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Abstract

We present a quality management method for multimedia
applications. The method takes as input an application soft-
ware composed of actions. The execution times of actions
are unknown increasing functions of quality level parame-
ters. The method allows the construction of a Quality Man-
ager which computes adequate action quality levels so as to
meet QoS requirements for a given platform. These include
deadlines for the actions as well as quality maximization
and smoothness.

We extend and improve results of a previous paper by fo-
cusing on the reduction of overhead due to quality manage-
ment. We propose a symbolic quality management method
using speed diagrams, a representation of the system’s dy-
namics. Instead of numerically computing a quality level
for each action, the Quality Manager changes action qual-
ity levels based on the knowledge of constraints character-
izing control relaxation regions. These are sets of states in
which quality management for a given number of steps can
be relaxed without degrading quality.

We provide experimental results for quality management
of an MPEG encoder, in particular performance bench-
marks for both numeric and symbolic quality management.

1 Introduction

Designing systems meeting both hard and soft real-time
requirements is a challenging problem. There exist well-
established design methodologies for hard real-time sys-
tems, that is systems that do not violate critical properties
such as deadlines. These methodologies are based on worst-
case analysis using conservative approximations of the sys-
tem dynamics and static resource reservation, which implies
a non optimal use of resources.

In contrast, design methodologies for soft real-time are
based on average-case analysis and seek more efficient use
of resources (e.g. optimization of speed, jitter, memory,
bandwidth, power) without addressing critical behavior is-
sues. They are used for applications where some degra-
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dation or even temporal denial of service is tolerated e.g.,
multimedia and telecommunications.

These two classes of design methodologies are currently
disjoint. Meeting hard real-time properties and making op-
timal use of available resources seem to be two antagonistic
requirements. The existing gap between hard and soft real-
time often leads to costly and unreliable solutions.

Adaptivity is a means for bridging the gap between the
two classes of design methodologies. In previous papers
[5, 6], we have presented an adaptive method for QoS man-
agement allowing optimal use of computing resources with-
out missing deadlines. The method targets multimedia ap-
plications. It allows adapting the overall system behavior by
adequately setting quality level parameters for its actions.
The objective of the quality management policy is to meet
QoS requirements including three types of properties: 1)
safety (no deadlines are missed); 2) optimality, (maximiza-
tion of the available time budget); 3) smoothness of quality
levels.

The method takes as input an application software with
timing information about its actions. This includes dead-
lines and (platform-dependent) worst-case and average ex-
ecution times. It produces a controlled application software
meeting the QoS requirements for the target platform. This
is obtained by applying to the application software a Con-
troller consisting of a Scheduler and a Quality Manager.
Depending on the progress of the computation, the Sched-
uler chooses the next action to be executed and the Quality
Manager the associated quality level parameter.

In [6], we provided tools for implementing the controlled
software on bare machines. The implementations use a
Quality Manager which computes online quality level pa-
rameters for each action of the application software. De-
spite optimizations, the overhead in execution time due to
numeric computation of these parameters can be high. In
this paper, we investigate a symbolic quality management
method allowing considerable overhead reduction. It uses a
symbolic representation of the system’s dynamics and con-
straints characterizing control relaxation regions in which
quality management can be relaxed without degrading qual-
ity. We consider the following simplified version of the gen-
eral problem by assuming that the application software is
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already scheduled (see figure 1):
• The application software cyclically performs input/output
transformations of data streams. It is described as a finite
sequence of actions (C-functions). Its execution during a
cycle can be controlled by choosing quality level param-
eters. We assume that the execution times of actions are
unknown and are increasing with quality.
• We consider single-thread implementations of the applica-
tion software on a platform for which it is possible, by using
timing analysis and profiling techniques, to compute esti-
mates of worst-case execution times and average execution
times of actions for different quality levels. Action execu-
tion is assumed to be atomic. A compiler is used to generate
the controlled software from the initial application software,
for given deadline requirements and execution times.

