
Modeling Synchronous Systems in BIP

Marius Bozga Vassiliki Sfyrla Joseph Sifakis
VERIMAG – Centre Equation, 2 Avenue de Vignate, 38610 Gières, France

FirstName.LastName@imag.fr

ABSTRACT
We present a general approach for modeling synchronous
component-based systems. These are systems of synchronous
components strongly synchronized by a common action that
initiates steps of each component. We propose a general
model for synchronous systems. Steps are described by
acyclic Petri nets equipped with data and priorities. Petri
nets are used to model concurrent flow of computation. Pri-
orities are instrumental for enforcing run-to-completion in
the execution of a step.

We study a class of well-triggered synchronous systems which
are by construction deadlock-free and their computation within
a step is confluent. For this class, the behavior of compo-
nents is modeled by modal flow graphs. These are acyclic
graphs representing three different types of dependency be-
tween two events p and q: strong dependency (p must follow
q), weak dependency (p may follow q), conditional depen-
dency (if both p and q occur then p must follow q).

We propose a translation of Lustre into well-triggered syn-
chronous systems. This translation is modular and exhibits
not only data-flow connections between nodes but also their
synchronization by using clocks.

Keywords
synchronous systems, priority Petri nets, modal flow graphs,
Lustre, BIP (Behavior-Interaction-Priority)

1. INTRODUCTION
Synchronous systems are composed of strongly synchronized
parallel components. Their global behavior is characterized
by runs consisting of successive computation steps. In each
step, all components perform some quantum of computation.
This ensures a built-in fairness between components in shar-
ing resources, usually enforced by using static scheduling
policies. Synchronous computation models are particularly
adequate for hardware, real-time systems and streaming sys-
tems. Their main advantage over asynchronous computa-

tion models is efficiency and predictability (determinacy),
in particular thanks to lightweight analysis techniques for
deciding deadlock-freedom and timeliness. Nonetheless, for
general applications an adequate mix of synchronous and
asynchronous computation is necessary for optimal use of
resources e.g. GALS models [2].

A non trivial open problem is the design of systems con-
sistently integrating synchronous and asynchronous subsys-
tems e.g. one in Simulink and another in ADA. This re-
quires in principle, the use of a common semantic model
encompassing both the synchronous and the asynchronous
formalism.

The BIP (Behavior, Interaction, Priority) component frame-
work is a formalism for the description of component-based
systems consisting of heterogeneous components [1]. It al-
lows the description of systems as the composition of generic
atomic components characterized by their behavior and their
interfaces. It supports a system construction methodology
based on the use of two families of composition operators:
interactions and priorities. Interactions are used to spec-
ify multiparty synchronization between components as the
combination of two protocols: rendezvous (strong symmet-
ric synchronization) and broadcast (weak asymmetric syn-
chronizations). Priorities between interactions are used to
restrict non determinism inherent to parallel systems. They
are particularly useful to model scheduling polices.

In contrast to existing formal frameworks, BIP is expres-
sive enough to directly model any coordination mechanism
between components [3]. It has been successfully used to
model complex systems including mixed hardware/software
systems and complex software applications.

In this paper, we show how the basic execution mechanisms
underlying synchronous data-flow systems can be modeled
in BIP. We define a notion of synchronous BIP component
which differs from general components in that its behavior
is described by a step. Steps of components are delimited
by a specific transition labeled by a port sync and executed
synchronously by all components. The behavior of a com-
ponent in a step is described by a safe extended priority
Petri net. This is a safe Petri-net whose transitions are la-
beled with elements of a set of ports P and a priority order,
a strict partial order ≺⊂ P × P . Furthermore, transitions
may be labeled with guards and functions representing data
transformations. The Petri net has a set of initial and a set

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147994348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of final places. When only final places are marked, a step
can terminate by executing the specific transition labeled by
sync. Termination of a step consists in removing the tokens
from final places and putting a token in each initial place.
Implicitely, the priority order requires that sync has lower
priority than any other port to ensure maximal computa-
tion in a step.

read

answer

send2

write

close

send1

forward

open

[cond2]

[cond1]

close ≺ forward, answer

Figure 1: Email treatment

Figure 1 shows a priority Petri net describing the treatment
of an email in one computation step. The sync transition is
not explicitly represented. Initial places are marked with a
token; final places are grayed. Transitions are enabled when
their input transitions are marked and the associated con-
dition is true. The priority order restricts choices amongst
enabled transitions (ports). That is if both forward and
close are enabled then forward is executed. Therefore, de-
pending on the conditions [cond1] and [cond2], the possible
execution sequences are : open read close, open read forward
send1 close, open read answer write send2 close, open read
(forward send1 || answer write send2) close where || is the
interleaving of sequences.

We define composition of synchronous components as a par-
tial internal operation parameterized by a set of interactions.
Given a set of synchronous components, we get a product
component by composing their Petri nets and their priority
orders.

An essential property of synchronous systems is termina-
tion of steps, in particular steps must be deadlock-free. An-
other requirement is confluence of computation within a step
which means that the overall behavior is deterministic when
system states are observed only at the end of each step.
For some synchronous languages e.g. Lustre, these proper-
ties can be ensured by checking very simple sufficient condi-
tions [12].

