadline specified by the invariant
is reached, the continuous flow of time is mterrupted. Therefore, the action be-
comes urgent and it is “forced” to occur if it is enabled.

Figure 2 illustrates the use of invariants to express urgency of actions. An
action 1is said to be delayable if whenever it is enabled its execution can be
postponed by letting time progress. Clearly, delaying an action may cause its
disabling. An action is called immediate if it cannot be delayed. We say that
time diverges from a given state (s, v) if I(s)(v+ d) for all § € IR*.

Notice that our rule for the progress of time follows [5]. This definition is
dightly different from the one given in [9, 4] where time can progress from state
(s,v) by some d € RT ifforall ¢’ € IRY, §' <&, v+4’ satisfies I(s). It is easy to
check that the latter definition does not allow to characterize situations such as

the one illustrated in Figure 2(b) where there is a strict deadline for # = 5 but
time diverges for z > 5.

Parallel composition

Let TA; be ((S;, &), &;, G;, R, I;), for i =1, 2, with disjoint sets of locations and
clocks, and A C A be a set of communication actions. The parallel composition
TA i} , TA, is the timed automaton ((S, &), X', G, R, I) where theset of locations
S is 81 x 82, the set of clocks X is A1 U Aa, for all (s1,s2) € S, the invariant
I(s1,s2) is the predicate T1(s1) A I2(s2), and &, G and R are defined by the
following rules (thesecond ruleis applied symmetrically to the other component):

€1 = (81,0,8/1)6 gla €2 :(SZa a, 5/2) € ((,‘2, a € A

e= ((s1,52),a,(s1,s5)) €& |Gle) =Gi(e1) A Gz(e2), Rle) = Ri(e1) U Ra(e2)

€1 = (sl,al,sll) € 51, al QA
€= ((SlaSZ)aala(Slp s)) €&, |G(6) = Gy(e1), R(e) = Ry(ey) ‘

Notice that{} , is the extension of the parallel composition operator ||4 of CSP [3]
to timed automata. The timed automaton TA is obtained by adding timing
constraints to the automaton (8, &) corresponding to the parallel composition
(81, &1)]]a(S1, £1) of the components. The timing constraints associated with the
edges are highlighted with boxes.

Ezample 1. Consider the behavior of a medium that receives messages from a
sender (in) and transmits them to a receiver (out). The system satisfies the
following three timing requirements: two consecutive inputs are separated by a
time equal to 7, two consecutive outputs are separated by a time greater than or
equal to 4, and the transmission delay between an mput and an output i1s in the
time interval [3,8]. Figure 3 shows the description of the medium obtained by the
parallel composition of the three timed automata modeling the requirements.

Notice that the use of invariants can lead to deadlocks. For instance, if the
interval [3,8] for the transmission delay is replaced by (7,8], when the system is
at location ABD with clocks = and z equal to 7, neither time can progress nor
the action out i1s enabled, and therefore a time deadlock occurs. Such a situation
is interpreted as an inconsistency of the specification.

3 Timed Petri Nets

For the sake of simplicity, we use the term “timed Petri nets” to denote a subclass
of a timed extension of 1-safe Petri nets known as Time Stream Petri nets [10].
Other timed extensions of 1-safe Petri nets, with timed transitions [6] or with
timed places [11], correspond to special cases of the model considered here.

Fig. 3. Timed specification of the medium.

Definition

A Petri net N is a tuple (§,7) where S is a finite set of places and T C
25 x A x 2% is a finite set of transitions. For t = (S, a, S') € T, we write ot for
the set S of input places of ¢, te for the set S’ of output places of ¢, and £(%)
for the action a labeling ¢. A Petri net (S, 7) represents the automaton (2°, £7)
where for S € 8§ and ¢ € 7, whenever of C S and (S — et)Nte =}, the edge
e= (S, L), ((S—et)Ute)) € &r.