The controlled software can be considered as the com-
position of the initial application software with a Quality
Manager (see figure 2). The latter monitors the progress of
the computation within a cycle of the application software.
At any state of the cycle, it chooses the quality level for the
next action to be executed, guided by a quality management
policy. This is a constraint guaranteeing safety and embody-
ing an optimality criterion. The Quality Manager chooses
the maximal quality satisfying this constraint.
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Figure 1. Prototype tool implementation

Our method significantly differs from existing ones. The
main difference is fine granularity of quality management,
which allows combination of hard and soft real-time tech-
niques. Most existing techniques are applied at system or
task level, focus on optimality criteria and are adequate only
for soft real-time. The integration of safety criteria is use-
ful in applications where quality should remain above some
minimal level [9], [3], e.g., home TVs, or where hard dead-
lines must be respected. Buttazzo et al.’s elastic tasks model
[4], as well as slack scheduling [7], [11] and gain time tech-

niques [1] are based only on worst-case execution times and
do not deal with quality smoothness. A common and sim-
ple way to treat CPU overload is to skip an instance of a
task [10]. Lu et al. [12] propose a feedback scheduling
based on PID controllers, but deadline misses remain pos-
sible. Steffens et al. [15], [13] minimize deadline misses
of an MPEG decoder by applying a Markov decision pro-
cess and reinforcement learning techniques, combined with
structural load analysis.

This paper improves and extends results presented in [5,
6] in several directions.

• It defines and studies speed diagrams, a graphical repre-
sentation of the controlled software’s state space for which
quality management policies admit a geometric interpreta-
tion (see figure 3). A state is defined as a point in a two-
dimensional space. One dimension represents the actual
(real) time while the other dimension represents a virtual
time used by the Quality Manager. The slope of a vector in
this space represents (relative) speed between virtual time
and actual time. In speed diagrams, vectors at 45 degrees
slope represent state trajectories where actual and virtual
times are equal. Consequently, the locus of optimal states
coincides with the bisectrice of the first quadrant. States be-
low the bisectrice, are those where actual time is larger than
virtual time and thus the Quality Manager should enforce
acceleration of computation by choosing lower quality. In
contrast, for states above the bisectrice, optimal use of the
available time budget implies the choice of higher qualities.
• It introduces, for a given state of the controlled software
and quality q, two kinds of speeds: 1) ideal speed charac-
terizes the estimated evolution if all the remaining actions
of the application software are run with quality level q; 2)
optimal speed is the vector characterizing optimal system
evolution, that is respecting the deadlines and making the
best possible use of the available time budget. We show
that the constraint applied by the quality management pol-
icy defined in [6] is satisfied for a given quality, if and only
if the quality chosen (at a state) is such that the correspond-
ing ideal speed is the least ideal speed exceeding the optimal
speed.
• It shows, based on this characterization in terms of speeds,
that speed diagrams allow symbolic quality management
policies. For a given deadline, it is possible to specify the
set of the states for which the Quality Manager chooses con-
stant quality q. These states form a region defined by a
set of inequalities involving actual time, and average and
worst-case execution times of actions. Knowledge of these
constant quality regions allows a more efficient implemen-
tation of the quality management policy. An even more ef-
ficient implementation can be achieved by using a symbolic
description of the regions of states from which it can be
ensured that the Quality Manager will choose quality q for
the next r actions. From these regions, it is possible to re-



lax control for r steps and thus, to considerably reduce the
overhead due to quality management.

The paper is organized as follows. In section 2 we
present the quality management problem and its solution
described in [6]. The results about speed diagrams and their
use for quality management are presented in section 3. Sec-
tion 4 presents experimental results for a non trivial video
encoder.

2 Quality Management: The Problem and its
Solution

2.1 Definition of the Problem

We provide a formalization of the quality management
problem by considering that the application software is al-
ready scheduled. It is characterized by an execution se-
quence { si−1

ai−→ si }1≤i≤n, where S = { s0, . . . , sn } is
a set of states and A = { a1, . . . , an } is a set of actions.
Actions correspond to blocks of code. Their execution is
atomic.

The execution of the application software (A,S) on a
platform, is modeled by an execution time function C :
A → R

+, associating with an action ai its execution time
C(ai). The corresponding timed execution sequence is
{ (si−1, ti−1)

ai−→ (si, ti) }1≤i≤n such that t0 = 0 and
ti − ti−1 = C(ai).