We provide results guaranteeing deadlock-freedom and con-
fluence for a class of synchronous systems encompassing
most of the existing executable synchronous formalisms. We
define the class of modal flow components. They are a sub-
class of synchronous components where priority Petri nets
are replaced by modal flow graphs. These correspond to a
subclass of priority Petri nets for which deadlock-freedom
and confluence can be decided at low cost. Modal flow
graphs are structures expressing dependency relations be-
tween events. Similar structures such as [13, 16, 17] have
been proposed and used in different contexts. An impor-
tant difference between modal flow graphs and related for-

malisms is the use of three different modalities characterizing
dependency between events. For a given set of ports P , a
modal flow graph is a directed acyclic graph with nodes P
and edges representing the union of three binary relations.
Each relation expresses a different kind of causal dependency
(modality) between pairs of ports p and q:

• q strongly depends on p if the execution of p must be
followed by the execution of q. That is, p and q can-
not be executed independently, only the sequence pq

is possible.

• q weakly depends on p if the execution of p may be
followed by q. That is either p can be executed alone
or the sequence pq.

• q conditionally depends on p if when both p and q are
executed, then q must follow p. Conditional depen-
dency requires that if p and q occur then only the
sequence pq is possible; otherwise p or q may be in-
dependently executed.

In Figure 2, we show the modal flow graph corresponding to
the Petri net of Figure 1. Bold, simple and dashed arrows
represent respectively strong, weak and conditional depen-
dency relations.

open

read

close

send1

forward answer

write

send2

[cond1] [cond2]

Figure 2: Modal flow graph for email treatment

The semantics of a modal flow graph is a priority Petri net.
It associates with each port a transition of the Petri net.
The associated priority order is the inverse of the causality
order, that is causes have higher priority than consequences.

We show that modal flow graphs are deadlock-free if they
are well-triggered. This property expresses consistency be-
tween the three types of dependency. It also guarantees
confluence under some conditions of non interference of con-
current computations.

To illustrate the results, we translate the Lustre language
into synchronous BIP. The translation method follows the
BIP system construction methodology and involves:

• Definition of the set of atomic components. We need
atomic components for modeling flows (variables) and
clocks as well as for modeling combinatorial, delay,
sampling and interpolation Lustre operators. As in [15],
atomic components have two kinds of ports: 1) data
ports associated with data variables and used to input
and output data between components and 2) control
ports, used to enforce (partially) the control flow of
computation within a step.

• Definition of the interactions between atomic compo-
nents. We use two classes of interactions: 1) interac-
tions which implement the data flow relation between

data ports and 2) interactions realizing strong synchro-
nization between control ports of components.

The translation is modular and makes explicit all the inter-
actions needed to perform a synchronous computation in a
inherently parallel (component-based) system.

The paper is structured as follows. Synchronous components
and their composition are presented in section 2. Section 3
is the main section of the paper. It presents the sub-class of
synchronous components defined by using modal flow graphs
as well as sufficient conditions for deadlock-freedom and con-
fluence. Section 4 presents the concrete application of modal
flow graphs for modeling of synchronous systems. Related
work is presented in Section 5 and in Section 6, we con-
clude and present future work directions. Detailed proofs
of propositions and theorems can be found in the technical
report [5].

2. SYNCHRONOUS COMPONENTS
We present synchronous components and their semantics.
The behavior of a synchronous component within a syn-
chronous computation step is a safe extended priority Petri
net with given sets of initial and final places. When only
final places are marked, termination may terminate by re-
moving tokens from final places and putting tokens to initial
places.

Definition 1 (synchronous component: syntax).
A synchronous component B is a tuple (X, P, N,≺) where:

• X is a set of data variables,

• P is a set of ports p, each one labelled with a subset of
variables Xp ⊆ X, the ones exported on interactions
through p,

• N = (L, T, F, L0, Lf) is an extended 1-safe Petri net:

– L is a finite set of places,

– T is a finite set of transitions τ labelled by (pτ , gτ , fτ)
where pτ ∈ P is the port triggered by the transi-
tion τ , gτ is the guard of τ , that is a predicate on
X and fτ is the update function associated with
τ , that is a state transformer defined on X,

– F ⊆ L × T ∪ T × L is the token flow relation,

– L0 ⊆ L is the set of initial places,

– Lf ⊆ L is the set of final places,

• ≺⊆ P × P is a priority order on ports, that is a strict
partial order on the set of ports.

Example 1. Figure 3 shows a synchronous BIP compo-
nent that produces a tock every P ticks. At every step, it
executes the tick transition and then, during the same step,
it increases the local variable x by executing the update tran-
sition. Whenever x reaches the value P , the component can
also execute the tock transition and reset x to 0. In this
situation, the tock and update transitions are conflicting,
however, the associated priorities enforce the execution of
tock before update if both transitions are possible.

update

tick tock

x:=x+1

[x=P]

x:=0

update

tick tock

x:int

update ≺ tock ≺ tick

Figure 3: Tick-tock synchronous component

In order to define the operational semantics for synchronous
components, let us first introduce some notations. Given
a Petri net N = (L, T, F, L0, Lf) we define the set of 1-
safe markings M as the set of functions m : L → {0, 1}.
Given two markings m1, m2, we define inclusion m1 ≤ m2

iff for all l ∈ L, m1(l) ≤ m2(l). Also, we define addition
m1+m2 as the marking m12 such that, for all l ∈ L, m12(l) =
m1(l) + m2(l). Given a set of places K ⊆ L, we define its
characteristic marking mK by mK(l) = 1 for all l ∈ K and
mK(l) = 0 for all l ∈ L\K. Moreover, when no confusion is
possible from the context, we will simply use K to denote its
characteristic marking mK . Finally, for a given transition τ ,
we define its pre-set •τ (resp. post-set τ•) as the set of places
flowing to (resp. from) that transition •τ = {l | (l, τ) ∈ F}
(resp. τ• = {l | (τ, l) ∈ F}).