A timed Petri net TN is a tuple ((S,7),L,U) where (S,7T) is a Petri net,
and L : 8§ xT > WNand U : S x T = INU{+o0}, are partial functions defined
for all (s,?) such that s € ot. We require L(s,?) < U(s,1).

TN can be represented as a bipartite labeled digraph with set of nodes SU7T
and set of arcs {(s,1) | s € ot} U{(¢t,s) | s € te}. The arc (s,t) is labeled with
the interval [L(s,t),U(s,1)].

Timed Petri nets are used to model concurrent timed systems. Transitions
express synchronization of streams of tokens representing information processed
at places. Intervals associated with arcs specify times when tokens become avail-
able and can therefore be used for firing the corresponding transition.

Erample 2. Consider a system composed of a producer and a consumer. The
producer takes a time between 2 and 3 to produce (p) an item, and then it is
ready to make it available (a) to the consumer after a delay between 1 and 2.
The consumer takes between 5 and 7 to consume (c) an item, and then it is
ready to get an available (a) item from the producer after a time between 3 and
4. Figure 4(a) shows the timed Petri net for this system. The synchronization
between the producer and the consumer on transition “a” requires that the
tokens have been at the input places A and C for a time greater than or equal to
the lower bounds, but only one of the upper bounds is required to hold in order
to fire the transition.

(a) Timed Petri Net (b) Timed Automaton

Fig.4. Producer-Consumer.

Translating timed Petri nets into timed automata

We propose here an operational semantics for timed Petri nets. With every place
we associate a clock that measures the sojourn time of a token. Each time the
place receives a token, the clock is reset to zero. Time intervals on arcs are
represented by timing constraints on these clocks.

Let TN = ((S,7),L,U) and X = {zs | s € S} be a set of clocks. We
associate with each ¢t € 7 a guard G(¢) and a set of clocks R(¢) to be reset to
zero, and with each S C & an invariant [(S), such that:

Gty = N\ Ls,t) <w, R(t) ={z, |s et} 1(S) = N\ \/ z, <Ul(s,1).

sceot olCSscel

€2%xV, andfora € A and § € RT the relations
2% x V)Z are defined as follows:

A state of TN is a pair (S, v
5 C(2° x V)% and RN C

)
(

te T, ot C S, Gl)(v) W' e RY, 8 < 6. 1(S)(v +4")
(S, v) W (S = ot) Ute,o[R(t) :=0]) (S,0) % (S, v+ 9)

Notice that for every state, time can progress if for every enabled transition there
exists at least one input place whose deadline has not expired.

The following proposition is a direct consequence of the above definition. The
term equivalent means that the underlying models are strongly bisimilar.

Propositionl. The timed Petri net (S,7),L,U) is equvalent to the timed
automaton ((2°,&7),X,G, R, 1), where for e = (S, {(t),S') € &, G(e) = G(t)
and R(e) = R(1).

Figure 4(b) shows the corresponding timed automaton for the timed Petri net of
the producer-consumer system. Notice that though we have used four clocks z4,

Fig. 5. Timed automata for Producer-Consumer.

zg, Yo and yp, only two clocks, say « for the producer and y for the consumer,
are really needed.

Parallel composition

Given two Petri nets (8;,7:), 1 = 1, 2, such that $1NS2 =@, and A C A, we define
a Petri net (S, 7) corresponding to the parallel composition (251, £7,)||4 (2°2, €72),
denoted by (S1, 71)||a(S2, 72). The Petri net (S, 7) can be directly defined as
follows: § is 81 U 82, and

t; €T; (1) ¢Ai—1 5 t1 €Tty €To, li(ty) = bo(ty) =a€ A
tieT - (o1 U ety a,tieUtse) €T

This parallel composition operator can be trivially extended to timed Petri nets
by labeling the arcs of (S, 7) with the corresponding time intervals. Given TN,
and TN,, we write TN/ , TN, to denote the resulting timed Petri net.