Execution times for actions may considerably vary over
time as they depend on the contents of data. Furthermore,
non predictability of the underlying platform is an addi-
tional factor of uncertainty. We consider that they are not
known in advance, but are bounded by worst-case estimates.
To cope with the inherent uncertainty of execution times, we
assume that the actions are parameterized by quality levels.
This leads to the following model.

Definition 1 A parameterized system PS is an applica-
tion software (A,S) with
• a finite set of integer quality levels Q
• a worst-case execution time function Cwc : A×Q → R

+

non-decreasing with quality levels that is, for all actions a,
the function q �→ Cwc(a, q) is a non-decreasing function
• a parameter C, called actual execution time function,
C : A × Q → R

+ non-decreasing with quality levels and
such that C(a, q) ≤ Cwc(a, q) for any action a and quality
level q.

The execution of a parameterized system is charac-
terized by the family of sequences { (si−1, ti−1)

ai,qi−→
(si, ti) }1≤i≤n,qi∈Q such that t0 = 0 and ti − ti−1 =
C(ai, qi).

Quality Managers are used to adequately restrict the be-
havior of a parameterized system so as to meet given prop-
erties.

Parameterized System PS
current state (si−1, ti−1)

(ai, qi)

Quality Manager Γ

(si−1, ti−1)

qi := max { q | tD(si−1, q) ≥ ti−1 }

Figure 2. Quality Manager

Definition 2 Given a parameterized system PS a Quality
Manager is a function Γ : S × R

+ → Q giving, for a
state (si−1, ti−1) of PS, the quality level qi for executing
the next action ai.

PS||Γ denotes a controlled system obtained as the com-
position of the parameterized system PS and the Quality
Manager Γ. For a given actual execution time function
C, it has a single execution sequence { (si−1, ti−1)

ai,qi−→
(si, ti) }1≤i≤n such that qi = Γ(si−1, ti−1).

The quality management problem for a given parame-
terized system PS consists in finding a Quality Manager Γ
meeting the QoS requirements. That is,there are no deadline
misses and the overall quality is maximal. It is formalized
as follows.

Definition 3 (quality management problem) Given a pa-
rameterized system PS and a deadline function D : A →
R

+ associating with each action a its deadline D(a), find
a Quality Manager Γ such that for any actual time function
C ≤ Cwc:
• Γ is safe (deadlines are met), that is for any state (si, ti)
of PS||Γ we have D(ai) ≥ ti where ti = C(a1, q1)+ . . .+
C(ai, qi).
• The overall execution time is maximal, that is for any safe
Quality Manager Γ′, tn ≥ t′n, where tn (resp. t′n) is the
completion time of the last action in PS||Γ (resp. PS||Γ′).

In [6], we require in addition to feasibility and optimal-
ity, smoothness for the quality levels chosen by the Qual-
ity Manager. Informally, smoothness means low fluctuation
of quality levels. Due to lack of space, we do not study
this property which is essential for most multimedia appli-
cations [14].

2.2 Quality Manager Design

We summarize the method for the design of Quality
Managers, given in [6].

2.2.1 Quality Manager Design Principles

Figure 2 shows interaction between the Quality Manager Γ,
applying a quality management policy, and the application
software, i.e. the parameterized system PS. The Quality
Manager observes the current state (si−1, ti−1) of PS and



computes the next quality level qi for the next action ai. The
Quality Manager is defined by:

Γ(si−1, ti−1) = qi = max { q | tD(si−1, q) ≥ ti−1 }.
The function tD : A × Q → R

+ defines the quality man-
agement policy of the Quality Manager. It gives for a state
of the application software si−1 and a quality level q, the es-
timated elapsed time tD(si−1, q) at next state si if the rest
of the actions is executed with constant quality q. If the in-
equality tD(si−1, q) ≥ ti−1 is satisfied, then it is possible
to complete execution without missing the deadlines speci-
fied by D. The chosen quality level qi at state (si−1, ti−1) is
maximal amongst the quality levels q meeting the inequality
tD(si−1, q) ≥ ti−1.