Definition 2 (synchronous component: semantics).
The semantics of a synchronous component B = (X, P, N,≺
) with N = (L, T, F, L0, Lf) is defined as the labelled transi-
tion system S = (Q, Σ,−→) where

• Q = M×V is the set of states defined by:

– M = {m : L → {0, 1}} the set of 1-safe markings,

– V = {v : X → D} the set of valuations of vari-
ables,

• Σ = P ∪ {sync} is the set of labels,

• −→⊆ Q × Σ× Q is the set of transitions defined by the
rules in Figure 4

τ ∈ T •τ ≤ m
m′ = m − •τ + τ•

1) gτ (v) = true v′ = fτ (v) 2) m ≤ mLf

(m, v)
pτ−→0 (m′, v′) (m,v)

sync
−−−→0 (mL0

, v)

(m,v)
p
−→0 (m′, v′) (m,v)

sync
−−−→0 (m′, v′)

3) ¬(∃p′.p ≺ p′ ∧ (m,v)
p′

−→0) 4) ¬(∃p.(m,v)
p
−→0)

(m,v)
p
−→ (m′, v′) (m, v)

sync
−−−→ (m′, v′)

Figure 4: Operational Semantics Rules

Rules (1) and (2) define moves −→0 of the behavior without
priorities. Rule (1) is the usual firing rule of transitions in
Petri nets extended with global data. Rule (2) defines sync

transitions which denote the end of a step and the beginning
of the next one. Sync transitions can be executed whenever

the current marking does not contain tokens in non-final
places, and their effect is to restore the initial marking, while
keeping the data unchanged. Rules (3) and (4) define the
moves −→ of a synchronous component, by restricting −→0

with respect to priorities. Rule (3) is simply the application
of the priority rule specified by the priority order ≺. Rule
(4) enforces highest priority of all the transitions ports of
the component with respect to sync transitions, denoting
step termination.

Definition 3 (interaction). An interaction a is a triple
(Pa, Ga, Fa) where

• Pa, is a set of ports, the support set of the interaction,

• Ga is the interaction guard, that is a boolean predicate
defined on variables (Xp)p∈Pa exported through ports
belonging to the interaction,

• Fa is an update (or transfer) function, that is a state
transformer on variables (Xp)p∈Pa

We define composition parameterized by interactions as an
internal operation of synchronous components. This opera-
tion is partial: the result of the composition is defined as a
synchronous component only if the priority order associated
to it is acyclic.

Definition 4 (synchronous component: composition).
Let {Bi = (Xi, Pi, Ni,≺i)}i=1,n be a set of synchronous
components defined on disjoint sets of variables and ports.
Let γ be a set of interactions on ports ∪n

i=1Pi such that each
interaction uses at most one port of every component, that is
for all a ∈ γ, for all i ∈ 1, n, |Pa ∩Pi| ≤ 1. The composition
γ(B1, ..., Bn) is a partial operation defining the synchronous
component B = (X, P, N,≺) where

• the set of variables X = ∪n
i=1Xi,

• the set of ports P is the set of interactions γ. More-
over, for each interaction a ∈ γ, we define its set of
exported variables Xa = ∪p∈PaXp,

• the Petri net N = (L, T, F, L0, Lf) is obtained from the
set of the Petri nets {Ni = (Li, Ti, Fi, L0i, Lfi

)}i=1,n

as follows:

– the set of places L = ∪n
i=1Li,

– the set of transitions T corresponds to sets of in-
teracting transitions

T =

〈a, {τi}i∈I〉 |
a ∈ γ, I ⊆ 1, n such that
∀i ∈ I.τi ∈ Ti and Pa = {pτi

}i∈I

ff

Moreover, for any transition τ = 〈a, {τi}i∈I〉 the
associated port pτ is the interaction a, the guard
gτ = ∧n

i=1gτi
∧ Ga, and the update function fτ =

(⊔n
i=1fτi

) ◦ Fa, where ⊔ is the function consist-
ing in computing each function fτi

- the order of
computation is irrelevant as the data of the com-
ponents are disjoint,

– the token flow relation F of the net is defined as

F =
{(l, 〈a, {τi}i∈I〉) | ∃j ∈ I.l ∈ •τj}∪
˘

(〈a, {τi}i∈I〉, l) | ∃j ∈ I.l ∈ τ•

j

¯

– the set of initial places L0 is ∪n
i=1L0i,

– the set of final places Lf is ∪n
i=1Lfi

,

• the relation ≺ is the strict transitive closure of the re-
lation ≺0 defined as the extension of individual pri-
ority orders ≺i to interactions: a1 ≺0 a2 iff ∃i =
1, n. ∃pi1 ∈ Pa1

∩ Pi. ∃pi2 ∈ Pa2
∩ Pi such that pi1 ≺i

pi2 . The composition is defined only if this relation is
a strict partial order.

Example 2. Composition of synchronous components is
illustrated in Figure 5. Two tick-tock components are com-
posed by synchronizing the tock of the first component and
the tick of the second one. The resulting component produces
a tock2 every P 2 ticks.

3. MODAL FLOW COMPONENTS
Modal flow components are synchronous components de-
fined by modal flow graphs, which correspond to a particu-
lar class of priority Petri nets. We define the semantics of
atomic flow components as well as their composition.