The question arises whether following the compositionality principle depicted
in Figure 1,it is possible to define the parallel composition operator 4}, on timed
automata such that for any timed Petri nets TIN 1 and TNo, with corresponding
timed automata TA; and TAz, TN} ,TN> is equivalent to TA14, TA2.

The example of the producer-consumer system shows that this question
has no simple answer: the timed automaton corresponding to TN profy, TN con
shown in Figure 4(b) is different from the timed automaton TA proft, TA con
lllustrated in Figure 5. Actually, both have the same untimed structure, as well
as guards and resets, but they do not have the same invariants. It is not difficult
to see that the right invariants cannot be obtained compositionally using the{} 4
parallel composition operator. In the following section we propose a variant of
timed automata and a parallel composition operator that corresponds to 4} ,.

4 Timed Automata with Deadlines

Definition

A timed automaton with deadlines TAD is a tuple ((S,€), X, G, R, D) where
S, &, X, G and R are defined as for timed automata, and D : £ — ¥ associates
with each edge e € £ a deadline condition specifying when the edge e becomes
urgent. For s € §, we define

D(s) = \/ D(e) and I(s) =-D(s)
e=(s,a,s")€E

By definition TAD behaves like the timed automaton TA = ((S,€), X, G, R,).
That is, timed automata with deadlines are timed automata where time can
progress at a location as long as all the deadline conditions associated with the
outgoing edges are not satisfied.

Associating deadline conditions with edges enhances flexibility in the expres-
sion of timing constraints. For a given edge e, the guard G(e) determines when
e may be executed, while D(e) determines when it must be executed. Clearly,
for all the states satisfying —=G(e) A Dfe), time can be blocked. Therefore, it
is reasonable to require that D(e) implies G(e) to avoid time deadlocks. If this
condition holds for all the edges, then no time deadlock can occur. When D(e)
is equal to G(e), e is immediate and must be executed as soon as it becomes
enabled. If D(e) is false, e is delayable at any state. Between these two extreme
cases, several intermediate situations of practical interest can be defined by an
appropriate choice of D(e).

Proposition2. The timed Petri net (S,7),L,U) is equvalent to the timed
automaton with deadlines ((2°,€7), X, G, R, D), where for e = (S,{(t),S") €
Er, Dle) = /\seot s > Ul(s, t).

Figure 6(b) shows the timed automaton with deadlines corresponding to the
timed Petri net of Figure 4(a). The deadline conditions are highlighted with
boxes.

Parallel composition

Let TAD; be ((S:,&), i, Gi, Ri, D;) for i =1, 2, with disjoint sets of locations
and clocks, and A C A. We define two operators: 4 , and 4 ,, respectively called
stiff and flexible parallel composition. The resulting timed automata with dead-
lines TADs¢ipr and TAD e have the same structure ((S,€), X, G, R) obtained
by the composition rules given for timed automata, and only differ on the way
deadlines are associated with edges. For the stiff parallel composition, Dy is
given by the following rules:

er = (s1,a,5) €&, 60 = (s2,a,55) €&, a €A
e = ((81,52),&,(5/1,5/2)) Eg, ’ Dstiff (6) :Dl(el) V Dz(ez)‘

)
I

&
=]

)
iV
(U]

Fig. 6. Timed automata with deadlines for Producer-Consumer.

e1 = (s1,a1,57) €&, a g A
e= ((s1,52), a1, (5).52)) €&, | Daigs (¢) = Dier) V Da(ss) |

For the flexible parallel composition, Dy, is given by the following rules:

€1 = (81,0,8/1) Egla €a = (SZa a, 5/2) € ((,‘2, a EA
€= ((81,82), aa(slla 5/2)) S ga Dflex (6) = D1 (61) A Dz(ez)

€1 = (sl,al,sll) € 51, al QA
€= ((51, 82), at, (SllaSZ)) € ga ‘ Dflex(e) = Dl(el) ‘

Proposition 3. For i = 1,2, «f TA; s the timed automaton corresponding to
the timed automaton with deadlines TAD;, then TAd} , TA> is equivalent to
TAD {4 ,TAD-.

Proposition4. For i = 1,2, if TAD; is the timed automaton with deadlines
corresponding to the timed Petri net TNy, then TADiH , TADz is equivalent to
TN}, TNs.

Figure 6(b) shows the timed automata with deadlines obtained as the flexi-
ble parallel composition of the timed automata with deadlines TADp,, and
TADcon corresponding to the producer and the consumer respectively. Notice
that TADproff ,TADCon is equivalent to the timed automaton of Figure 4(b).

5 General framework

In this section we propose a framework that extends the results of the previ-
ous sections. The basic 1dea is that for timed systems, exactly as for untimed

10

systems, different parallel composition operators can be defined by considering
the (synchronous) parallel composition of labeled structures and defining appro-
priately a composition operation between labels. This idea for untimed systems
goes back to [7] and has been widely used in process algebras.

We suppose that the timed behavior resulting by combining two edges e; =
(sj,a;,st), for i = 1,2 is an edge e = ((s1, 52),a, (s],5%)), and G(e) and D(e)
are functions of the G;(e;)’s and D; (e;)’s respectively. This is already true in the
case of stiff and flexible composition where G(e) is the conjunction of guards and
D(e) is the disjunction or the conjunction of the deadline conditions. It is not
difficult to realize that the definition of synchronization in timed Petri nets in
terms of flexible parallel composition is not robust enough. For mstance, in the
producer-consumer example of Figure 6, replacing in the edge “a” of TADp,,
the guard 1 < & by 1 <2 <2 and/or the deadline condition > 2 by « = 2 leads
to equivalent descriptions. However, the flexible composition of any of them with
TADc o, gives different (wrong) results.

To obtain a robust flexible composition it is necessary to take into account in
the composition of the guards and deadlines not only the present state but also
its past and future in order to express waiting. Our thesisis that the description
of synchronization mechanisms in a compositional framework, requires the use of
temporal properties. We consider here a simple modal language that suffices for
characterizing the parallel composition operator 4. The formulas are obtained
from timing constraints ¢» € ¥ by using two modalities be fore(v) and after ()
defined as follows:

be fore(d)(v) iff 36 € RT . (v 4 §)
after(¢)(v) iff 33 € IRT. (v — J)

Consider the generalization of the synchronization mechanism of timed Petri nets
characterized as follows. For edges e;, ¢ = 1, 2, with guards G;(e;) and deadline
conditions D;(e;), the guard G(e) and the deadline D(e) of the composed edge
e are such that:

— G(e) is true if both Gy(ey) and Go(es) are true or if one of them is true and
the other has been true. This requirement expresses the fact that a process
may wait even though its guard becomes disabled due to the progress of
time. That 1s,

G(e) = after(Gi(er)) A Gale2) V Gi(er) A after(Ga(e2))

— D(e)istrue if both D (e;) and D, (e,) aretrue but also if one of the deadlines
is satisfied and a deadline of the other will never be encountered in the future.
In other words, D(e) does not contain deadline states of one component
that precedes deadline states of the other. This rule avoids time deadlocks
due to unilateral requirement from one component to meet a deadline for a
communication action that cannot occur. That is,

D(e) = Di(e1) A Dofes) V
—before(Di(e1)) A Da(ez) V Di(er) A —before(Da(e2))

11

One can check that in the producer-consumer example, for the different timed
automata with deadlines equivalent to TAD py,, the guards and deadline con-
ditions for the transition “a” obtained by applying the above rules describe the
flexible parallel composition.

6 Discussion

The paper defines a general framework for extending compositionality from un-
timed to timed descriptions. This framework is obviously applicable to hybrid
systems too. Based on the assumption that sequential timed components are
timed extensions of untimed ones, it shows that it is possible to composition-
ally describe a global timed behavior if the underlying untimed one is obtained
compositionally and the timing constraints associated with its transitions can
be expressed as functions of local timing constraints.
When composing timed systems three independent parameters operate:

1. The parallel composition for the associated untimed system. There are differ-
ent choices ranging from completely sy nchronous to completely asynchronous
parallel composition.

2. The composition rules for guards. The composed guard may depend on the
past if waiting is possible.

3. The composition rules for deadline conditions. The composed deadline condi-
tion maydepend on the future, if waiting is possible. To avoid time deadlocks,
it 1s sufficient to restrict deadline conditions to guards.

Replacing invariants in timed automata with deadline conditions simplifies
the compositionality problem and allows a better mtuition about how a system
behaves. The two cases of parallel composition correspond to two different ways
of composing timing constraints. Stiff parallel composition considers all deadlines
to be equally important; deadlines that cannot be met lead to time deadlocks
(inconsistency). The flexible one can be used to characterize coordination of
loosely coupled components submitted to local constraints that are satisfied
following a “best effort” principle: components wait as long as a synchronization
condition is not satisfied and ignore their own deadlines provided there exists a
component with a forthcoming deadline. The waiting components synchronize
as soon as the synchronization condition holds. It i1s important to notice that
waiting simply means that deadline conditions are ignored; in any case, time
progresses in the same manner for all the parallel components.

An mmportant methodological question concerns the use of the appropnate
parallel composition operator in a description. Consider the gate crossing prob-
lem often taken to illustrate the use of timed automata for modeling timed sys-
tems [4]. The solutions are usually expressed as the (stiff) parallel composition
of two timed automata TRAIN and GAT E. TRAIN sends signals approach
and ezt to notify its approach and exit from the crossing section. GATE re-
acts to these signals by changing its state. The use of stiff parallel composition

12

in this case reflects the fact that violating the deadlines is not acceptable as
it may be catastrophic. On the contrary, to model the mteraction between the
TRAIN}GAT E system and a C' AR component, representing acar crossing the
tracks, it 1s natural to use flexible parallel composition as CAR does not signal
its arrival to GATE, but simply might wait for GATFE to become open.

This work is, to our knowledge, a first attempt to connect two different
approaches for composing timed behaviors. It proposes a general framework
which is still incomplete and is based on ideas wich remain to be validated.

A cknowledgement: We thank Amir Pnueli for constructive critiques of the
ideas developed in the paper.

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

2. T. Bolognesi and F. Lucidi. Timed process algebras with urgent interactions and
a unique powerful binary operator. In Proc. REX Workshop “Real- Time: Theory
in Practice”. Lecture Notes in Computer Science 600, Springer- Verlag, 1991.

3. S.D. Brookes, C.AR. Hoare, and A.W. Roscoe. A Theory of Communicating
Sequential Processes. Journal of the ACM, 31(3):560-599, 1984.

4. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model cheding
for real-time systems. Information and Computation, 111(2):193-244, 1994.

5. O.Maler and A. Pnueli. Timing analysis of asyndironous circuits using timed
automata. In CHARME 95, pages 189-205. Lecture Notes in Computer Science
987, Springer-Verlag, 1995.

6. P. Merlin and D. J. Farber. Recoverability of communication protocols. TFEFE
Transactions on Communications, 24(9), September 1976.

7. R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983.

8. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.

In Proc. 3rd Workshop on Computer- Aided Verification, pages 376-398. Lecture
Notes in Computer Science 575, Springer-Verlag.

9. X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into ex
tended automata. I[EEE TSE Special Issue on Real-Time Systems, 18(9):794-804,
September 1992.

10. P. Sénac, M. Diaz, and P. de Saqui-Sannes. Toward a formal specification of mul-
timedia scenarios. Annals of telecommunications, 49(5-6):297-314, 1994.

11. J. Sifakis. Use of petri nets for performance evaluation. In Measuring, modeling
and evaluating computer systems, pages 75-93. North-Holland, 1977.

13