The function tD is defined as follows:

tD(si−1, q) = mini≤k≤n D(ak) − CD(ai..ak, q),

where CD(ai..ak, q) denotes an estimation of the total exe-
cution time for the sequence of actions ai, ai+1, . . . , ak.

Choosing an adequate quality management policy, i.e.,
that ensures safety and an optimal use of resources, is a non
trivial problem discussed in [5] and [6]. In [6] we proposed
the mixed quality management policy based on the mixed
execution time function CD defined below. Its interest has
been shown through both theoretical and experimental re-
sults.

2.2.2 Mixed Quality Management Policy

The execution time function CD combines the use of two
execution time functions Csf and Cav . The first allows
respecting the safety requirement, that is no deadline is
missed. The second is used to enhance smoothness of qual-
ity levels.

The safe execution time function Csf gives a worst-case
estimation of the total execution time of ai..ak:

Csf (ai..ak, q) = Cwc(ai, q) + Cwc(ai+1..ak, qmin)

where Cwc(ai+1..ak, qmin) denotes the total worst-case ex-
ecution time for the sequence of actions ai+1, . . . , ak with
the minimal quality level qmin = min Q. That is,

Cwc(ai+1..ak, qmin) =
∑

i+1≤j≤k

Cwc(aj , qmin).

As the quality level can be changed by the Quality Manager
after the execution of the first action ai, we take the qual-
ity level q for the first action, and qmin for the remaining
actions. The application of safe quality management pol-
icy ensures safety of the Quality Manager. Nevertheless,
it may lead to considerable variations of quality levels in a
sequence e.g., by starting with high quality levels and ter-
minating with low quality levels.

To improve smoothness of the quality levels, we intro-
duce an average execution time function Cav : A × Q →
R

+, non-decreasing with quality. Average execution times

can be estimated by static analysis and/or profiling tech-
niques. We define δmax as the maximum difference be-
tween the worst-case and the average behavior:

δmax(ai..ak, q) = maxi≤j≤k δ(aj ..ak, q),

where δ(aj ..ak, q) = Csf (aj ..ak, q)−Cav(aj ..ak, q). That
is, for a sequence of actions ai..ak and quality level q,
δmax(ai..ak, q) is a kind of safety margin with respect to
the average behavior. It measures uncertainty on execution
times in order to meet the deadlines.

The mixed execution time function CD is defined by
CD = Cav + δmax. It combines average and worst-case
behavior. It is possible to take into account execution time
needed for quality management by adequately overestimate
average and worst-case execution times.

In the rest of the paper, we consider a Quality Manager
applying the mixed quality management policy.

3 Speed Diagrams and their Use for Quality
Management

Speed diagrams are a graphical representation of sys-
tem’s states, in which quality management policies have a
geometric interpretation in terms of relative speed between
virtual time (average execution times) and actual time. They
allow a better understanding of the impact of worst-case ex-
ecution times on achieving optimality. They also allow a
symbolic approach for the definition and implementation of
the Quality Manager. We show that a quality management
policy can be expressed by a partition of the state space
into regions specified by constraints involving deadlines and
worst-case and average execution times.

3.1 Definition

Speed diagrams represent in a two dimensional space
the evolution of a parameterized system PS and its Qual-
ity Manager applying the mixed quality management policy
defined in section 2.2.2 for a deadline function D (figure 3).
The vertical axis of the speed diagram corresponds to vir-
tual time computed from average execution times and their
deadlines. The horizontal axis represents actual time.

The following definitions provide a formalization of
speed diagrams, as well as results about the interpretation
of the mixed quality management policy in terms of speed
vectors.

3.1.1 System State Representation

Let (si, ti) be a state of a parameterized system PS and
D(ak) the deadline of an action in the remaining sequence
of actions ai+1, . . . , ak, . . . , an. The virtual time variable
yi(q) is used to estimate at some point of the execution, the
time distance from the deadline D(ak) if the sequence of



the actions a1, . . . , an is run with uniform quality q. It is
defined by:

yi(q) =
Cav(a1..ai, q)
Cav(a1..ak, q)

· D(ak).

Intuitively, yi(q) is the percentage of the consumed virtual
time at state si with respect to the available time budget
D(ak). Notice that normalization with respect to the dead-
line implies that yk(q) = D(ak) (see figure 3).

As a result of the normalization, points on the diagonal
(45 degree slope) correspond to optimal behavior. Points
(ti, yi(q)) below the diagonal correspond to states where
the actual computation is late with respect to virtual time.
Conversely, for points above the diagonal, the computation
goes faster than estimated.

yi(q)

ti D(ak)

δmax

vidl(q)

1
2

3

y
(virtual time)

D(ak) = yk(q)

vopt(q)

t
(actual time)

Figure 3. Speed diagram

3.1.2 Ideal and Optimal Speeds

Let (si, ti) and (sj , tj) be two states of PS such that
j > i, Consider their corresponding positions (ti, yi(q))
and (tj , yj(q)) in the speed diagram for a quality level q
and a deadline D(ak), k ≥ j.

The speed vi,j(q) between (ti, yi(q)) and (tj , yj(q)) is
given by the ratio

vi,j(q) =
yj(q) − yi(q)

tj − ti
.

We introduce two notions of speed to explain the mixed
quality management policy.
• The ideal speed vidl(q) is the speed for constant qual-
ity level q when the actual time is equal to the average
time. As C = Cav and qi+1 = . . . = qj = q, we
have tj − ti = C(ai+1..aj , q) = Cav(ai+1..aj , q) =
Cav(a1..aj , q) − Cav(a1..ai, q). Then, the ideal speed
vidl(q) between (ti, yi(q)) and (tj , yj(q)) is equal to

vidl(q) =
yj(q) − yi(q)

tj − ti

=
D(ak)

Cav(a1..ak, q)
· Cav(a1..aj , q) − Cav(a1..ai, q)
Cav(a1..aj , q) − Cav(a1..ai, q)

=
D(ak)

Cav(a1..ak, q)
.

Notice that the ideal speed vidl(q) is independent of the
choice of i and j, and only depends on the target deadline
D(ak) and the quality level q. This means that for constant
quality assignments the trajectory of the system in the
diagram is linear in the ideal case C = Cav .

• The optimal speed vopt(q) is the speed between the
current position (ti, yi(q)) and the position D(ak) −
δmax(ai+1..ak, q), D(ak)). It can easily be shown that
vopt(q) is equal to

D(ak)
Cav(a1..ak, q)

· Cav(ai+1..ak, q)
D(ak) − δmax(ai+1..ak, q) − ti

.

By targeting point (D(ak)− δmax(ai+1..ak, q), D(ak)) in-
stead of (D(ak), D(ak)) the quality manager respects a
safety margin δmax(ai+1..ak, q) which is sufficient to en-
sure termination before the deadline D(ak). The value
δmax(ai+1..ak, q) is a safety margin characterizing the
tradeoff between feasibility and optimality for the mixed
quality management policy.

Proposition 1 Given a parameterized system PS, a state
(si, ti) of PS, a quality level q and a target deadline D(ak),
k > i, we have:

vidl(q) ≥ vopt(q) ⇐⇒ D(ak) − CD(ai+1..ak, q) ≥ ti.

The above proposition demonstrated in [6], allows a geo-
metric interpretation of the mixed quality management pol-
icy in terms of relative speeds between average execution
time and actual time. The Quality Manager makes a con-
servative approximation of the optimal speed vopt by choos-
ing the optimal speed exceeding vopt with maximal quality.
Intuitively, the chosen speed corresponds to an optimal be-
havior for constant quality assignment (uniform speed) and
maximal time budget utilization, in which a safety margin
is integrated in order to meet the deadline.

Our quality management technique assumes that the
Quality Manager is called before executing each action of
the application software. Since the Quality Manager and
the application are composed together, there is an overhead
for computing the Quality Manager. An important issue is
reducing this overhead. In the rest of the paper, we explain
how to safely relax the granularity of control that is, reduc-
ing the number of Quality Manager calls, whereas choosing
the same quality levels.



3.2 Quality Regions

Consider a parameterized system PS and a Quality
Manager Γ applying the mixed quality management pol-
icy. For a better understanding of the choices of the Qual-
ity Manager, we study quality regions, sets of system states
where the chosen quality level is constant.

Definition 4 Given a parameterized system PS and a
Quality Manager Γ, a quality region Rq for the quality
level q is defined by:

Rq =
{

(si, ti) | Γ(si, ti) = q
}
.
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Figure 4. Quality region for a quality level q

Let (si, ti) be a state of a parameterized system PS, and
(ti, yi(q)) the corresponding position in the speed diagrams
for a deadline D(ak), k ≥ i. It can be shown that tD is a
non-increasing function of q. This implies that
• for q < qmax = max Q, Γ(si, ti) = q iff tD(si, q) ≥ ti
and ti > tD(si, q + 1).
• for q = qmax, Γ(si, ti) = q iff tD(si, q) ≥ ti.

Proposition 2 For a given quality level q and a state
(si, qi), (si, ti) ∈ Rq if and only if

ti∈
]

tD(si, q + 1) , tD(si, q)
]

for q < qmax

ti∈
] −∞, tD(si, q)

]
for q = qmax.

This proposition allows computing quality regions Rq.
A region is defined by the set of the yi(q) for all i and
the corresponding interval bounds characterizing its borders
(see figure 4).

3.3 Control Relaxation Regions

We propose a control relaxation method allowing to re-
duce the number of Quality Manager calls. We define con-
trol relaxation regions, sets of system states in which the
Quality Manager can be relaxed without degrading the qual-
ity of control.

Let (si, ti) be a state of a parameterized system PS. As-
sume that the Quality Manager Γ chooses the quality level
q at state (si, ti) that is, (si, ti) ∈ Rq. We consider a con-
servative control relaxation: the Quality Manager can be
relaxed for r ≥ 1 steps if we ensure that the quality level
chosen for all the next r actions ai+1, ai+2, . . . , ai+r is q.

Definition 5 Given a parameterized system PS and a
Quality Manager Γ, a control relaxation region Rr

q for
the quality level q and an integer r ≥ 1 is defined by:{ R1

q = Rq

(si, ti) ∈ Rr
q ⇔ (si, ti) ∈ Rq ∧ (si+1, ti+1) ∈ Rr−1

q .
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Figure 5. Control relaxation: the principle

We consider the states (sj , tj), j ∈ {i, i+1, . . . , i+r−1}
of PS||Γ, and find conditions for these states to be in Rq

(see figure 5). For instance, figure 5 shows a case where this
property is not satisfied and the Quality Manager cannot be
relaxed from state (si, ti) for r steps.

Due to uncertainty, actual execution times can range
from 0 to Cwc. So we can only give upper and lower bounds
for tj :

ti + Cwc(ai+1..aj , q) ≥ tj ≥ ti. (1)

By proposition 2 and equation (1), (sj , tj) ∈ Rq if the fol-
lowing equations are satisfied for all j ∈ {i, i + 1, . . . , i +
r − 1},

tD(sj , q) − Cwc(ai+1..aj , q) ≥ ti (2)
ti > tD(sj , q + 1). (3)

then, we can relax the Quality Manager for r steps. As
tD(sj , q + 1) is increasing with j, (3) is satisfied for all
j if and only if ti > tD(si+r−1, q + 1). This leads to the
following proposition.

Proposition 3 For a given quality level q, an integer r ≥ 1
and a state (si, qi), (si, ti) ∈ Rr

q if and only if

ti∈
]

tD(si+r−1, q + 1) , tD,r(si, q)
]

for q < qmax

ti∈
] −∞ , tD,r(si, q)

]
for q = qmax,



where tD,r(si, q) = mini≤j≤i+r−1 tD(sj , q) −
Cwc(ai+1..aj , q).
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Figure 6. Control relaxation region

4 Experimental Results

4.1 Experimental Framework

We applied our results to an MPEG video encoder writ-
ten in C (more than 7,000 lines). The encoder cyclically
treats frames. Each frame is split into N(396 ≤ N ≤
1, 620) macroblocks of 256 pixels.

The parameterized system PS describing the video
encoder consists of
• the scheduled video encoder, a sequence of 1, 189 actions,
that is A = { a0, . . . , a1,188 }
• for each action, a set of 7 quality levels Q = { 0, . . . , 6 }.

We used the BIP/Think tool chain [2, 8] for the imple-
mentation of the controlled software on a bare Apple iPod
Video (5G). Unfortunately, this machine is too slow for
video applications but this was the only possible target for
the implementation tools, in particular because it has a reli-
able real-time clock needed by the Quality Manager. Thus,
the given benchmarks are indicative and useful only for es-
timating relative values. The generated implementations in-
clude binary code for the encoder and its Quality Manager
as well as minimal OS features. For the iPod, we estimated
worst-case and average execution times by profiling.

We have generated three Quality Managers for a single
global deadline D = 30 s:
Numeric Quality Manager. This is a straightforward im-
plementation of the mixed quality management policy given
in section 2.2.1.
Quality Manager using quality regions. We developed a
prototype tool in Matlab/Simulink for pre-computing qual-
ity regions Rq defined in 3.2. These are used by the Quality
Manager to compute online action quality levels. By propo-
sition 2, quality regions are characterized by the set of the

values tD(si, q) for all quality levels q and for all states si.
Thus, as i ranges from 0 to |A| − 1 this set is specified by
|A||Q| = 8, 323 integers. For the video encoder applica-
tion, we have measured an overhead in memory allocation
of 300 KB.
Quality Manager using control relaxation regions. This
is an optimization of the previous implementation in which
the control relaxation regions Rr

q (defined in 3.3) are used
to determine the set ρ = { 1, 10, 20, 30, 40, 50 } of the num-
bers of steps for which quality management can be relaxed.
By definition 3, control relaxation regions are characterized
by the set of the values tD(si+r−1, q+1) and tD,r(si, q) for
all the quality levels q, indices i ∈ { 1, . . . , |A| − 1 } and
relaxation steps r ∈ ρ, that is a set of 2|A||Q||ρ| = 99, 876
integers. We observed an overhead in memory allocation of
800 KB.

4.2 Performance of Quality Managers

We have compared the performance of the three Quality
Managers for an input sequence of 29 frames of 352 × 288
pixels (396 macroblocks). Execution time overhead due to
quality management is in average 5.7 % for the numeric
implementation, 1.9 % for the symbolic implementation us-
ing quality regions (no control relaxation) and less than
1.1 % for the implementation using control relaxation re-
gions. Thus, symbolic quality management allows signif-
icant overhead reduction with respect to numeric quality
management. Consequently, symbolic Quality Managers
choose higher quality levels than the numeric Quality Man-
ager (see figure 7). This leads to a significant improvement
of the overall video quality.
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Figure 8 compares for the sequence a200..a700 of 501
actions in a frame, overheads in execution time with and
without control relaxation. Notice that the number of relax-
ation steps r is dynamically adapted during the execution of
the application : r = 40 from a200 to a421, r = 1 from a422

to a564, and r = 10 from a565 to a700.
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5 Conclusion

We presented a new symbolic quality management
method for hard real-time and optimal use of resources. The
method improves and extends our previous results [5, 6].
• Speed diagrams provide a general and abstract framework
for studying the dynamics of the controlled software, de-
termined as the interplay between the execution of the ap-
plication software and the Quality Manager. The geomet-
ric interpretation of system’s evolution allows performance
analysis and a deeper understanding of control management
policies in terms of relations between ideal and optimal
speeds.
• The use of quality and control relaxation regions which
can be pre-computed from their symbolic representation, al-
lows a more efficient implementation of Quality Managers.
Safe control relaxation proves to be a very interesting idea
as it allows keeping Quality Manager’s intervention mini-
mal and thus reduce the corresponding execution time over-
head.
• The implementation technique can be fully automated
for platforms providing access to accurate real-time clocks
at low overhead as illustrated by using the BIP/Think tool
chain.

Experimental results confirm the interest of symbolic
quality management because of its low overhead. We work
in several directions to improve the method and the support-
ing tools: adaption to multiple tasks, using linear constraints
to approximate control relaxation regions, study of proper-
ties of control relaxation regions for classes of programs
e.g., iterations, and modular use of speed diagrams. We
also explore possible applications of the technique to power
management where quality level is replaced by frequency
and the objective is to minimize energy consumption with-
out missing the deadlines.
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