Definition 5 (modal flow component: syntax). A
modal flow component Bf is defined as a tuple (X, P, D):

• X is a set of data variables,

• P is a set of ports p, each one being associated with a
triple (Xp, gp, fp) where

– Xp ⊆ X, the set of variables exported through p,

– gp, the triggering condition of p, that is a predi-
cate defined on X,

– fp, an update function, that is a state transformer
function on X

• D = (Ds, Dw , Dc) is a triple of causal dependency rela-
tions between ports. The relations Ds, Dw, Dc ⊆ P ×P
denote respectively strong, weak and conditional depen-
dency and are such that their union Ds ∪ Dw ∪ Dc is
acyclic.

Example 3. In Figure 6, the tick-tock synchronous com-
ponent of Figure 3, is represented as a modal flow compo-
nent. The tock transition is weakly dependent on tick tran-
sition. Also, the update transition is strongly dependent on
tick and conditionally dependent on tock. The only possi-
ble executions within a step are therefore tick update or tick
tock update.

tick tock

update

x:=x+1

[x=P]

x:=0

tick

update

tock

x:int

Figure 6: Tick-tock modal flow component

We use the following notations. For fixed x = s, w, c, we

write p
x
; q to denote (p, q) ∈ Dx. We write

x

;
∗ to denote

the reflexive and transitive closure of
x
;. We write p ; q to

denote (p, q) ∈ Ds ∪ Dw ∪ Dc and ;
∗ for its reflexive and

update1

x1 := x1 + 1

[x1 = P]

x1 := 0

tick1 tock1tick1

update1

tock1

x1:int

update1

x1 := x1 + 1

[x1 = P]

x1 := 0

tick1tick1

update1

update1 ≺ tock1tick2 ≺ tick1

tock1tick2

update2

x2 := x2 + 1

[x2 = P]

x2 := 0

tock2

update2

tock1tick2 tock2

x1:int

update2 ≺ tock2 ≺ tock1tick2

x2:int

update2 ≺2 tock2 ≺2 tick2update1 ≺1 tock1 ≺1 tick1

update2

x2 := x2 + 1

[x2 = P]

x2 := 0

tick2 tock2tick2

update2

tock2

x2:int

Figure 5: Example of composition

transitive closure. Two ports p and q are called independent

(noted p♯q) iff neither p ;
∗ q nor q ;

∗ p.

For fixed x = s, w, c, we denote by minx P the set of minimal
ports with respect to Dx, that is minx P = {q | ¬∃p.p

x
; q}.

We write min P to denote the set of minimal ports with
respect to Ds ∪ Dw ∪ Dc, that is minP = {q | ¬∃p.p ; q}.

We call a modal flow component well triggered iff:

1. each port p has a unique minimal strong cause

|{q ∈ mins P | q
s

;
∗ p}| = 1

2. each port p has exclusively either strong or weak causes.

For a port p, we denote its minimal strong cause by root(p).

Notice that, well-triggered modal flow graphs can be decom-
posed as shown in Figure 7. The strong dependency relation
defines a set of connected subgraphs involving all the ports
of the component. Each one of these subgraphs has a single
root which is the common cause for its ports. Weak de-
pendencies express triggering of the root of a subgraph by
some port of another subgraph. Finally, conditional depen-
dencies may relate ports of different subgraphs provided the
acyclicity property is not violated.

Figure 7: Well-triggered components.

We define the semantics of modal flow components which
are well-triggered in terms of synchronous components.

Definition 6 (modal flow component: semantics).
The semantics of a well-triggered modal flow component Bf =
(X, P, D) is the synchronous component B = (X, P, N,≺):

• the set of variables is X,

• the set of ports is P ; moreover, for each port p the
associated set of exported variables is Xp,

• the Petri net N = (L, T, F, L0, Lf) is defined by:

– the set of places L is isomorphic to the set Ds ∪
Dw ∪Dc augmented with the set of minimal ports.
That is L = {lxp,q | p

x
; q} ∪ {lp | p ∈ min P},

– the set of transitions T is isomorphic to the set
of ports P , that is T = {tp |p ∈ P}. Moreover,
for any transition tp we associate its port p, the
guard gp, and the update function fp,

– the token flow relation F ⊆ L × T ∪ T × L, is
constructed as follows:

∗ for each p ∈ min P add (lp, tp) to F ,

∗ for each dependency p
x
; q add (tp, lxp,q), (l

x
p,q , tq)

to F ,

∗ for each conditional dependency p
c

; q add
(lcp,q, troot(p)) to F ,

– the set of initial places L0 corresponds to minimal
ports and conditional dependencies that is L0 =
{lp | p ∈ min P} ∪ {lcp,q | p

c
; q},

– the set of final places Lf consists of all places cor-
responding to all but strong dependencies Lf =

L \ {lsp,q | p
s
; q}.

• the priority order ≺= (;∗)−1 \ Id, that is p ≺ q iff

q ;
∗ p and q 6= p, for all p, q ∈ P .

Example 4. The tick-tock modal flow component shown
in Figure 6 is well-triggered. Its semantics is defined by the
tick-tock synchronous component in Figure 3.

The Petri nets representing modal flow components satisfy
the following trivial properties: 1) every place has at most
one incoming transition, 2) every place lcp,q corresponding
to a conditional dependency belongs to a cycle, 3) initially,
there is precisely one token in every cycle of the net.

Notice that the above contruction rules of the Petri net en-
force the three kinds of dependencies between ports. Strong
and weak dependencies are obviously enforced by the net.
An initial empty place lp,q between tp and tq will prevent the
execution of tq before tp. Moreover, if the place is not final,
the execution of tp will require the execution of tq before the

end of the step. Concerning conditional dependencies p
c

; q,
the Petri net ensures that the execution of tq disables any
further execution of troot(p) and consequently of tp.

