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Abstract. Time progress conditions in hybrid systems are usually spec-
ified in terms of invariants, predicates characterizing states where time
can continuously progress or dually, deadline conditions, predicates char-
acterizing states where time progress immediately stops. The aim of this
work is the study of relationships between general time progress con-
ditions and these generated by using state predicates. It is shown that
using deadline conditions or invariantsf allows to characterize all prac-
tically interesting time progress conditions. The study is performed by
using a Galois connection between the corresponding lattices. We pro-
vide conditions for the connection to be a homomorphism and apply the
results to the compositional description of hybrid systems.

1 Introduction

Hybrid systems are systems that combine discrete and continuous dynamics.
Their semantics is usually defined as a transition system on a set of states @)
consisting of

— transition relations = C Q x Q for a € A where A is a possibly infinite set
of action names.
— time progress relations L C @ x @ for t € R4 such that

Vot ta. 3o g3 1 D o Age 3 g3 & @1 "D g3 (additivity property).

The behavior of a hybrid system is characterized by the set of the execution
sequences of the transition system. Additivity property guarantees that the set
of states reached from a state within a given time is independent of the sequence
of the time steps performed.

Usually, hybrid systems are modeled as hybrid automata (cf [ACHT95]),
automata extended with a set of real valued variables. The variables can be
tested and modified at transitions. Continuous state changes are specified by
associating with automaton states evolution laws and constraints restricting the
domain of variables.
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Ezample 1. The following example represents the hybrid automaton for a ther-
mostat. The variable 6 represents the temperature which decreases (resp. in-
creases) at states OF F and ON according to the laws § bopp t (resp. 8 bon t).
Furthermore, the conditions m < § and § < M are invariants restricting the val-
ues of # between minimal and maximal values m and M respectively. Transitions
occur when 6 reaches limit values.

START
OFF ON
0=m
Oboret Ovont
0=M
m <60 <M
STOP

Fig. 1. the thermostat example

The hybrid automaton represents the transition system with
Q@ ={ON,OFF} xR and A = {START,STOP} such that
-q START qd < q=(0OFF,m)Aq¢ =(ON,m)
¢°T%" ¢ & ¢=(ON,M)N¢ = (OFF, M)
- (OFF,O) i) (OFF,H >OFF t) iV 0<t' <t.m<Ovorrt
(ON,60) -5 (ON,0von t) ifVH 0<t' <t .fbont' < M

Notice that the invariants m < 6 and 8 < M play an important role in this
description as they do not allow temperature to progress beyond limit values,
8 = m and § = M. Furthermore, when these values are reached time cannot
progress by making the execution of the enabled transitions “urgent”.

In this paper we consider hybrid systems represented as transition systems
whose time progress relations are specified as a pair (>, f) where > is an evolution
law, total function from @ x Ry into @ and f is a time progress function,
predicate on () x Ry such that ¢ LN d < qd =gt f(g,t).

Such a representation is common in hybrid automata where evolution laws are
specified either explicitly or by a system of differential equations. Time progress
function describes how from a given state time can progress by some amount. If
for a given state it is false for any positive time, time cannot progress from this
state. We call such a state deadline state because stopping time progress is used
in practice to enforce a transition meeting a deadline.



Time progress functions are usually specified in terms of state predicates
without mentioning time explicitly. These predicates characterize either the
states where time can continuously progress (invariants in [ACHT95]) or du-
ally, the states where time progress immediately stops (deadline conditions in
[SY96]). Given such a predicate and an evolution law >, one can define progress
functions: from a given state g time can progress by ¢ if all the states encoun-
tered along the >-trajectory satisfy the invariant or dually do not satisfy the
deadline condition. Invariants and deadline conditions are dual notions. In this
paper we consider deadline conditions; the results can be adapted to invariants
by dualization.

Formally, given a deadline condition d(g), a time progress function tp(d)(q, t)
can be defined : tp(d)(g,t) =Vt' 0 < t' <t.-d(g>t')

Conversely, from given a time progress function f(g,t) one can define a dead-
line condition dI(f)(q) : dI(f)(q) =Vt > 0. —f(q,t). This simply means that the
deadline condition corresponding to f(g,t) is satisfied by all the states from
which time cannot progress by any positive quantity.

If deadline conditions or invariants are useful for specification purposes, it
is important to have available in some explicit form progress functions for sim-
ulation or analysis purposes. Explicit knowledge of progress function can help
accelerating simulation by making it driven by deadline events.

The question arises about the nature of the correspondence between time
progress functions and deadline conditions. Is it possible by using deadline con-
ditions or invariants to characterize all time progress functions? The (obvious)
answer is no. However, we show in section 2 that using deadlines allows to char-
acterize some reasonably large class of progress functions. Formally speaking, we
show that the pair of functions (dl, tp) is a Galois connection between the lattice
of time progress functions and the lattice of deadline conditions.

In section 3, we investigate the relationships between the structures of the two
lattices and provide conditions for ¢p and dI to be homomorphisms. Furthermore,
we illustrate the use of the results for the compositional description of hybrid
systems. We show how for modal formulas describing a global deadline condition
in terms of local deadline conditions, a global progress function can be obtained
in terms of local progress functions.

2 The correspondence between TP and DL

We study relations between time progress functions and deadline conditions for
hybrid systems with set of states Q and evolution law b : Q x RT™ — @ that is
additive and assumed fixed through the paper. Both time progress functions and
deadline conditions are considered as predicates, that is, functions into the set
{tt, f f}. We use standard notation V, A, - and = to represent disjunction, con-
junction, negation and implication. We represent by true and false respectively
the functions Az.tt and Az.f f.



2.1 The lattice of time progress functions T P

For a given evolution law >, a time progress function is a function f,
f:QxRT = {tt, ff} such that :

— Vi, ts . f(q, t1 + tz) = f(q, tl) A f(q Dtl,tz) (addz'tivz’ty)

Ezample 2. If gt = g+ t then

fi(g,t) =q+t <2V (t=0) and
fa(g, ) =0<qA(g+t<2)V(t=0)

are time progress functions while
f3(g,t) =0< g+t <2V (t=0)

is not a time progress function as f3(—1,2) = #t, and f3(—1,t) = ff Vt € [0,1).

Let TP be the set of time progress functions. T'P is partially ordered by =
with bottom element the function AtAq.t = 0 and top element true.

We represent by M and LI respectively, the greatest lower bound and least
upper bound operations on 7'P. Notice that from the above definition, we have
that if f1, fo are time progress functions then fi A fa is a time progress function.

Consequently, fiM fo = fi A fo. However, f1V f is not in general a time progress
function. For instance, if ¢ >t = ¢ + t, the function

fa(g,t) =0<gA(g+t<2)V2<gA(g+t<4)V(t=0)

is the disjunction of two time progress functions but it is not a time progress
function as f4(0,4) = ff while f4(0,2) = t¢t and f4(2,2) = ¢t. However, one can
find
f5(g,t) =0<gA(g+t<2)V(t=0)U2<gA(g+t<4)V(t=0)
0

which is equal to 0 < gA(¢g+t < 4)V (t = 0) and is the least time progress func-
tion implied by both 0 < gA(g+t < 2)V(t=0)and 2 < gA(g+t < 4)V(t =0).

Proposition 1. (TP,=,MN,U) is a distributive lattice with :

ANfe=finfo and fiufo=\/ fiVifo

i=1
where :

fivVifo=fiVfa
fiVigr fa(q,t) =/ 0 <t <t (L Vi fo)(@,t) A (L V fo)(got',t —1')



fa fa

Fig. 2.

Proof.

— fiN fa= fi A fa is immediate.
- Forfll_lfgz\/;.’ilflvifQ :
fj =>f1 V1 fz :>f1|_|f2 fOI‘j S {1,2}
On the other hand, if for some arbitrary time progress function f, f; = f
for j € {1,2}, we will show by induction that Vi € N . f; V; fo = f and
therefore f1 U fo = f :
fivifo=f
If f1 Vi1 fo = f, then for all (q,t) such that (f1 V; f2)(g,t) = tt we have by
definition :
WO<t <t.(fiVier NG AN f)(got t—t')
and then : 3/ 0 < ' < t. f(q,t) A f(got',t —t)
by additivity of f: f(q,t) = tt.

2.2 The lattice of deadlines

Consider the set of state predicates DL whose elements d are unary predicates
on @ (functions from @) into {tt, ff}). We shall interpret the elements of DL
as deadline conditions. DL is a boolean lattice with the standard operations of
conjunction, disjunction and negation.

We define the pair of functions (¢p,dl) relating DL and T P:
tp: DL — TP such that tp(d)(q,t) = V' 0 <t' <t.—d(gp>t)
dl : TP — DL such that dI(f)(q) =Vt >0.-f(q,1)

It is trivial to check that tp(d) is a progress function. We call ¢p(d) the
progress function corresponding to d and dI(f) the deadline condition corre-
sponding to f.



Notice that the definition of tp depends on the evolution law > which can be
considered as a family of curves parameterized with time in the space of vari-
ables. If a curve at a state g is parameterized with ¢y then the state ¢ >t reached
by letting time pass by ¢, is on the curve parameterized by ty + t.

Ezample 3. For gt = q+t and d(q) = 2 < ¢ < 3 we have,
tp(d)(g,t) =Vt' 0 <t' <t.—-2< g+t <3 which gives
tp(d)(g,t) =(t=0)vg+t<2v3<gq.
If we compute the deadline condition corresponding to the latter time progress
function we find: dl(tp(d))(q) = 2 < ¢ < 3 which differs from d in that it is
left-closed. However, we have tp(2 < g < 3) = tp(2 < ¢ < 3).

Consider now that d = —(2 < ¢ < 3) which means that time can progress
only from states ¢ such that 2 < ¢ < 3. We find

tp(d)(g,t) =VH' 0<t' <t.2<q+t <3
which is equivalent to
tp(d)(¢q,t) =(t=0)V2<gAg+t<3.

The deadline condition corresponding to the latter is again d = —(2 < g < 3).

2.3 The Galois connection between TP and DL
Proposition 2. For any deadline condition d, d = dl tp(d)
Proof.
dl tp(d)(q) =Vt > 0 . ~tp(d)(q, t)
=Vi>0.-V'0<t <t.-d(gpt)
=Vt>0.3H 0<t' <t.d(gpt)

If d(g) = tt, by choosing t' = 0, we have d! tp(d) = tt.

Proposition 3. For any progress function f, f = tp dl(f)
Proof.
tp dl(f)(q,t) =V 0<t' <t.-dl(f)(grt)
=V o<t <t.-(Vt">0.=f(g>t,t"))
=V o<t <t.#H">0. f(got',t")

If f(q,t) = tt, choose t"' =t — t', and by additivity, tp dI(f)(q,t) = tt.



A consequence of the above propositions and of the fact that tp and dl are
anti-monotonic, is that the pair (¢p,dl) is a Galois connection (see for example
[Ore44, San77]) between DL and TP where dl and TP are respectively the dual
function of dl (dl = Af.~dI(~f)) and the dual lattice of T P.

The following properties result from the application of well-known results
about Galois connections.

Properties:
tp(di V d2) = tp(dy) Mtp(da) = tp(di) A tp(dz)
di(fiU f2) = di(f1) A dl(f2)

Definition 4. Given a time predicate g (9 : Ry — {tt, ff}) we say that g is
left-closed if

Vito . g(to) = Je > 0. Ve <e.—g(to + €') (cf figure 3). We say that g is right-
closed if in the above definition g(to + €') is replaced by g(to — €').

| eft-closed sets anon left-closed set

Fig. 3. left-closure

Proposition 5.

— The image of dl, im(dl), contains only left-closed deadline conditions i.e.,
dealine conditions d such that for all g A\t.d(q>t) is left-closed.

— The image of tp, im(tp), contains only right-closed time progress functions
i.e., functions f such that for all q, f(q,t) is right-closed.

— im(dl) and im(tp) are isomorphic via tp.

Proof.



— For all f and g,
di(f)(q) =Vt >0.~f(q,1).

If di(f)(q) = ff then 3t > 0. f(q,t). By additivity we have
H>0.Vt <t. flgot,t—1t).

Consequently :
>0V <t.dl(f)(get)=ff.

— For all d, ¢ and ¢,
tp(d)(g,t) =Vt' <t.—-d(g>t).

If tp(d)(g,t) = ff then ' 0 <t <t .d(gv>t).
We can write this 3’ 0 <t <t.d(g>t—1t).
For all ¢ such that 0 <t <t we have

Fog=t—t .0<to<t—t" Ad(grty)
and then tp(d)(q,t —t") = ff. Finally,
Je<t' . Ve <e.tp(d)(g,t—¢€)=ff.

At.tp(d)(g,t) is right closed.
— Isomorphism of im(dl) and im(tp) via tp is a direct result from the fact that
(tp,dl) is a Galois connection.

Notice that a consequence of the above propositions is that if d is left-closed then
d = dl tp(d) and if f is right-closed then f = tp dI(f). This means that left-closed
deadline conditions and right-closed time progress functions are in bijection. This
implies that functions which are not right-closed such as f(gq,t) = ¢+t < 2 for
q>t = g+t cannot be obtained as images of deadline conditions. Such functions
can be considered as non well-defined because time can get arbitrarily close to
a bound without reaching it, enforcing the existence of converging infinite time
sequences. It can be shown that if f is not right-closed then tp di(f) is the right-
closure of f. Dually, deadline conditions that are not left-closed have the same
image via tp as their left-closure which means that they do not characterize all
the states from which time cannot progress.

3 Translating deadline conditions into progress functions

3.1 Well-defined deadline conditions

The results of the previous section establish some strong correspondence between
deadline conditions and time progress functions. However, in practice, deadline
conditions or equivalently invariants of a hybrid system are obtained as a combi-
nation of deadline conditions of its components. In this section we provide results
for the compositional computation of time progress functions. We investigate the



conditions for the functions ¢p and dl to be lattice homomorphisms. Then, we
provide results for translating modal deadline formulas into progress functions.

To have a lattice homomorphism it is necessary that
tp(dl A dz) = tp(dl) L tp(dz)
First observe that in general this equality does not hold. Consider the deadline
conditions d; and ds defined by :
di =V, p2i, d> = \; P2it1, where p;(q) =1 —271 < g < 1 —27(H1),

We have di A do = false and consequently, tp(d; A d2) = true. However,
Vt > 1. tp(di)Utp(da)(0,t) = ff. Thus, in general, tp(dy) Utp(ds) = tp(di Ad2)
and the implication is strict. Notice that this is due to the fact there is an ac-
cumulation point of the alternations between dealine conditions which does not
allow time progress beyond ¢ = 1 (included). In fact, tp(d;) U tp(da2)(0,1) = ff.

We call well-defined the deadline conditions d that are left-closed and such
that the function At.d(gq >t) changes only a finite number of times in any finite
interval. Notice that well-defined deadline conditions are closed under disjunc-
tion and conjunction and form a sub-lattice of DL.

Proposition 6. The restriction tp to well-defined deadline conditions is a ho-
momorphism.

Proof. We have trivially ¢tp(d; V da) = tp(di) M tp(d2) and

tp(di) Utp(de) = tp(di A ds), by definition of tp.

Let us prove that tp(di A d2) = tp(di) U tp(da) if the finite variability condition
holds. Suppose tp(di A d2)(g,t) = tt :

tp(dl A dQ)(q, t) =Vt <t. _|(d1 A dz)(q > tl)
=Vt <t. (—|d1 (q > tl) \% ("dz(q > tl))

Since A7.di(g>7) and A7.da(q > 7) have a finite set of points of discontinuity in
[0,1], we can divide this interval into a finite set of open subintervals
[to,tl[, [tl,tz[ 5o . -;[tn—latn[ with to =0 and tn = t, such that

Vi<n .Vt €ty tip1] . ~di(g>t)) Vv (VE €]ti, tipa] . ~da(gt')).
We show that one can find ¢}’s such that : 5 =0, t/, = ¢ and
Vi<n'. (V'€ [t ti [ ~di(got)) Vv (V' € [t ti ] . ~da(g>t')).
As d; and dy are left-closed, one can find ¢;’s such that
(Vt' € [ti, tiga] - ~di(g>t)) V (VE € [ti, tiga] . ~da(g> t')).

Suppose that for a given i we have Vt' €]t;,t;i41[ . ~di(g>t'), and di(g>t;) = tt.
Then dy(g>t;) = ff, since tp(dy A d2)(q,t) = tt, and Vt' €]t;—1,t:[ . ~da(g> ),
since ds is left-closed. It follows that there exists some € such that

Vt' €]ti—1,ti+ €] . ~da(gpt'), and V' € [t;+¢€,tiy1[ . —di(g>t'). So it is sufficient



to take t; = t; + € instead of ;.
Thus we obtain Vi < n . tp(dy)(g> t;, tiv1 — ;) V tp(da)(g > t;, ti41 — t;) which is
equivalent to (tp(di) U tp(dz))(q,t).

3.2 Translating modal deadline formulas - Application to
compositional specification

In this section we present results for the compositional computation of time
progress functions when deadline conditions are expressed as modal formulas.

In [SY96] is proposed a variant of timed automata where transitions are
labeled with two kinds of conditions : guards (enabling conditions) that char-
acterize states from which transitions can be executed and deadline conditions
that characterize states from which transition execution is enforced by stopping
time progress. In general, a deadline condition d depends on the corresponding
guard g. To avoid time deadlocks it is necessary that d = g; when d = g the
transition is eager and when d = false there is no constraint on time progress.
Timed automata with deadline conditions have been used to show that extending
compositionally an untimed (discrete) description into a timed one requires in
general the use of modal formulas to express the guards of the composed system
in terms of the guards of the components.

Example /. To illustrate this thesis, consider a discrete (untimed) producer-
consumer system with a one-space buffer (figure 4). It is composed of two pro-
cesses, a producer and a consumer, whose parallel composition is a four state
automaton. Suppose that the actions produce, put, get and consume are submit-
ted to timing constraints expressed respectively with guards g1 = 2 < z < 5,
gp=1<2<29g3=2<y<4, 94 =1<y <4, where z and y are clocks
used to measure sojourn times at states of each process (reset at transitions of
the associated process). There are at least two different practically interesting
choices for the guard of the transition 23.

— Forgos =1 <z <2A2<y<4 = gyAgs the actions put and get terminate
synchronously by respecting the lower and upper bounds of the guards of
the components. It is easy to see that this kind of strong synchronization
may be the cause of Zeno behavior [HNSY94] in the composed system even
though the components are nonZeno.

—For gos = (1 <z2z<2A2<9y)V(2<y<4A1 < z) a process may
wait for his partner. Both lower bounds are respected but only one upper
bound. This kind of synchronization with waiting is implicit in timed Petri
nets [Sif77, SDASS94] and can be defined so as to preserve nonZenoness by
parallel composition. It is easy to see that expressing g3 in terms of go and
gs requires the use of modal operators : ga3 is true if one of the two guards
has been true and the other is currently true.
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Fig. 4. the producer-consumer example

We assume that the language of the deadline conditions is defined by the
syntax :

d =g | d]| false where,
g:u=true| false|c€C|gAg|gUg|Og|Og|Bg|©g.
C' is a set of conditions representing atomic guards.

The following definitions express the semantics of this language as a function
| . | associating with a formula d a predicate | d | on @ in terms of the meaning
of the constants | false |= false, | true |= true and by taking the meaning | ¢ |
of ¢ to be well-formed and closed predicates on Q).

lgiAg2 | =|g1|A]g2]
lgiVg | =g |V]g]

|Cgl(@) =3t>0. |g]|(gpt)

|Og|(q) =Vt>0. |g]|(gprt)
|©g|(@)=3t>0.3¢ .q=q¢v>tA|g(d) ]|
|Bgl(q)=Vt>0.Y¢ .q=q¢'>t =|g(d) |
lgl (@ =gl@AFIt>0.Vt'<t. |g]|(g>t)



Notice that O, <, &, © correspond to well-known modalities of temporal logic
[MP91] meaning respectively always, eventually, always in the past, and once in
the past. The operator | is a falling edge operator.

We did not consider negation in order to preserve the property of closeness.
However, we use in the sequel negated formulas with the usual meaning. This
implies the following relations : —true = false, - false = true,

(91 A g2) =—(91) V—(92), ~(g1 V g2) = —(g1) A —(g2), ~Og = Oy,

Proposition 7. Any deadline can be expressed as a formula of the following
language :
Xu=g|l(@Vvg i l@gcl XAX|XVX

In order to prove this we will need the following lemma :

Lemma 8. For all guards g, g1 and g, the following relations hold :
true |= false = false |

(g1 Ag2) I= (914 Ag2) V (91 A g2 )
(g1 Vg)I=(g1 I A (—g2Vg2 1) V(g1 VgL l)Agal)
(Og) 1= false = (© g) |

Proof. We have g | (¢) = g(¢) ATt >0.VH' 0<t' <t.-g(grt'). Soit is clear
that true = false = false |= (Og) |= (© g) J.
For the other cases we have :

— (g1 A g2) | : the falling edges of g1 A g2 are the falling edges of one of the
guards while the other is true. (g1 A g2) 4= (g1 1 Ag2) V (g1 A g2 ).

— (91 V g2) | : the falling edges of g; V g2 are the falling edges common to g;
and g» and the falling edges of one guard when the other is false.

(g1Vg2)l= (914 A(mg2V g2 1) V((mg1 Vg ) Aga l).

Proof. of proposition 7 : trivial if the deadline is not of the form g |; otherwise
by induction on the structure of g.

Theorem 9. For any deadline formula d, tp(d) can be expressed as a formula
of the following language :

V= —g(@)V(t =0) [ g(@)Vt = 0| ~g(get)V(t = 0) | tp(c) | tp(—c) [ YAY | YLY

Sketch of proof : By induction on the structure of d :

— tp(dl N dz) = tp(dl) U tp(dQ)
- tp(d1 \% dz) = tp(dl) A tp(dz)
— tp(g) : by induction on the structure of g :
o tp(true), tp(false), tp(c), tp(g1 A g2), tp(g1 V ga) are easily reduced.



o If Og or [ g are false at a state g, they remain false forever. Thus, it is
sufficient to test their value at the current state ¢ to know if time can
pass : tp(Og) = =Cg(q) V (t = 0) and tp(Bl g) = =B g(q) V (t = 0).
e If Og or © g are true at a state ¢ they remain true forever. Following a
similar reasoning as before one can prove :
tp(Og) = (-Og(g>t) Vi =0) Lip(g) and
tp(© g9) = (=© g(g>t) vVt =0) U (tp(g) A =9 g).
— tp((91 V g2) |) : from the previous lemma we know that
(1 Vg)l=(g1dA(=g2V g2 ) V((mg1Vard)Agz ).
It is easy to check that =gV g/ is well-formed if g is well-formed and closed.
Then we can reduce tp((g1 V g2) ) to
[tp(g1 1) U (tp(=g2) Atp(g2 1)) A [tp(gz 1) U (tp(=91) A tp(gr 1))]-
As tp(—g) = tp(g ) we obtain :
tp((91 V 92) 1) = (tp(g1 1) U tp(=g2)) A (tp(g2 1) U tp(=g1))-
— tp(—g) : the following reduction rules can be proven :

tp(=(91 V g2)) = tp(—g1) U tp(—g2),
tp(—0Og) = (Og)(q) Vt =0,
tp(=Cg) = (Cg)(g>t) V=0,
tp(-B g) = (B g)(grt) Vt=0and
tp(=© g) = (© g)(g) Vt=0.

— tp(c |) = tp(c) U tp(—c). This equivalence is illustrated for an example in
figure 5. Consider g, t1, t2 as in figure 5. We have tp(c)(q,t1) and
tp(—e)(g > t1,t2 — t1). Thus, (tp(c) U tp(—e))(q,t2) is true as is tp(c |)(q, t2)-
But for any ¢t > 0 we have —tp(c)(g > t2,t) and —tp(—c)(g > t2, ).
Thus (tp(c) U tp(—c))(g,t2 +t) is false as is tp(c |)(q, t2 + ©).
— tp((©g) 1) = tp(Cg) Utp(=Cg) = (—Cg(q) VE=0) U (Og(gr 1) V (£ = 0))
—tp((Bg)}) =tp(Eg)Uip(-B g) = ("B g(q) vi=0) U (B glget) V(£ =0))

q T Dl gtz qvt
o Tt Tt T =T
| | 3,
cl | | N
I [ I
q qpetr qv>ts gt

Fig. 5. tp(cl)



Ezample 4 (continued) Consider the consumer-producer example.

— If gos = g2 A g3 then one can take the corresponding deadline condition daj :
o either das = go3 (eager transition), in which case,
tp(das) = tp(g2) U tp(gs).
o or dozg = g2z = (92 | Ags) V (g2 A g3 1) (delayable transition) which
means that the time progress function is :

tp(das) = tp((92 4 Ags) V (g2 A g3 1))
=1tp(g2 4 Ags) Ntp(ga A gs )
= (tp(g2 ) U tp(g3)) A (tp(g2) U tp(gs 1))
= (tp(g2) U tp(—g2) U tp(g3)) A (tp(g2) U tp(—gs) U tp(gs))
= tp(g2) U tp(gs) U (tp(—g2) A tp(—gs))

—Hgos=(1<2<2A2<y)V(2<y<4Nn1<z)=(92A993)V(©g2Ags3)
we have the case of synchronization with mutual waiting. One can take as
deadline condition das :

o either das = go3 (eager transition) in which case

tp(das) = tp((g2 A © g3) V (© g2 A g3))
=tp(ga A © g3) Atp(© g2 A g3)
= (tp(g2) Utp(© g3)) A (tp(© g2) U tp(g3))
= (tp(g2) A tp(© g2)) U (tp(g2) A tp(gs))U
(tp(© g3) Atp(© g2)) U (tp(© g3) Atp(g3))
= tp(® g2) U (tp(g2) A tp(gs)) U (tp(© g3) A tp(© g2)) U tp(© g3)
= tp(® g2) U tp(® g3) U (tp(g2) A tp(gs))

This can be simplified furthermore, by reducing tp(¢ g2) and tp(© g3).
e or dog = go3 | (delayable transition). The reader can verify

tp(daz) = (tp(—g1) U tp(—g2) Utp(g1) U tp(© g2))
A(tp(—g2) U tp(—g1) U tp(g2) U tp(© g1))

4 Discussion

The paper studies relationships between progress functions and deadline condi-
tions or invariants used in hybrid systems to specify when continuous evolution
can take place. Progress functions are more general and their explicit knowledge
is important for analysis and simulation. Deadline conditions or equivalently in-
variants, are easier to specify as they express constraints on the states without
explicitly mentioning time.

The results show that any “reasonable” time progress function can be gener-
ated by using deadline conditions or invariants. However, for this correspondence
to be a homomorphism, it is necessary to restrict to deadline conditions with
finite variability. In this case and under some closeness conditions, it is possible



to compute compositionally progress functions corresponding to deadline condi-
tions that are formulas with conjunction, disjunction and modal operators.

Apart from their theoretical interest, the results can find an application in a
framework for the compositional specification of hybrid systems, currently under
study.

Acknowledgement: We thank Sergio Yovine and Oded Maler for construc-
tive critiques of the ideas developed in the paper.

References

[ACH"95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3-34, 1995.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111(2):193—
244, 1994.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

[Ore44] O. Ore. Galois connections. Trans. Amer. Math. Society, 55:493-513,
February 1944.

[San77]  L.E. Sanchis. Data types as lattices : retractions, closures and projections.
RAIRO, Theoretical Computer Science, 11, no 4:339-344, 1977.

[SDASS94] P. Sénac, M. Diaz, and P. de Saqui-Sannes. Toward a formal specifica-
tion of multimedia scenarios. Annals of telecomunications, 49(5-6):297-314,
1994.

[Sif77] J. Sifakis. Use of petri nets for performance evaluation. In H. Beilner and
E. Gelenebe, editors, Measuring, modelling and evaluating computer sys-
tems, pages 75-93. North-Holland, 1977.

[SY96] J. Sifakis and S. Yovine. Compositional specification of timed systems.
In 138th Annual Symposium on Theoretical Aspects of Computer Science,
STACS’96, pages 347-359, Grenoble, France, February 1996. Lecture Notes
in Computer Science 1046, Spinger-Verlag.

This article was processed using the I*TEX macro package with LLNCS style



