
A Methodology for the Construction of

Scheduled Systems �

K. Altisen, G. G�o�ler, and J. Sifakis

Abstract

We study a methodology for constructing scheduled systems by restricting
successively the behavior of the processes to be scheduled. Restriction is used
to guarantee the satisfaction of two types of constraints: schedulability con-
straints guaranteeing that timing properties of the processes are satis�ed, and
constraints characterizing particular scheduling algorithms including process
priorities, non-idling, and preemption.

The methodology is based on a controller synthesis paradigm. The main re-
sults deal with the characterization of scheduling policies as safety constraints
and the simpli�cation of the synthesis process by applying a composability
principle.

1 Introduction

Scheduling coordinates the execution of application and system activities, so as
requirements about their temporal behavior are met. Guaranteeing correctness of
schedulers is essential for the development of dependable real-time systems. In
many application areas, well established theory and scheduling algorithms have
been successfully applied to real-time systems development.

Existing scheduling theory is limited because it requires the system to �t into the
mathematical framework of the schedulability criterion (e.g. all tasks are supposed
periodic, worst case execution times are known). Studies to relax such hypotheses
have been carried out but they generalize one hypothesis at a time, and no uni�ed
approach has been proposed.

To overcome limitations of scheduling theory, it is important to study its con-
nections to speci�cation theory and take advantage of their complementarity [8, 13].
The speci�cation based approach consists in building a timed model of the sched-
uled system or of an abstraction of it. Then, timed analysis tools are used either to
check that the exact model meets scheduling requirements or to extract from the
abstraction a scheduler [6, 10].

A major diÆculty in applying this approach is the generation of the timed model
from some description of the scheduling method. In fact, scheduling deals with the
very dynamic nature of real-time systems, and behavior modeling requires a deep
understanding of mechanisms such as priorities and preemption, as well of concepts
such as urgency, idling, timeliness.

In this paper we propose a methodology for modeling scheduling algorithms that
constructs compositionally the scheduled system from a global timed model based
on

1. A functional description of the processes to be scheduled, their resources, and
the associated synchronization and management constraints;

�submitted to FTRTFT'00

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147994315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Timing requirements added to the functional description and relating in par-
ticular execution speed with the dynamics of the external environment;

3. A description of a scheduling algorithm consisting of three types of require-
ments about

� �xed or dynamic priorities, for choosing between pending requests of the
processes;

� possibility of idling, meaning that the scheduler may not satisfy a pend-
ing request anticipating the satisfaction of a forthcoming higher priority
request;

� preemption, that is, for a given preemption order between processes, a
process of lower priority is preempted when a process of higher priority
raises a request.

In previous papers [4, 3] we have shown how a functional description can be ex-
tended into a timed one by preserving progress properties. In this paper we study a
methodology for constructing a scheduled system from scheduling requirements and
a timed speci�cation of the processes to be scheduled. The methodology is based on
the controller synthesis paradigm [11, 9, 1]. A scheduler is considered as a controller
of the processes to be scheduled which restricts their behavior by triggering their
controllable actions. The restricted behavior must respect the timing constraints of
the processes as well as constraints characterizing the scheduling requirements.

We have shown in [1] how schedulers can be computed by applying a synthesis
algorithm to timed automata. The synthesis algorithm computes iteratively from a
constraint K characterizing scheduling requirements, the maximal control invariant
K0, K0) K. The latter denotes the set of states from which K is guaranteed. The
behavior of the scheduled system is obtained by restricting the controllable actions
of the processes so as to respect the control invariant K0.

The application of synthesis techniques is limited for two reasons. First, the
practical complexity of the synthesis algorithm is high even in the case of timed
automata without scheduling policy constraints. Second, scheduling with preemp-
tion requires the use of automata with integrators [5] which implies that iterative
computation of control invariants may not terminate.

The proposed methodology allows to decompose the global controller synthesis
procedure into the application of simpler steps. At each step a control invariant
corresponding to a particular class of constraints is applied to further restrict the
behavior of the system of processes to be scheduled. The presented results can be
summarized as follows:

1. Global scheduling requirements can be characterized by a constraint K of the
form K = Kalgo ^ Ksched where Kalgo speci�es a particular scheduling algo-
rithm, and Ksched characterizes schedulability requirements of the processes.
Furthermore, Kalgo is a conjunction of constraints about the scheduling policy,
the possibility of non-idling, and preemption;

2. A step of the method corresponds to the computation of a controller for some
constraint. The control invariant corresponding to a constraint can be com-
puted in a straightforward manner (without iterative �xpoint computation);

3. The scheduled system can be obtained by successive applications of steps re-
stricting the process behavior by control invariants implying all the scheduling
constraints, provided that some composability conditions are satis�ed. In fact,
the restriction by a control invariant does not necessarily preserve previously
imposed control invariants.

2

The methodology allows an incremental construction of a scheduled system, or
of an abstraction of it if some steps fail.

The paper is composed of two sections. The �rst section presents basic results
about control invariants and their composability. The second section shows how
scheduling requirements can be expressed as constraints which are control invariants
in some cases. The application of the methodology is illustrated by examples.

2 Control Invariants and Composability

2.1 Timed system

To model scheduling algorithms, we use reactive timed systems with two kinds of
actions as in [1]: controllable actions that can be triggered by the scheduler, and
uncontrollable actions that can be considered as internal actions of the processes
to be scheduled. Controllable actions are typically resource allocations and process
preemption, while uncontrollable actions are process arrival and termination.

Both controllable and uncontrollable actions are submitted to timing constraints
expressed in terms of real-valued variables called timers. The derivatives of timers
may take the values 0 or 1, as speci�ed by a boolean vector.

De�nition 2.1 (X-constraint)
Let X be a �nite set of timers, fx1; : : : ; xmg, real-valued variables de�ned on the
set of non-negative reals IR+. A predicate C generated by the grammar C ::= x#d j
x� y#d j C ^ C j :C, where x; y 2 X, d is an integer, and # 2 f�; <g, is called a
X-constraint.

De�nition 2.2 (falling edge)
Let C be a X-constraint, and b be a boolean derivative vector of f0; 1gm. The
closed (resp. open) falling edge of C w.r.t. b, written #bC (resp. #bC) is de�ned as
8x 2 IRm

+ :

#
bC(x) , C(x) ^ 9t > 0 : 8t0 2 (0; t] : :C(x+ t0b)

#
bC(x) , :C(x) ^ 9t > 0 : 8t0 2 (0; t] : C(x� t0b)

Example 2.1 Let X = fx1; x2g be the set of real valued variables. C = x1 � 3
and C 0 = 2 � x1 < 6^x1�x2 � 4 are X-constraints. For b = (1; 1) and b0 = (1; 0),
we have:

#
b
C = (x1 = 3) #

b
C = false #

b
C0 = false #

b
C0 = (x1 = 6) ^ (x2 � 6)

#
b0
C = (x1 = 3) #

b0
C = false #

b0
C0 = (x1 � x2 = 4)

^ (x2 < 2)

#
b0
C0 = (x1 = 6) ^ (x2 � 6)

De�nition 2.3 (timed system)
A timed system is:

� an untimed labeled transition system (S; A; T) where S is a �nite set of con-
trol states; A is a �nite vocabulary of actions partitioned into two sets of
controllable and uncontrollable actions noted Ac and Au; T � S�A�S is an
untimed transition relation;

� a �nite set of timers X = fx1; : : : ; xmg, as in de�nition 2.1;

� a function b mapping S into f0; 1gm. The image of s 2 S by b denoted bs is a
boolean derivative vector;

� a labeling function h mapping untimed transitions of T into timed transi-
tions: h(s; a; s0) = (s; a; g; �; r; s0), where the guard g is a X-constraint; the
reset r � X is a set of timers to be reset; � 2 f�; Æ; �g is an urgency type,
respectively lazy, delayable, eager.

3

Semantics. A timed system de�nes a transition graph (V ; E) constructed as fol-
lows. V = S� IRm

+ , that is, vertices (s; x) are states of the timed system.
The set E � V � (A[IR�+)�V of the edges of the graph is partitioned into three

classes of edges: Ec controllable, Eu uncontrollable, and Et timed, corresponding
respectively to the case where the label is a controllable action, an uncontrollable
action, and a positive real.

Given s 2 S, let J be the set of indices such that f(s; aj ; sj)gj2J is the set of
all the untimed transitions departing from s. Also let h(s; aj ; sj) = (s; aj ; gj ; �j ;
rj ; sj).

For all j 2 J , ((s; x); aj ; (sj ; x[rj])) 2 Ec [Eu i� gj(x) and x[rj] is the timer
valuation obtained from x when all the timers in rj are set to zero and the others
are left unchanged.

To de�ne Et, we use the predicate ', called time progress function. The notation
'((s; x); t) means that time can progress from state (s; x) by t.

'((s; x); t),
^
j2J

8<
:

�j = Æ)
8t0 2 [0; t) : :#bsgj(x+ t0bs) ^

8t0 2 (0; t] : :#bsgj(x+ t0bs)

�j = �) 8t0 2 [0; t) : :gj(x+ t0bs)

If '((s; x); t), then ((s; x); t; (s; x + tbs)) 2 Et where x + tbs is the valuation
obtained from x by increasing by t the timer values for which bs elements are equal
to one.

The above de�nition means that at control state s, time cannot progress when-
ever an eager transition is enabled, or beyond the falling edge of a delayable guard.

We will usually denote by TS a timed system. TSc (resp. TSu) represents the
timed system composed of the controllable (resp. uncontrollable) transitions of TS
only.

Property 2.1 If ', 'c, and 'u are respectively the time progress functions of TS,
TSc, and TSu then ' = 'c ^ 'u.

Example 2.2 (A periodic process)
Let us model a periodic non-preemptible process P as a timed system. P is of
period T and uses the CPU for an execution time E. It also has a relative deadline
of D (D � T).

s

e

w
au; (t = T)�;
t := 0

bc; (t � D � E)Æ;
x := 0

fu; (x = E)�

Fig. 2: A periodic process.

As shown in �g. 2, the timed system has
three control states, s, w, and e where P is
respectively sleeping, waiting for the CPU,
and executing on the CPU. The actions a, b,
and f stand for arrive, begin, and �nish. The
timer x is used to measure execution time
while the timer t measures the time elapsed
since the process has arrived. In all states,
both timers progress. The only controllable
action is b.

By convention, transition labels are of the
form ax; g� ; r, where x can be u (uncontrollable) or c (controllable), and � is an
urgency type. The set r is omitted if it is empty.

Notice that since the transition b is delayable, the process might wait for a non-
zero time although the CPU is free: idling is permitted. A non-idling process is
modeled by changing the urgency type of the transition b to eager (see example 2.5
for further details).

A preemptive periodic process is modeled in section 3.3.

4

2.2 Restriction and control invariants

De�nition 2.4 (constraint)
Given a timed system with a set of timers X and a set of control states fs1; : : : ; sng,
a constraint is a state predicate represented as an expression of the form

Wn

i=1 si^Ci

where Ci is a X-constraint and si is (also) the boolean denoting presence at state
si.

De�nition 2.5 (restriction)
Let TS be a timed system and K be a constraint. The restriction of TS by K denoted
TS=K, is the timed system TS where each guard g of a controllable transition
(s; a; g; �; r; s0), is replaced by

g0(x) = g(x) ^K(s0; x[r])

Notice that in the restriction TS=K, the states reached right after execution of
a controllable transition satisfy K. Moreover, it follows from the de�nition that
(TS=K1)=K2 = TS=(K1 ^K2).

De�nition 2.6 (proper invariant)
Let TS be a timed system and K be a constraint. We say that K is a proper
invariant of TS, denoted by TS � inv(K), if K is preserved by the edges of E , i.e.,
8(s; x) : K(s; x)) 8((s; x);
; (s0; x0)) 2 E : K(s0; x0).

Proper invariants, called simply invariants for closed systems, are constraints
preserved by all the transitions of the system. We use the term \proper" to distin-
guish them from control invariants introduced in the following de�nition. Control
invariants are constraints that are satis�ed by the restricted system.

De�nition 2.7 (control invariant)
Let TS be a timed system and K be a constraint. K is a control invariant of TS if
TS=K � inv(K).

Property 2.2 If K is a proper invariant of a timed system TS, then K is a control
invariant of TS.

This property follows from the trivial observation that if TS and TS=K are
initialized in K, then they have the same behavior. However, notice that control
invariants are not proper invariants, in general.

Property 2.3 For any timed system TS and constraint K such that TSu � inv(K),
K is a control invariant of TS (i.e. TS=K � inv(K)).

Proof. (sketch) Assume K(s; x) for some state (s; x). To prove TS=K � inv(K)
it must be shown that K is preserved in TS=K by (1) controllable, (2) uncontrol-
lable, and (3) timed edges of TS=K. By construction of TS=K, (1) is true. From
TSu � inv(K), (2) and (3) follow. �

De�nition 2.8 (Timed system of processes)
A timed system of processes is a timed system TS = (S; A; T; X; b; h) obtained
by composition of processes where a process Pi is a timed system (Si; Ai; Ti; Xi;
bi; hi). TS is the timed system of n processes fP1; : : : ; Png if

S = S1 � : : :� Sn ; A = A1 [: : : [An ; X = X1 [: : : [Xn ;
For s = (s1 : : : sn) 2 S and x 2 Xi; bs[x] = bi;si [x];
For s = (s1 : : : si : : : sn); and s0 = (s1 : : : s

0
i : : : sn) 2 S;���� t = (s; ai; s

0) 2 T , ti = (si; ai; s
0
i) 2 Ti ;

h(t) = (s; ai; gi; �i; ri; s
0) , hi(ti) = (si; ai; gi; �i; ri; s

0
i)

5

We assume that processes have disjoint sets of control states, and timers. Moreover,
we accept that guards are general constraints on timers and control states as in the
de�nition 2.4.

Example 2.3 (Mutual exclusion)
Consider a timed system of n periodic non-preemptible processes fP1; : : : ; Png,
instances of the generic process of �g. 2, and the constraint

Kmutex =
^
i6=j

:ei _ :ej

expressing mutual exclusion. It is trivial to check that Kmutex is a control invari-
ant, as TSu � inv(Kmutex). In fact, Kmutex is time invariant and is preserved by
uncontrollable transitions.

If TS is the timed system of two processes of �g. 3 and Kmutex = :e1_:e2, then
TS1 = TS=Kmutex is obtained by restricting the controllable guards gb1 and gb2 to

g0
b1

= (t1 � D1 � E1) ^ :e2 = (t1 � 10) ^ :e2
g0
b2

= (t2 � D2 � E2) ^ :e1 = (t2 � 3) ^ :e1:

s1

e1

w1

s2

e2

w2

au
1
; (t1 = 15)�

t1 := 0
au
2
; (t2 = 5)�

t2 := 0

bc
1
; (t1 � 10)Æ

x1 := 0

bc
2
; (t2 � 3)Æ

x2 := 0

fu
1
; (x1 = 5)� fu

2
; (x2 = 2)�

P1 :

�
T1 = D1 = 15
E1 = 5

P2 :

�
T2 = D2 = 5
E2 = 2

Fig. 3: A timed system of two processes.

2.3 Control Invariants and Synthesis

Following ideas in [11], synthesis is used to partially restrict the non-determinism
of a system so as it satis�es a given invariant.

Problem 2.1 (Synth)
Solving the synthesis problem for a timed system TS and a constraint K amounts
to giving a non-empty control invariant K0 of TS which implies K, i.e. K0)
K; TS=K0 � inv(K0).

We assume that the processes to be scheduled and their timing constraints are
represented by a timed system of processes TS. Furthermore, we consider that
scheduling requirements can be expressed as a constraint (safety property) K. A
scheduled system can be obtained by solving the synthesis problem for TS and K,
as explained in [1]. If K0 is a control invariant implying K, then TS=K0 describes a
scheduled system.

We assume that the constraint K is in general the conjunction of two constraints
K = Kalgo^Ksched. Kalgo is an optional constraint characterizing a particular schedul-
ing algorithm. We provide in section 3, a general framework for the decomposition
of Kalgo and the modeling of di�erent scheduling policies.

6

Ksched expresses the fact that the timing requirements of the processes are sat-
is�ed. We consider that the processes to be scheduled are structurally timelock-
free [3]. This property means that time always eventually progresses. It is implied
by the fact that at any control state, if no action is enabled then time can progress,
and the requirement that in any circuit of the control graph a timer is reset and
tested against some positive lower bound. For example, the periodic process of
example 2.2 is structurally timelock-free.

Notice that structural timelock-freedom is preserved by restriction. For time-
lock-free timed systems, Ksched can be formulated as a constraint expressing the
property that each process always eventually executes some action. This property
implies fairness of the scheduling algorithm.

De�nition 2.9 (�)
Let C be a X-constraint, s 2 S a control state, and k 2 IN [f1g. We will use the
notation

(�skC)(x) = 9t 2 [0; k] : C(x+ tbs)

to express the property \eventually C within k in s". If the state s is clear from
the context, we write �k instead of �sk. We use (�C)(x) for 9t � 0 : C(x+ t).

For a timed system of processes as in de�nition 2.8,

Ksched =
^
Pi

Kschedi where Kschedi =
_
s2Si

s ^ (
_

(s; a; s0)2Ti

�ga)

It can be shown that in general, Ksched is not a control invariant. We have shown
in [1] how maximal schedulers for timed automata and their schedulability con-
straints can be computed. The synthesis algorithm has been implemented in the
Kronos tool.

Example 2.4 (Schedulability)
The schedulability constraint for the timed system of n periodic processes TS as in
example 2.3 is:

Ksched =
^
Pi

(si ^ �gai _ ei ^ �gfi _ wi ^ �gbi)

We consider the timed system of two processes described in �g. 3 where the
mutual exclusion constraint has been applied. We have:

Ksched =

2
4 s1 ^ t1 � 15
_ e1 ^ x1 � 5
_ w1 ^ t1 � 10

^ 2
4 s2 ^ t2 � 5
_ e2 ^ x2 � 2
_ w2 ^ t2 � 3

The maximal control invariant implying Ksched computed by Kronos is:

K0

sched
=

2
666666666664

(s1 ^ s2 ^ t1 <= 15 ^ t2 <= 5)
_ (w1 ^ s2 ^ (t2 <= 3 ^ t1 � 10 _ t2 <= 5 ^ t1 <= t2 + 3))
_ (s1 ^ w2 ^ t1 <= 15 ^ t2 <= 3)
_ (e1 ^ s2 ^ t2 <= 5 ^ x1 <= 5 ^ t1 <= x1 + 10 ^ t2 <= x1 + 3)
_ (w1 ^ w2 ^ (t1 <= 8 ^ t2 <= 1 _ t2 <= 3 ^ t1 <= t2 + 3))
_ (s1 ^ e2 ^ t1 <= 15 ^ x2 <= 2 ^ t2 <= x2 + 3)
_ (e1 ^ w2 ^ x1 <= 5 ^ t1 <= x1 + 10 ^ t2 + 2 <= x1)
_ (w1 ^ e2 ^ (x2 <= 2 ^ t1 <= x2 + 8 ^ t2 <= x2 + 1 _

x2 <= 2 ^ t1 <= t2 + 3 ^ t2 <= x2 + 3))

In the rest of the paper, we show how to construct control invariants for some
frequently used scheduling algorithms without �xpoint computation.

7

2.4 Control Invariant Composability

Contrary to proper invariants, control invariants are not composable by conjunction.
In general, it can not be inferred from TS=Ki � inv(Ki); i = 1; 2 that TS=(K1^K2) �
inv(K1 ^K2). We study a notion of control invariant composability.

De�nition 2.10 (composable invariant)
Let TS be a timed system and K1 be a constraint. K1 is a composable invariant of
TS if for all constraints K2, K1 is a control invariant of TS=K2 (i.e. if TS=(K1^K2) �
inv(K1)).

Property 2.4 Let TS be a timed system and K1 be a constraint on TS. K1 is a
composable invariant of TS i� TSu � inv(K1).

Proof. Let K1 be a composable invariant of TS. By applying de�nition 2.10 with
K2 = false, we obtain: TS=false = TSu � inv(K1).

Conversely, assume that TSu � inv(K1) and let K2 be some constraint. We
show that TS=(K1 ^K2) � inv(K1). Let (s; x) be a state of TS such that K1(s; x).
(1) If there exists a controllable edge ((s; x); ac; (s

0; x0)) in the transition graph of
TS=(K1^K2), then by de�nition 2.5 of restriction, (K1^K2)(s

0; x0), thus K1(s
0; x0).

(2) An uncontrollable edge ((s; x); au; (s
0; x0)) of TS=(K1^K2) is also an uncontrol-

lable edge of TSu, thus K1(s
0; x0). (3) Let '(K1^K2) be the time progress function

of TS=(K1 ^K2). According to the property 2.1, we have

'(K1^K2) = 'c(K1^K2)
^ 'u(K1^K2)

= 'c(K1^K2)
^ 'u:

If ((s; x); t; (s; x+tbs)) is a timed edge of TS=(K1^K2), then it is also a timed edge
of TSu because '(K1^K2) = 'c(K1^K2)

^'u. Thus, K1(s; x+tbs) from TSu � inv(K1).
�

Corollary 2.5 For a timed system TS and constraints K1 and K2, TS
u � inv(K1)

and (TS=K1)=K2 � inv(K2) implies that TS=(K1 ^K2) � inv(K1 ^K2).
That is, if K1 is composable and if K2 is a control invariant of TS=K1 then

(K1 ^K2) is control invariant of TS.

This corollary justi�es the incremental methodology for restricting a timed sys-
tem. To impose a control invariant K1 ^K2 on TS, if K1 is a composable invariant
of TS, the restriction by a control invariant K2 does not destroy the invariance of
K1.

Example 2.5 (Non-idling constraint)
A scheduling algorithm is said to be non-idle if the CPU cannot remain free when
there is a pending request. Let us consider the timed system of n processes as in
example 2.3. As TSu � inv(Kmutex), Kmutex is composable which means that Kmutex

is a proper invariant of any system obtained by restriction of TS1 = TS=Kmutex.
In order to model non-idling, as remarked in example 2.2, all transitions bi must

have the urgency type eager. The non-idling constraint Knon-idle speci�es that an
enabled bi action is �red as soon as the CPU is free.

Knon-idle =
_
Pi

(ei _ xi = Ei) _
^
Pj

(sj _ wj ^ tj = 0)

This means that in a non-idling system, if no process Pi is executing or has just
�nished its execution, then any process Pj is either sleeping or waiting for zero time.

It can be shown that Knon-idle is a proper invariant of TS1. However, it fails to be
composable, in general. For the example described in �g. 3, the constraint Knon-idle

becomes:

8

Knon-idle =

�
(e1 _ e2) _ (x1 = 5 _ x2 = 2)

_ (s1 _ w1 ^ t1 = 0) ^ (s2 _ w2 ^ t2 = 0)

Notice that TS1=Knon-idle = TS1, that is, restricting by Knon-idle does not change
controllable transitions of TS1. It is easy to check that TS1=(Knon-idle ^ Ksched) 6�
inv(Knon-idle): consider for instance the eager transition b1 from the control state
(w1s2) to (e1s2) with guard g0b1 = t1 � 10| {z }

gb1

^ t2 � 3| {z }
K0

sched

. When the system reaches the

state (w1s2) with timer values (t1 = 0; t2 = 4), the action b1 is not enabled although
the CPU is free due to the restriction t2 � 3 imposed by Ksched. Thus, Knon-idle is
violated.

Imposing Ksched has destroyed the property of the system to be non-idle. Thus
the non-idling constraint is not composable. This is a consequence of the observation
that a given scheduling problem with an idling solution may have no non-idling
schedule.

The notion of composability described in this section allows to apply restrictions
sequentially to build a system more and more close to the correct scheduler at each
step.

3 Modeling scheduling algorithms

Timed systems with priorities are timed systems of processes with an associated set
of priority orders on actions. They have been de�ned and studied in [4, 3]. We show
how to model scheduling algorithms by specifying a timed system with priorities
and that applying priorities is equivalent to restricting by a composable invariant.

3.1 Timed systems with priorities

De�nition 3.1 (priority order)
Let �� A� (IN [f1g) � A be a relation. a1 �k a2 is written for (a1; k; a2) 2�.
The relation � is a priority order if 8k 2 IR+ [f1g,

� �k is a partial order;

� a1 �k a2) 8k0 < k : a1 �k0 a2;

� a1 �k a2 ^ a2 �l a3) a1 �k+l a3.

De�nition 3.2 (timed system with priorities)
A timed system with priorities (TS; pr) is the timed system of processes TS equipped
with a priority rule, i.e., a �nite set of pairs pr = f(Ci; �i)gi, where �

i is a priority
order, and Ci is a X-constraint that speci�es when the priority order applies, such
that

� Ci ^ Cj 6= false) �i [�j is a priority order;

� No uncontrollable action is dominated in �i;

� (Ci; �i) 2 pr and (a; k; b) 2�i imply that transitions labeled by a do not
reset any timer occurring in Ci.

For each state s 2 S, let f(s; ai; si)gi2I be the set of the transitions departing
from s, and h(s; ai; si) = (s; ai; gi; �i; ri; si). The timed system with priorities

9

(TS; pr) represents a timed system TS0 obtained from TS by replacing the guards
gj of TS by g0j de�ned as follows:

g0j = gj ^
^

(C;�)2pr

�
:C _

^
9i2I:

aj�kai

:�skgi
�

This formula says that an action aj is allowed if there is no transition ai leaving s
that has priority over aj , and that will become enabled within a delay of k.

Example 3.1 (edf policy)
Consider the timed system TS1 of n non-preemptible periodic processes, on which
Kmutex has already been applied, as in example 2.3.

We show how the basic earliest deadline �rst (edf, [7]) mechanism can be speci�ed
by using a priority rule. A scheduler follows an edf policy if the CPU is granted to
the waiting process that is closest to its relative deadline.

The edf policy is partially speci�ed as follows:

pr1edf = f(Di � ti < Dj � tj ; fbj �0 big)gi 6=j

i.e., whenever there are two processes Pi and Pj waiting for the CPU, the action bi
has immediate priority over the action bj if Pi is closer to its relative deadline than
Pj (namely, Di � ti < Dj � tj).

It is easy to check that pr satis�es the requirements of de�nition 3.2. In partic-
ular, note that the constraints Di� ti < Dj � tj de�ne a partial order on the set of
bi actions. The complete speci�cation of the edf policy is given in example 3.3.

3.2 Priorities as restriction

We show that applying a priority rule amounts to restricting by a particular con-
straint. To obtain this result, we construct from (TS; pr) a timed system TS0 that
is strongly equivalent to TS, and a constraint Kpr such that (TS; pr) is strongly
equivalent to TS0=Kpr. Strong equivalence means that for any state of TS there
exists a state of TS0 such that the transition graphs are strongly bisimilar from
these states, and conversely. The construction has only a theoretical interest and is
used to show that Kpr is a composable invariant.

Let (TS; pr) be a timed system with priorities. In order to interpret priorities
on TS as a constraint, we have to identify the states reached right after �ring a
restricted transition.

s

a1 a2

a4a3

s; a1 s; a2

a1
z1 := 0

a2
z2 := 0

a3

a3
a4 a4

�!

Fig. 5: The splitting procedure.

For this we transform TS = (S; A; T; X;
b; h) into a strongly equivalent timed sys-
tem TS0 = (S0; A; T0; X; b0; h0) with S0 �
S [(S � A), by iterative application of a
state splitting procedure which creates for
each transition a unique target control state.

For each state s 2 S with an incident
transition of the form t = (ss; aj ; s) where
ss 2 S0 and aj 2 A, the splitting procedure
removes t and creates a new transition t0 = (ss; aj ; (s; aj)). t

0 is labeled as t with
in addition a reset of a new timer zj . Notice that in TS0 the set of states reached
right after the execution of aj is characterized by ((s; aj) ^ zj = 0). For all states
s 2 S0, we take b0s[zj] = 1.

10

Property 3.1 Let (TS; pr) be a timed system with priorities, and TS0 be the result
of the splitting procedure on TS. The constraint

Kpr =
^
s2S0

^
(C;�)2pr

^
i;j2I

aj�kai

�
sj ^ zj = 0) (:�skgi _ :C)

�

is a composable invariant of TS0, and (TS0; pr) = TS0=Kpr, where for a given s,
f(s; ai; gi; �i; ri; si)gi2I is the set of transitions departing from s.

Proof. Notice that Kpr contains all the states but the ones that would be reached
by �ring a transition violating the priority rule.

(TS0; pr) = TS0=Kpr is obtained immediately by comparing syntactically the
result of restriction by Kpr with the application of the priority rule pr.

To prove composability, we show that TS0u � inv(Kpr). Let (s; x) be a state
of TS0u such that Kpr(s; x). (2) If there exists an uncontrollable edge ((s; x); au;
(s0; x0)) in TS0u, then Kpr cannot contain a constraint of the form s0 ^ z = 0)

:C _:�s
00

k g, since au is the only transition leading to s0 in TS0u. Thus, Kpr(s
0; x0).

(3) If time can progress by t > 0 from (s; x) in TS0u, then Kpr(s; x+ tbs) obviously
holds. �

Corollary 3.2 Let (TS; pr) be a timed system with priorities, K be a control invari-
ant of (TS; pr), ((TS; pr)=K)0 be the result of the splitting procedure on (TS; pr)=K,
and Kpr the constraint associated to pr. Then ((TS; pr)=K)0 � inv(Kpr).

These results say that applying a priority rule can be seen as a restriction of
a strongly equivalent timed system by a control invariant. