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Abstract

Developing embedded safety critical real-time sys-
tems and ensuring properties such as deterministic
behaviour in a simple way for the application de-
signers is a challenging task. A large number of
commercial and academic real-time operating systems
(RTOS) as well as model-based development environ-
ments based on synchronous languages are available.
Automatic transformations from synchronous mod-
elling languages to RTOS are important for stream-
lining development of real-time applications without
compromising the guarantees of their safety. In
this paper, we present an automatic transformation
from the SCADE synchronous language into applica-
tions for the OASIS safety-oriented real-time execu-
tion platform, a multi-scale time-triggered approach.
This transformation has been partially implemented
and we illustrate it with an industrial case-study from
the domain of medium voltage protection relays.

1 Introduction

Various domains, as for instance the automotive
or the avionic industries, develop increasingly com-
plex real-time systems. Model-based approaches have
been proposed to specify requirements of such sys-
tems and design them. Such design environments al-
low modelling and simulation of applications as well
as generation of qualifiable/certified code. Generated
code can then be compiled and run on various Real-
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Time Operating Systems (RTOS), such as Integrity,
VxWorks or PikeOS. Such RTOS are based on an
event-triggered approach for the execution of appli-
cations and do not provide sufficient predictability
and analyzability: the deterministic behaviour of an
application cannot be ensured prior to its execution.

The goal of the OASIS [4] approach is to build
safety-critical real-time systems where the system be-
haviour is independent from the asynchrony that is
allowed during the execution of an application. The
system behaviour is therefore unvarying, unique, and
independent from its realization on a target com-
puter. Therefore and by construction, OASIS is a
complete answer to demonstrate the system timeli-
ness: all timing constraints of all activities are clearly
expressed in the design phase and can be formally
proven to satisfy (or not!) the capacities of the hard-
ware support. OASIS is available on various architec-
tures and is currently in use in industrial products [3].

SCADE is a synchronous language derived from
Lustre [7] and implemented in the Esterel Technolo-
gies SCADE Suite R© model-based development envi-
ronment dedicated to critical embedded software.

To the best of our knowledge, few connections ex-
ist between synchronous modelling languages, which
allow one to develop applications with certified func-
tional behaviour, and time-triggered execution plat-
forms, which guarantee temporal determinism of
the systems. Our contribution, in this paper, is
1) the description of an automatic transformation
from SCADE models to OASIS applications and 2) an
illustration of this coupling on an industrial case
study.

The rest of the paper is organized as follows. Sec-
tion 2 describes the related work. Section 3 discusses
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the notions of real and logical time and provides OA-
SIS background. Section 4 presents our SCADE to
OASIS transformation, in particular the computation
of OASIS clocks from the SCADE model of an appli-
cation. Section 5 presents the industrial case study.
Finally, Section 6 concludes and suggests directions
for further research.

2 Related work

The context of our work is closest to that of a code
generation tool-chain [1] from SCADE/Lustre mod-
els for the Time-Triggered Architecture (TTA) [12].
TTA is a distributed, synchronous, fault-tolerant ar-
chitecture for a set of nodes connected through a bus
and exchanging data using a time triggered proto-
col. In [1], Lustre has been extended with addi-
tional primitives to specify code distribution, tim-
ing requirements and deadlines. Note that our work
could leverage extension of OASIS to a distributed
bus-based architecture [2], where scheduling is com-
puted transparently for the application developer [9].

An extension of Simulink to express designs of the
time-triggered Giotto language is presented in [11],
where I/O timing is generated automatically. Then,
a schedulability analysis is performed by the Giotto
compiler and code is generated for the HelyOS or OS-
EKWorks RTOS. This tool-chain has been demon-
strated on a helicopter autopilot system.

A mapping of synchronous models onto the
Loosely Time-Triggered architecture (LTTA) main-
taining the semantic equivalence between the syn-
chronous model and its implementation over LTTA
is presented in [14]. No case study is considered.
The LTTA architecture assumes that the Communi-
cation by Sampling (CbS) paradigm is implemented
over a bus and does not require a clock synchroniza-
tion mechanism. Note that OASIS temporal vari-
ables communication mechanism is more powerful
than CbS and provides guarantees on the freshness
of the data being used. Additionally, LTTA assumes
that each node of the architecture runs a single pro-
cess in a periodic manner.

A compilation chain for generating from a multi-
periodic synchronous language tasks that can be exe-
cuted on a real-time platform with a dynamic-priority
scheduler (EDF) is presented in [6]. The dependen-
cies between tasks are reduced to independant tasks
by adjusting task release dates and deadlines.

3 Background

3.1 Real and Logical Time

When developing real-time systems, it is important
to make a clear distinction between real and logical
time. The notion of time serves two purposes. Firstly,

it is used to specify the order of execution of individ-
ual actions. Secondly, it can be used to specify the
durations. Logical time can be used in both cases,
whereas specifying the order of execution based on
the real time leads to the non-determinism of execu-
tion, as real time is not known at the design stage.

One of the fundamental characteristics of syn-
chronous languages (e.g. Lustre, Scade, Signal) re-
sides in the use of clocks for the specification of the
synchronization points between the components. A
clock is an infinite subset of natural numbers. The
simplest example of a synchronous system consists of
a number of components all referring to the same pe-
riodic clock, defined by its initial date and its period.
The operational semantics of such a system is defined
as a sequence of cycles executed at each tick of the
clock. A cycle consists of three phases: acquisition of
inputs, computation and publication of outputs. The
actual (real time) duration of computations is then
irrelevant. This is materialised by the so-called syn-
chronous hypothesis: computations are assumed to
have no duration or, in other words, the computation
duration is negligible compared to that of communi-
cation among the components. This leads to com-
putation being divisible in steps and execution being
well-behaved. Real-time performance is then evalu-
ated by first computing the bounds or estimations
of worst-case execution time (WCET) of individual
computations, then performing an end-to-end delay
analysis of the entire system [5].

Although recent advances in WCET analysis [15]
allow system designers to obtain more precise results
for the individual computations, the end-to-end de-
lay analysis of concurrent systems remains complex.
Furthermore, when end-to-end delays do not satisfy
the real-time constraints of the system, the key fac-
tors have to be identified, re-designed and the whole
analysis process restarted from the beginning. The
opposite, declarative approach adopted, among oth-
ers, in OASIS is the so-called time-triggered approach.
This consists in assigning to each action its desired
execution time guaranteeing by construction the end-
to-end constraints. The system is then implemented
over an execution kernel running on a bare-bone plat-
form and ensuring that 1) the action currently be-
ing executed does not exceed the duration it is allo-
cated and 2) the execution of the following action is
triggered at the appropriate real time. Various ap-
proaches can be taken in the case when an action vi-
olates a deadline: execution can aborted, a recovery
mechanism or a degraded mode can be initiated. Al-
ternatively, WCET analysis can be performed in or-
der to verify whether execution time requirements are
respected and select an appropriate target architec-
ture. In both cases, this avoids the complex repeated
analysis described above for the traditional approach.

Finally, with the time-triggered approach, exe-
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cution of an action must not start before the real
time date of the corresponding logical instant, as this
could compromise data coherence among components
guided by the logical time. Thus time-triggered ap-
proach reconciles the real and logical times.

3.2 OASIS: A Framework for Safety-Critical
Real-Time Systems

The main objective of OASIS is a framework en-
compassing models, methodologies, and tools for the
development of embedded critical software exhibiting
completely deterministic temporal behaviour. This
objective is achieved by adhering to the following two
fundamental principles:

1. OASIS systems are based on a time-triggered ar-
chitecture,

2. communication between tasks is non-blocking
and time-stamped (including the visibility and
expiry dates of the communicated elements).

The second principle ensures that all the synchro-
nization is limited to that between individual tasks
and the kernel, thus guaranteeing that each elemen-
tary action executes within the temporal window it
is assigned at the design time. Hence, the actual im-
plementation of a system respects its formal seman-
tics defined by the OASIS computation model. Con-
sequently, the fact that visibility and expiry dates
are explicitly specified for all communicated elements
(messages and values of shared variables) results in
complete temporal determinism of the system be-
haviour. The sequencing of activities is independent
from the its realization on a target computer.

OASIS implementation comprises a programming
language PsyC (Parallel synchronous C), which is an
extension of C. The extension allows one to spec-
ify tasks and their temporal constraints as well as
their interfaces. The computation model of OASIS
relies on a collection of communicating tasks (a spe-
cific flavour of timed automata) with the operational
semantics defined using a collection of logical clocks.
OASIS implements a multi-scale time-triggered ex-
ecution model, in which a collection of execution
graphs represent the states of the tasks and the dead-
lines for the corresponding set of statements of the
tasks. An OASIS task is called an agent. An OASIS
system can be executed on a bare-bone target ma-
chine (mono-processor, multi-core or distributed) or
on a POSIX platform (with real or simulated time).
All types of execution, except of the execution in sim-
ulated time, are behaviourally and temporally deter-
ministic and equivalent.

3.3 OASIS: Data-flow Communication

Two communication mechanisms are available in
OASIS: 1) a 1-to-n regular flow of values called tem-
poral variables and 2) an n-to-1 irregular exchanges

through messages. The new values of a temporal vari-
able are made visible at every synchronisation point
of the producer task, while messages require explicit
definition of visibility dates. SCADE signals corre-
spond to temporal variables in OASIS. Hence OASIS
messages are out of the scope of this paper.

Each temporal variable is declared in the interface
of a single producer agent, but can be consulted by as
many agents as necessary. Below is a PsyC example
with one producing and one consulting agent.

agent AG_A (... /* start time */) {

temporal {double 0$x = 0.0;}

display {x : AG_B;}

...

}

agent AG_B (... /* start time */) {

consult {AG_A : 2$x;}

...

}

The clause temporal in AG_A declares a temporal
variable x of type double. The clauses display in
AG_A and consult in AG_B specify that the latter is
authorised and will consult the values of x. The ex-
pressions 0$ and 2$ preceding the name variable in
clauses temporal and consult declare the number of
past values of x that the corresponding agents require.
The past values of temporal variables are stored in
the buffers maintained by the OASIS system layer
and generated automatically. The size of each buffer
is statically determined by the PsyC compiler.

4 From SCADE to OASIS

OASIS guarantees the temporal and behavioural
determinism of the implementation of a system.
In other words, it guarantees that the operational
semantics of the computation model is respected.
When an OASIS system is obtained by a translation
from another formalism, such as SCADE, one has to
ensure that the OASIS semantics of the generated
model is equivalent to that of the initial model in the
source formalism. This is achieved by defining the
clocks and the temporal synchronization points de-
termining the execution windows for all elementary
actions of the agents in the system. The order of exe-
cution of elementary actions must respect the causal-
ity relation defined by the logical clocks in the initial
system described in the source formalism.

The SCADE/OASIS transformation is imple-
mented as a SCADE Suite adaptor. An adaptor is a
software component that can be added to the SCADE
Suite environment and that is called when generat-
ing code or building an application from a SCADE
model. In addition to the classical C code generated
for all SCADE operators, the adaptor provides the
appropriate encapsulation in PsyC of the C functions
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generated from the SCADE model. C code is gener-
ated for all SCADE operators as usual.

The SCADE/OASIS transformation adaptor anal-
yses the hierarchical model to extract a representa-
tion of the network of operators. PsyC code is gen-
erated only for those operators that have an actual
behaviour and are not intermediate connection lev-
els. Dedicated agents are also generated for the fby
(followed-by) delay operators found in the network.
The interconnection of the PsyC agents is equivalent
to the initial network. PsyC agent AG_A generated for
a SCADE node A is schematically shown below.

agent AG_A (starttime = 1 with C_A) {

... /* agent connection interface */

body start {

A_reset (&outC);

next main;

}

body main {

A (..., &outC);

... /* update of the produced outputs

based on the values in outC */

/* Advance 1 step on the C_A clock */

advance (1) with C_A;

}

}

In this scheme, A_reset() and A() are C functions
generated by the SCADE Suite code generator for
the initialisation of the node and for the execution of
one computation round respectively. The arguments
passed to these functions are the input values of the
agent and the structure outC containing the context
of the node (local variables and output values). We
omit the agent elements defining the interface for in-
terconnection with other agents.

OASIS operational semantics of this agent is the
following: 1) at the first instant of the logical clock
C_A, the agent computation is initialised, in the body
start, by a call to the function A_reset(); 2) it then
immediately moves to the body main; 3) the agent
calls the function A(), updates the output and ad-
vances one step on the clock C_A. The last step is
repeated indefinitely.

The clock C_A, in combination with clocks of other
agents, defines the synchronisation points where data
is exchanged. Hence, it is the key element defining
the semantics of the application in this transforma-
tion scheme. In the following sections we explain how
these clocks are computed and discuss the semantic
equivalence of a SCADE model with the correspond-
ing generated OASIS application.

4.1 Computation of the Agent Clocks

The main difficulty in the SCADE/OASIS trans-
formation is computing the logical clocks that define
the temporal behaviour of the agents in such a way

Figure 1. Simple composition of two opera-
tors in SCADE.

Figure 2. Composition with a pre operator.

as to preserve the functional semantics of the model
and optimize the usage of computing resources.

One of the main differences between SCADE and
OASIS computation models concerns the propagation
of data during one computation cycle. In SCADE,
data is propagated from inputs to outputs at each
computation cycle. Consider the SCADE operator
in Fig. 1. At a given cycle n, the node f reads the
input inn and computes an output xn, the node g
then immediately reads this value and produces an
output outn. Supposing that neither f nor g contain
delays, we have outn = g(xn) = g(f(inn)).

In OASIS, all agents read their inputs simultane-
ously and then simultaneously publish the results of
their computation. Taking on the above example,
at the cycle n, both f and g would read their re-
spective inputs inn and xn−1 (the output produced
by f at the end of the previous cycle) and pro-
duce the corresponding outputs xn = f(inn) and
outn = g(xn−1) = g(f(inn−1)). This can be trans-
lated by the following intuition: a simple OASIS sys-
tem corresponds to a network of SCADE nodes with
a pre operator on each communication link (Fig. 2).

In order to preserve the computation semantics
throughout the SCADE/OASIS transformation, each
agent is assigned a specific slot of the computation
cycle. Thus, the intermediate values are computed
and published by the corresponding agents before the
agents that require these values for their computa-
tions start their respective cycles. This is illustrated
in Fig. 3 with the green lines identifying the original
cycles of the SCADE model and the dashed arrows—
the data flow.

Figure 3. Execution window configuration
for agents in basic transformation.

4



Figure 4. Optimised execution window con-
figuration.

Figure 6. Optimised OASIS coordination for
the SCADE model in Fig. 5.

It is clear that this implementation is not optimal
in terms of parallelism. An alternative semantically
equivalent implementation is shown in Fig. 4.

Consider now a slightly more complex example of
level control in water tank (Fig. 5). (Monitor is an
imported node used to observe all the variables in the
system during a simulation.)

The circular dependency between Tank, Sensor
and Valve nodes does not violate SCADE semantic
constraints due to the presence of the delay (fby) op-
erator, but it prevents us from using the same optimi-
sation as in the previous example. Indeed, in SCADE
semantics, the values produced by all components
must be computed before the next cycle can begin.
These tree nodes form a strongly connected compo-
nent in the data dependency graph of the applica-
tion. The other two strongly connected components
are singletons, i.e. consist of one node each: Source
and Monitor respectively. On the other hand, the
above optimisation can be applied among the strongly
connected components (Figure 14). In addition to
the elements shown in previous figures, here we add
a base clock CBase used to derive the logical clocks
defining the execution windows in the OASIS model.
In order not to overcharge the figure, we do not show
all data dependencies in this application.

A general method to compute an optimised se-
mantics preserving execution windows arrangement
for the SCADE to OASIS transformation consists of
the following steps:

1. Compute the strongly connected components of
the application data dependency graph.

2. The factorisation of the application data depen-

dency graph, that is the data dependency graph
among the strongly connected components, is a
directed acyclic graph (DAG). This allows one to
compute the depth of each strongly connected
component.

3. All strongly connected components run in paral-
lel with the same temporal window correspond-
ing to one cycle of execution of the SCADE
model, but with the start delayed by their depths
as defined in step 2.

4. For each component, we break the cycles on the
delay operators (pre, fby), thus also obtaining a
DAG. To each node of the component, we assign
its depth in this DAG.

5. For each component, we break its associated
temporal window into n slots, where n is the
depth of the entire DAG associated to this com-
ponent (maximal depth of the nodes plus one),
and associate to each node the execution window
corresponding to the slot numbered by its depth
in the DAG.

An implementation of this construction with OA-
SIS clocks relies on a base clock refining all involved
slots. Such a base clock can be straightforwardly com-
puted as follows. Let P be the real-time duration
associated to one cycle of synchronous execution in
SCADE, and let N be the least common multiplier
of the depths of all strongly connected components
above. We fix the base clock CBase with the start
time 0 and period P/N . To each strongly connected
component Cmp, with the associated DAG of depth
n, we associate a clock CCmp with start time 0 and
period P/n, i.e. CCmp = N/n ∗ CBase, and to each
node (agent in the OASIS translation) A in Cmp we
associate a clock CA = N ∗ CBase + m, where m is
the depth of A in Cmp.

Finally, it is important to notice, that the commu-
nications between agents belonging to different com-
ponents have to be adjusted in order to take into ac-
count appropriately shifted past values.

For the sake of conciseness, we omit here the im-
plementation details of the PsyC wrapper generation.

4.2 Functional Equivalence

The use of the PsyC code generation scheme pre-
sented in the opening of this section ensures that the
function behaviour of each generated agent is exactly
the same as that of the corresponding node in the
SCADE model. Indeed, the same C functions gen-
erated by the SCADE KCG code generator are used
in both contexts. Therefore, in order to demonstrate
the functional equivalence of the entire application,
we only have to show that the data are produced and
consumed by the OASIS agents in the same order as
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Figure 5. SCADE model for level control in a water tank.

in the source SCADE model. The argument below is
can be illustrated by Fig. 6.

The order in which data are produced and con-
sumed by SCADE nodes is defined by the underlying
data dependency graph, whereas in OASIS it is de-
termined by temporal synchronisation points (TSP),
that is by the combined use of advance instructions
and logical clocks.

The algorithm described in the previous section,
defines the logical OASIS clocks in such a manner
that, within each strongly connected component of
the data causality graph of the application, the ar-
rangement of execution windows guarantees that de-
pendent agents are never executed in parallel. Hence,
for each agent, there is at least one TSP separating its
execution window from those of the agents producing
the required data. Thus all past data referenced by
the agent and produced within the same strongly con-
nected component is available when necessary. In the
previous section, we have omitted the detailed pre-
sentation of the use of the advance statements and
offsets in the references to the past values of temporal
variables. However, this use is straightforward.

Finally, a similar argument shows that the data are
produced and consumed correctly among the strongly
connected components of the data dependency graph.
Indeed, the offset used for assigning temporal slots
to strongly connected components are determined by
their depth in the dependency DAG. Therefore, by
construction any data used by an agent within a
given strongly connected component is produced by
another agent within a preceding temporal slot.

5 Case Study

The case study, considered in this paper, rep-
resents a medium voltage protection relay that we
have previously developed using the OASIS approach,

called OASISepam [10].

5.1 Software Architecture of OASISepam

In the domain of medium voltage, a protection re-
lay is a device that detects and isolates faults in the
electrical network. The sensor measures the current
that flows on the network, and transmits informa-
tion (voltage) that is proportional to the magnitude
of this current to the relay. The relay digitalizes
this information, applies signal processing algorithms,
compares to the user settings (threshold, time delay,
etc), and takes control decisions. The software part
of OASISepam is therefore composed of three stages:
1) the acquisition stage, 2) the measurement stage
and 3) the protection stage. All tasks within these
stages are periodic tasks. Fig. 7 shows the over-
all software architecture of OASISepam in terms of
agents and their interfaces.

Names associated to lines are names of variables
exchanged between agents. Black circles indicate the
agent that owns the variable, that is can produce new
values for this variable, whereas other agents can only
consult these values. The remainder of this section
details this software architecture.

Acquisition stage. The goal of this stage is to
build for other tasks new available data items. Data
items are periodically available from an ASIC (Ap-
plication Specific Integrated Circuit) through an SPI
(Serial Peripheral Interface) line, every 555 µsec. This
temporal constraint defines the sampling rate of the
status of the power network. The periodicity of all
other tasks is specified by Sepam developers from this
base sampling rate using a multiplicative factor.

This stage is implemented by a single OASIS agent,
called AgARGA. Data items (i.e. input currents) consist
in an array of four values, named DataBufferI, rep-
resenting the current on the monitored lines (I1, I2,
I3 and I0 for the neutral). To specify the periodicity
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Figure 7. OASISepam: software architec-
ture of the Sepam 10 using OASIS.

of the AgARGA agent, we define a clock called HA_ARGA

with the granularity of 555 µsec. This clock serves as
the reference clock for all other clocks in the system,
that is other tasks refer to derived clocks built from
HA_ARGA. A derived clock in OASIS is constructed us-
ing a multiplicative factor and an offset.

Measurement stage. The goal of this stage is to
apply various algorithms in order to compute a value
that will be used by the protection stage to first de-
tect any power faults and then decide whether the
safety-function of the protection relay should be acti-
vated. Therefore, the functionalities available within
this stage depend on the protection algorithms em-
bedded in the protection stage. In this paper, we as-
sume that the measurement stage consists of: a com-
putation of an average, a computation of the magni-
tude of the fundamental (50 Hz) and some harmon-
ics (100 Hz, 150 Hz, etc.), a computation of a crest
value and a computation of a root mean square. More
details on the algorithmic part of this stage can be
found in [13]. The average is computed whenever 3
new data items (i.e. input currents) are available. It
is performed whenever 24 new data items are avail-
able and computes the last 12 averaged input currents
(computed therefore using the last 36 data items).

The measurement stage is composed of five agents.
The AgCumulRMS agent implements the sum and the
square sum of 1800 data items, while the AgRMS agent
implements the computation of the root mean square
of the 4 currents. The temporal behaviour of the
AgRMS agent is to be periodically activated every 1800
new data items, that is every 999 ms. Its associ-
ated clock HA_RMS is therefore defined in OASIS as
1800∗HA_ARGA. The presence of the AgCumulRMS agent
is explained by hardware memory constraints of the
targeted board (64 Kb), and allows the AgRMS to only
access a single data value—the last one provided by
the AgCumulRMS agent. The AgCrete agent imple-
ments the computation of the crest value of all values
of DataBufferI. Therefore, the temporal behaviour

of this agent is to be periodically activated every
555 µsec, and relies on the same clock as AgARGA. This
agent updates the temporal variable called V_DETC, of
temporal rhythm HA_ARGA, at every activation. The
AgMoy agent implements the computation of the av-
erage of the last 3 values of DataBufferI. Therefore,
its temporal behaviour is to be periodically activated
every 1.665 ms and its associated clock HA_MOY is de-
fined as 3∗HA_ARGA. This agent updates the tempo-
ral variable called V_TRS_CumulFiltree, of tempo-
ral rhythm HA_ARGA, at every activation. The AgTRS

agent implements the computation of the magnitude
of the fundamental and some harmonics of the inputs
currents. The algorithms uses the last 12 values of
V_TRS_CumulFiltree, which are computed using the
last 36 available values of DataBufferI by AgMoy. In
addition, the last available value of the V_DETC tem-
poral variable is used. However, the temporal be-
haviour of this agent is to be periodically activated
every 24 new data items, that is every 13.320 ms.
Nevertheless, its associated clock HA_TRS is defined
as 12∗HA_ARGA. This is explained by the target end-
to-end detection time of 26,640 ms [10]. This agent
updates the temporal variable V_mod2Imax, of tem-
poral rhythm HA_TRS, at every activation.

Protection stage. The goal of this stage is to
embed the various protection algorithms that are re-
quired by a Sepam product. In this work, we consid-
ered that two protection algorithms were available:
the 50 and 51 protections (protection codes are de-
fined in [8]). Protection 50 is a protection against
instantaneous phase over-current. It protects against
the different possible phases short-circuits: three-
phase or two-phase short-circuit. Protection 51 is a
delayed 50 protection. Other types of protection are
available in Sepam products from Schneider Electric.

Within OASISepam, the protection stage is made
of two agents. Note that all protection agents follow
the same temporal behaviour: they required to be ac-
tivated every 13.320 ms. However, in order to achieve
the target end-to-end detection time, we define the
associated clock HA_PROTECTION as 12∗HA_ARGA (i.e.
6.66 ms). As input, all agents rely on the last value
of the temporal variable V_mod2Imax. Depending on
the type of protection and its configured activation
delay, protection agents ask (or not) the tripping of
the circuit breaker. The Ag50 agent (resp. Ag51) im-
plements the 50 (resp. 51) protection.

5.2 Case Study implementation in SCADE

The SCADE implementation of the Sepam appli-
cation is hierarchical (Fig. 8). The root node consists
of the three sub-nodes corresponding to the applica-
tion stages and a dummy sub-node. Indeed, one of
the restrictions of the SCADE-OASIS transformation
requires that the system be closed, i.e. all inputs and
outputs must be connected, whereas the node TRS
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produces a flow VS_Mod2Imax, not used in any of the
protection elements of the case study and connected
to the dummy node. This limitation can be levied
in future versions. Presently, references to dummy
nodes must be manually removed from the generated
PsyC code (1 line of code per unused output).

The node ARGA models directly the acquisition
functionality corresponding to the AgARGA agent of
the OASIS version of the application. This node
serves as an interface to the sensors (through the
SCADE sensor feature) and provides the input values
for the entire application. In the case study applica-
tion, the values provided by the sensors are defined
statically for testing purposes. The node Protec-
tions has two sub-nodes corresponding to the pro-
tection mechanisms described in the previous section.
Finally, the node Measurements (Fig. 9) has five
sub-nodes responsible for the collection of statistics.

Below, we illustrate some SCADE modelling ele-
ments providing a structured approach to the mod-
elling of temporal behaviour of agents and commu-
nication among them. This approach can be easily
generalised and systematically used in SCADE mod-
els intended for execution on the OASIS platform.
The SCADE-OASIS transformation can be extended
in order to identify these elements and generate ap-
propriate native PsyC clocks and interface specifica-
tions (cf. Sect. 3.3). It is important to notice, how-
ever, that, although their systematic use would result
in a more efficient PsyC code, it is not required. The
transformation extension in question can be realised
without compromising the backward compatibility.

Among the five sub-nodes composing the Mea-
surements node, two—CumulRMS and Crest—must
operate at the same rhythm as the ARGA node, which
provides the input data. The other three nodes re-
quire additional clock constraints, since they oper-
ate with a slower rate (cf. Fig. 7). In SCADE, such
constraints are implemented by introducing explicit
nodes to generate a boolean signal representing the
clock and using it to trigger a Boolean activation
block. This results in additional computation in the
generated C code. Since OASIS is based on a time-
triggered approach, clock constraints do not require
additional code and are handled directly by the sys-
tem layer. Below, we present on the example of
AgentAverage node the design pattern used in our
case-study SCADE model (Fig. 10) that will allow
future versions of the SCADE-OASIS transformation
to exploit this feature of the OASIS framework.

Recall that the AgentAverage node must only be
activated once in every three cycles and accesses the
last three input samples to compute their average (cf.
again Fig. 7).1 In order to impose the activation rate,

1Although for the AgentAverage node, the operation rate
(once every three cycles) and the buffer size (access to the last
three values of the input) coincide, this is not necessarily so in

we use a SCADE Boolean activation block coupled
with a dedicated node Clocks::CA_AVG, computing
the corresponding SCADE clock by producing a tick
on every third cycle. The Boolean activation block
encapsulates a sub-node Average modelling the func-
tional behaviour of the agent. We use an fby operator
to ensure that the last value computed by this sub-
node is maintained between consequent activations.

OASIS agents can refer to several past values of a
given data flow (cf Sect. 3.3). Buffers necessary to
hold these past values are managed by the OASIS
system layer and their sizes are statically computed
at compilation. In SCADE, these buffers must be
modelled explicitly by ad-hoc use of fby operators.
The design pattern described below allows systematic
modelling of such buffers.

As described in the previous section, each sample
provided by the Acquisition stage consists of four val-
ues representing the current on the monitored lines.
In this model we have implemented separate buffer-
ing for each line. We use a combination of a map-
fold with a one step memory shown in Fig. 11 to
create a vector with the required sample values on a
given line. The D_TRS_NB_SAM_FILTER parameter of
the mapfold operator gives the number of samples
that must be kept in the buffer (three in this case
study). The map operator shown in Fig. 10 applies
this construction to each line, with D_ACQ_NB_LINES

parameter providing the number of lines to monitor
(four in this case study).

5.3 SCADE-OASIS transformation

We have applied the current version of the
SCADE-OASIS transformation to the SCADE model
of the case study application described in the pre-
vious section. First of all, this has allowed us to
test preservation of the functional semantics as stated
in Sect. 4.2. Indeed, both Scade and OASIS se-
mantics are deterministic and therefore systemati-
cally generate the same output flows provided the
same input flows. We have observed identical val-
ues of the output flows generated by simulations in
both environments, substantiating our claim of se-
mantic equivalence. We also verified that the specifi-
cation of the real-time constrained associated to the
generated PsyC code is equivalent to the initial OA-
SISepam application. Therefore, the end-to-end de-
tection time requirements for OASISepam are also
satisfied when the application is modeled in SCADE
and then transformed into a PsyC code for the OASIS
safety-oriented hard real-time tool chain.

6 Conclusion

Developing embedded safety critical real-time sys-
tems and ensuring properties such as deterministic

the general case.
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Figure 8. Root node of the SCADE model of the Sepam application.

Figure 9. Measurements node of the SCADE model of the Sepam application.

Figure 10. AgentAverage node of the SCADE model of the Sepam application.

(a) (b)

Figure 11. Buffer realised by a composition of a mapfold (a) operator with one step memory (b).
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behaviour in a simple way for the application design-
ers is a challenging task. In this paper, we have pre-
sented the OASIS safety-oriented real-time execution
framework and an overview of the automatic transfor-
mation from the SCADE synchronous language mod-
els into applications for OASIS. In particular, we have
presented a transformation preserving the functional
semantics of the applications through an optimised
arrangement of OASIS logical clocks.

We have also presented an industrial case-study
that we have used to validate a partial implemen-
tation of the presented SCADE-OASIS transforma-
tion by comparing the trace of the simulation in
SCADE Suite with that of the generated OASIS ap-
plication. Temporal behaviour of the generated appli-
cation model is equivalent to that of the application
manually designed for OASIS.

Through the design of the SCADE model of the
case-study application, we have exhibited a SCADE
design pattern—also succinctly presented in the pa-
per (Fig. 10 and Fig. 11)—that will allow future ver-
sions of the SCADE-OASIS transformation to ex-
ploit the specific advantages of the OASIS platform,
namely optimised automatic sizing of communica-
tion buffers and multi-rate temporal behaviour. It
should be noted, however, that, although using this
design pattern would lead to a better optimisation of
the generated OASIS application, already the exist-
ing implementation of the transformation can handle
arbitrary SCADE models. In our future work, we
will study a SCADE design pattern for the OASIS
message box communication mechanism so as to al-
low arbitrary OASIS applications to be modelled in
SCADE.

The OASIS approach can be transparently ex-
tended to distributed systems [9]. Future work will
leverage this extension. Finally, we are currently
working on a automatic transformation from the
Modelica environment.
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