The following proposition gives additional properties.

Proposition 1. Priority Petri nets representing modal
flow graphs meet the following properties

1. Every reachable marking has at most one token in ev-
ery cycle of the net.

2. Each transition is executed at most once in every step.

3. Are 1-safe.

Definition 7 (modal flow components: composition).

Let {Bf
i = (Xi, Pi, Di)}i=1,n be a set of modal flow compo-

nents defined on disjoint sets of variables and ports. Let γ
be a set of interactions on ports ∪n

i=1Pi such that

• each interaction uses at most one port of every compo-
nent, that is for all a ∈ γ, for all i ∈ 1, n |Pa∩Pi| ≤ 1,

• each port belongs to at most one interaction, that is for
all p ∈ ∪n

i=1Pi |{a | p ∈ Pa}| ≤ 1,

We define the composition γ(Bf
1 , ..., Bf

n) as the modal flow
component Bf = (X, P, D) where

• the set of variables X is ∪n
i=1Xi,

• the set of ports P is the set of interactions γ. More-
over, for every interaction a of γ, we define the guard
ga = (∧p∈Pagp) ∧ Ga, the exported variables Xa =
∪p∈PaXp and the transfer function fa = (⊔p∈Pafp)◦Fa

• the set of dependencies D = (Ds, Dw , Dc) are inherited
from atomic components, that is for every x = s,w, c
we have Dx = {(a1, a2) | ∃i ∈ 1, n.∃p1 ∈ Pa1

∩Pi, p2 ∈
Pa2

∩ Pi such that (p1, p2) ∈ Dxi}

Notice that composition amounts to merging nodes belong-
ing to the same interaction without changing the depen-
dency relations. Composition is a partial operation because,
its result is a valid modal flow component only if the set of
derived dependencies is acyclic.

Example 5. The composition of modal flow components
is illustrated in Figure 8. Three tick-tock modal flow com-
ponents are composed sequentially by synchronizing the tock
of each component with the tick of its left neighbour and by
keeping all the other transitions unchanged.

Moreover, let us observe that composition of modal flow
graphs is not the same operation as composition of Petri
nets. These differ because conditional dependencies do not
have a local interpretation e.g., p

c
; q implies that execution

of tq disables further execution of troot(p). But, the minimal

strong cause root(p) of p can denote different actions within
the modal flow graph of p and within the composed graph.

The following theorems give sufficient conditions for deadlock-
freedom and confluence of computation (i.e, determinism)
for synchronous steps of modal flow components.

Theorem 1 (deadlock-freedom). A well-triggered modal
flow component Bf = (X, P, D) is deadlock-free if every port
p with strong causes has its guard true: gp = true

Theorem 2 (confluence). A well-triggered modal flow
component Bf = (X, P, D) is confluent if for every indepen-
dent ports p1♯p2, their associated guarded actions are inde-
pendent, that is:

• Xp1
∩ Xp2

= ∅

• use(gp1
) ∩ (Xp2

∪ def(fp2
)) = ∅

• use(gp2
) ∩ (Xp1

∪ def(fp1
)) = ∅

4. APPLICATIONS
To illustrate the use of modal flow graphs for modeling syn-
chronous systems, we provide a modular translation of Lus-
tre [12] into modal flow graphs. Similar translations can
be made for other synchronous languages or graphical for-
malisms [10, 6].

Lustre [12] is a dataflow synchronous language for program-
ming reactive systems. Lustre programs operate on flows
of values, that are infinite sequences (x0, x1, · · · , xn, · · ·) of
values at logical time instants 0, 1, · · · , n. An abstract syn-
tax for Lustre programs is shown below. In (resp. Out)
denotes the set of input (resp. output) flows of a program
node. Symbols N , E, x, v, b denote respectively node names,
expressions, flows, boolean flows and constant values.

program ::= node+

node ::= node N (In) (Out) equation+

equation ::= x = E |
x, · · · , x = N(E, · · · , E)

E ::= x | v | op(E, · · · , E) | pre(E, v) |
E when b | current E

A Lustre program is structured as a set of nodes. Each node
computes output flows from input flows. Output flows are
defined either directly by means of equations of the form
x = E, meaning xn = En for any time instant n ≥ 0 or,
as the output of other (already defined) nodes instantiated
with particular inputs x, ... = N(E, ...).

The basic operators used in expressions E, are combinatorial
operator (op), unit delay (pre), sampling (when) and inter-
polation (current). Combinatorial (memory-less) operators
include usual boolean, arithmetic and relational operators.
The unit delay pre operator gives access to the value of its
argument at the previous time instant. For example, the

tick1 tock1

update1

x1 := x1 + 1

[x1 = P]

x1 := 0

tick1

update1

tock1 tick2 tock2

update2

x2 := x2 + 1

[x2 = P]

x2 := 0

tick2

update2

tock2 tick3 tock3

update3

x3 := x3 + 1

[x3 = P]

x3 := 0

tick3

update3

tock3

tick1

update1

tock3

update3update2

tock1tick2 tock2tick3

x1 := x1 + 1 x2 := x2 + 1 x3 := x3 + 1

[x1 = P1]

x1 := 0

[x2 = P2]

x2 := 0

[x3 = P3]

x3 := 0

update1

tock3tick1

update2 update3

tock2tick3tock1tick2

Figure 8: Example of composition

expression E′ = pre(E, v) means E′

0 = v and E′

i = Ei−1,
for all i ≥ 1.

In Lustre each flow (and expression) is associated with a log-
ical clock. Implicitely, there always exists a unique, fastest,
basic clock which defines the step (or basic clock cycle) of a
synchronous program. Depending on this clock, other slower
clocks can be defined as the sequences of time instants where
boolean flow variables take the value true. In order to de-
fine and manipulate flows operating on slower clocks, Lustre
provides two additional operators. The sampling operator
when, samples a flow depending on a boolean flow. The ex-
pression E′ = E when b, is the sequence of values E when
the boolean flow b is true. The expression E and the boolean
flow b have the same clock, while the expression E′, operates
on a slower clock defined by the instants at which b is true.
The interpolation operator current, interpolates an expres-
sion on the clock which is immediately faster than its own
clock. The expression E′ = current E, takes the value of
E at the last instant when b was true, where b is the boolean
flow defining the slower clock of E.

We consider statically correct programs which satisfy the
static semantics rules of Lustre [11]. These rules exclude
programs containing cyclic, dependent equations, recursive
calls of nodes as well as combinatorial operators applied to
expressions having different clocks.

We define modular operational semantics for Lustre, first for
single-clock programs and then for multi-clock programs.

4.1 Single-clock synchronous programs
The single-clock subset of Lustre is generated by using only
combinatorial and unit delay operators. All flows are sam-
pled (indexed) by the basic clock.

The translation from Lustre to modal flow graphs is mod-
ular. Each node is represented by a well-triggered modal
flow component with two kinds of ports: act control ports
and input (in) or output (out) data ports. An act port is
triggered by the basic clock and initiates the step of the
node. The in (resp. out) data ports carry data input (resp.
output) read (resp. produced) by the node. Additionally,

modal flow graphs may contain internal ports and variables,
depending on the specific computation carried by the node.

in outx x

act

in

out

act

in outx x

act

out

in

act

flow pre

combinatorial

act

out

in1 in2

in1

in2

x1

x2

act

op

outy

y=op(x1, x2)

Figure 9: Single-clock operators

The modal flow components shown in Figure 9 correspond
to basic Lustre elements: flow, pre operator and combina-
torial operator. The flow component whenever activated
through the act port, reads a value through the in port and
outputs this value through the out port in the same step.
The pre component has a local variable x. Whenever it is
activated through act, it outputs the current value x, then
it inputs and assigns a new value to x to be used in the next
step. The combinatorial component starts a step when it is
triggered through the act port. Then it reads input values
in some arbitrary order, performs its specific computation,
and finally, produces an output value.

The modal flow component representing a single-clock Lus-
tre node is obtained by composing a set of components by
using a set of interactions defined as follow.

• components: For each input and output flow declared
in the node we add a flow component. For each pre (resp.
combinatorial) expression occuring within the equations, we
add a pre (resp. combinatorial) component. Moreover, for
each subnode called within equations we add its correspond-
ing modal flow component.

• interactions: Interactions are of two types: control flow
and data flow. A single control flow interaction realizes
strong synchronization between all the act ports of all com-
ponents. Data flow interactions synchronize one out port to
one or more in ports. They are used to propagate data from

input flow components to expression components and from
expression components to output flow components or other
expression components according to the syntactic structure
of expressions and equations.

Example 6. Figure 10 shows a discrete integrator writ-
ten in Lustre and its corresponding synchronous network of
operators.

node Integrator(i: int)

returns o: int;
let o = i + pre(o,0); tel;

i o
+

pre

Figure 10: Integrator

The representation of this node as a composition of modal
flow components is shown in Figure 11 (top). The atomic
modal flow components correspond to the pre operator, the
combinatorial + operator, the input flow and the output flow.
In addition to the act interaction, there are three interac-
tions for data transfer from outputs to inputs: 1) from the
input flow component to the + component, 2) from the pre
component to the + component and 3) from the + operator
to the output flow component and back to the pre compo-
nent. The result of the composition is shown in Figure 11
(bottom).

+

p

act2

in2

pin2

act2

p := 0

out2

act1

out1

in1
iiin1

act1

act4

out4

in4
ooin4

out4

act4

o out4

act1act2act3act4

+ out3in2in4 out4

in1 i

p := 0

z out3

in3a in3b

out3

act3

y

x

in3b

in3a

act3

x := i

out1

out2

p := z

p := z, o := z

z = x + y

out2in3bout1in3a

act1act2act3act4

in1

y := px := i

y := p, o := z

Figure 11: The Integrator modal flow component

The following theorem is a consequence of modularity of
translation and of the following facts: 1) the modal flow
graphs corresponding to the basic constructs of Lustre are
well-triggered; 2) for statically correct Lustre programs [12],
composition of the basic modal flow graphs preserves well-
triggeredness.

Theorem 3. Every statically correct single-clock Lustre
node N is represented by a well-triggered modal flow compo-
nent B

f

N such that:

1. it has a unique root which is an act port;

2. all its dependencies are strong;

3. it is deadlock-free and confluent;

4. simulates the micro-step Lustre semantics [11] of N .

4.2 Multi-clock synchronous programs
In Figure 12, we provide two components modeling respec-
tively the sampling and interpolation operators of Lustre.
Both components have two control ports, acti and acto trig-
gering respectively the input in and the output out data
ports. For a sampling component, acto depends weakly on
acti, and moreover, the output out dependends conditionally
on the input in. Thus an input is always read and when-
ever required, an output is produced with the most recent
value of the input – which is precisely the interpretation of
sampling. For the interpolation component, we have the
opposite: acti depends weakly on acto but out conditionally
depends on in. Thus the output is always produced with the
most recent value of the input. The last modal flow graph
in Figure 12 describes an additional component, the derived
clock component corresponding to a boolean flow b. This
component is used to initiate all the computations carried
on the clock b. Intuitively, it triggers the slower clock port
only after its base clock act has been triggered and if the
value obtained through the data input in port is true.

sampling interpolating

acti

in

acto

out

x

x

in

out

acti acto

acto

out

acti

in

x

x

in

acto acti

out

derived clock

clock

act

in

act

in

clock[b]

b

Figure 12: Multi-clock operators

We apply a similar modular construction method for build-
ing modal flow components for multi-clock nodes.

• components: First, we add a derived clock component
for each clock (i.e, when b). Second, we add a sampling
(resp. interpolation) component for each sampling (resp.
interpolation) expression occuring within the equations of
the node.

• interactions: The data flow interactions are the same as
for the single-clock case, with the addition that data is also
propagated to the input port of derived clocks. Regarding
control flow interactions, we add one interaction which syn-
chronizes all the act ports of flows and expressions sampled
on the basic clock. In addition, for each derived clock com-
ponent, we add an interaction which synchronizes its clock
port with all act ports of flows and expressions sampled by
that clock.

Example 7. Consider the following Lustre program:

node input_handler(a: bool, x: int when a)
returns y: int;
let y = if a then current x else pre(y, 0); tel ;

node output_handler(c: bool, y: int) returns z: int when c;
var yc: int when c;
let yc = y when c; z = yc * yc ; tel ;

node input_output(a,c: bool, x: int when a)
returns z: int when c;
var y: int;
let y = input_handler(a, x); z = output_handler(c, y); tel;

Depending on an input value x triggered by an input clock
a, the input_output node produces a corresponding output
value z triggered by an output clock c, by using the most
recent available value of the input.

The main node is the input_output node which intercon-
nects the two nodes, input_handler and output_handler.
The input_handler node receives at every moment the boolean
value a. An integer value x is received only when a is true.
The output value y is an integer produced at every moment
by interpolating the value of x. The output_handler node
receives at every moment a boolean c and an integer variable
y. It produces an output z by sampling y when c is true. Fi-
nally, the input_output top node connects the output of the
input_handler to the input of the output_handler.

Figure 13 shows the modal flow component representing the
system. Its modal flow graph is obtained after composition
and static simplification of the modal flow graphs of the in-
put output node. It can be decomposed into three subgraphs
with activation ports act, acta and actc corresponding respec-
tively to the basic, when a, and when c clocks.

if a
y := x

a, c : bool

x, z, y, yc : int

inc

outz

yc := y

z := yc2

cinc

xinx

act acta actc

aina
z outz

acta

inx

ina[a = T]

act

actc [c = T]

Figure 13: The input/output handler

The following theorem establishes the correctness of our
translation.

Theorem 4. Every statically correct multi-clock Lustre
node N is represented by a well-triggered modal flow compo-
nent B

f

N which:

1. has multiple (control) root act ports, one for each clock
in the Lustre program, and multiple data in/out ports;

2. the subgraphs defined by strong dependencies are con-
nected through weak dependencies into a tree;

3. is deadlock-free and confluent;

4. simulates the micro-step Lustre semantics [11] of N

4.3 Experimental work
We have studied and implemented a translator from Lustre
to BIP synchronous components which directly generates
Petri nets without using modal flow graphs. The translator
is currently fully operational. It takes as input Lustre pro-
grams and produces full-fledged BIP systems, that can be
simulated and analyzed using the BIP toolset [1].

This first approach has several important drawbacks. For
the generated BIP programs it is not easy to verify proper-
ties guaranteed by construction for some synchronous pro-
grams e.g. deadlock-freedom and confluence. Moreover, the
BIP compilation chain cannot easily recover the information
that the system is indeed synchronous and consequently, it
cannot produce optimized code. For example, experiments
with concrete Lustre programs show an 600 : 1 overhead of
execution time between the C code produced by the BIP
compiler and executed by the BIP engine, and the flat C
code produced by the Lustre compiler. Although, this over-
head can be diminished to 20 : 1 by applying static compo-
sition of components in BIP [4], it still remains high.

Modal flow graphs allow coping with these drawbacks. We
are now investigating the possibility to integrate directly
modal flow components in BIP. Our results about conflu-
ence and deadlock-freedom of modal flow components pro-
vide syntactic conditions, easily implementable in an auto-
matic tool. Moreover, modal flow components keep all the
data-flow explicit and can be used to generate efficient code,
monolithic or not, as synchronous language compilers do.

5. RELATED WORK
Our work as a tentative to bridge the gap between syn-
chronous and asynchronous computation, is related to ap-
proaches with similar objectives.

In [15], a model for synchronous components is proposed
where steps are described by using automata with final states.
Another similarity is the distinction between data ports and
control ports. Nonetheless, the latter are activated by con-
trollers which are specific components. The synchronous/reactive
domain of the Ptolemy system-level design framework [9]
allows component-based description of synchronous systems
where synchronous execution is orchestrated by a director.
Finally, our work has the same general objectives as [2]
which studies a compositional framework heterogeneous re-
active systems. In contrast to BIP, the framework is deno-
tational and is based on the concept of tags marking the
events of the signals of a system.

There are several differences between our work and existing
results. Our work is based on operational semantics. It con-
siders synchronous component-based systems as a particular
case of the BIP framework which also encompasses general
asynchronous computation. Furthermore, we believe that
our framework is expressive enough to allow modular trans-
lation of synchronous languages into BIP by preserving the
structure of the source, as shown for Lustre.

Modal flow graphs without data and only strong dependen-
cies are acyclic partial orders on events. They correspond to

acyclic marked graphs which are Petri nets without forward
and backward conflicts. Theorem 2 generalizes well-known
results for marked graphs [8].

Modal flow graphs with strong dependencies and their com-
position operation are also similar to synchronous struc-
tures used in a study of the synchronous model of computa-
tion [16]. This model has also some similarities with models
such as modal automata [14] which distinguish between must
and may transitions or live sequence charts [7] which distin-
guish between hot and cold events. Nonetheless, modal flow
graphs encompass three independent modalities which are
all necessary for modular description of synchronous sys-
tems, as shown in the paper. Furthermore, for a reasonably
general class of modal flow graphs we proposed sufficient
conditions for deadlock-freedom and confluence.

6. CONCLUSIONS
We present a general approach for modeling synchronous
component-based systems. These are systems of synchronous
components strongly synchronized by a common action sync

that initiates execution steps of each component. Steps can
be described by priority Petri nets. Priorities are instru-
mental for enforcing run-to-completion in the execution of a
step. Modal flow graphs are used to define a particular class
of Petri nets for which deadlock-freedom and confluence are
met by construction provided some easy-to-check conditions
hold. This result is the generalization of existing results for
classes of Petri nets without conflicts. It allows more gen-
eral behavior for components given that the semantics of
conditional dependencies lead to Petri nets with backward
conflicts and priorities.

The definition of synchronous components as a subset of the
BIP framework allows their combination with other asyn-
chronous languages that can be translated into BIP. The
proposed semantics has maximal parallelism, that is it shows
only the absolutely necessary dependencies between events.
Execution in a step is non deterministic. However, if the be-
havior is confluent and the order of execution is irrelevant.
The translation of Lustre shows the interplay between data
flow and control flow and allows understanding how strict
synchrony can be weakened to get more less synchronous
computation models.

This work opens the way for exploring problems regarding
relations between synchronous and asynchronous systems.
It allows integration of synchronous systems theory in an
all encompassing component framework [3] without losing
advantages such as correctness-by-construction and efficient
code generation. This makes possible modeling mixed syn-
chronous/asynchronous systems without artefacts. In Fig-
ure 14, we show the principle for modeling GALS. A syn-
chronous system sending data to another synchronous sys-
tem through a FIFO queue. The input of the queue is trig-
gered by the clock of the sender while its output is triggered
by the clock of the receiver. The meaningful integration of
synchronous and asynchronous models in this framework is
the object of future work.

7. REFERENCES
[1] A. Basu, M. Bozga, and J. Sifakis. Modeling

heterogeneous real-time systems in BIP. In

... outy2y1in

act2

in z

out

act2

act2

act1 act1

x out

in act1

Figure 14: A GALS system in BIP

Proceedings of SEFM’06, pages 3–12. invited talk.

[2] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi,
and A. L. Sangiovanni-Vincentelli. Composing
heterogeneous reactive systems. ACM-TECS, 7(4),
2008.

[3] S. Bliudze and J. Sifakis. A notion of glue
expressiveness for component-based systems. In
Proceedings of CONCUR’08, LNCS 5201, pages
508–522, 2008.

[4] M. Bozga, M. Jaber, and J. Sifakis. Source-to-source
architecture transformation for performance
optimization in BIP. Technical Report TR-2009-3,
Verimag.

[5] M. Bozga, V. Sfyrla, and J. Sifakis. Modeling
synchronous systems in BIP. Technical Report
TR-2009-8, Verimag.

[6] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah.
Modeling and Simulation in Scilab/Scicos. Springer.

[7] P. Combes, D. Harel, and H. Kugler. Modeling and
verification of a telecommunication application using
live sequence charts and the play-engine tool. In
Proceedings of ATVA’05, LNCS 3707, pages 414–428.

[8] F. Commoner, A. W. Holt, S. Even, and A. Pnueli.
Marked directed graphs. Computer System Sciences,
5(5):511–523, 1971.

[9] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity - the Ptolemy approach.
Proceedings of IEEE, 91(1):127–144, 2003.

[10] P. L. Guernic, T. Gautier, M. L. Borgne, and C. L.
Maire. Programming real time applications with
Signal. Proceedings of IEEE, 79(9):1321–1336, 1991.

[11] N. Halbwachs. About synchronous programming and
abstract interpretation. SCP, 31(1):75–89, 1998.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language
lustre. Proceedings of IEEE, 79(9):1305–1320, 1991.

[13] D. Harel and S. Maoz. Assert and negate revisited:
Modal semantics for UML sequence diagrams.
Software and System Modeling, 7(2):237–252, 2008.

[14] K. G. Larsen, U. Nyman, and A. Wasowski. Modal i/o
automata for interface and product line theories. In
Proceedings of ESOP’07, LNCS 4421, pages 64–79.

[15] F. Maraninchi and T. Bouhadiba. 42: Programmable
models of computation for a component-based
approach to heterogeneous embedded systems. In
Proceedings of ACM-GPCE’07.

[16] D. Nowak. Synchronous structures. Information and
Computation, 204(8):1295–1324, 2006.

[17] Y. Zhou and E. A. Lee. Causality interfaces for actor
networks. ACM-TECS, 7(3), 2008.

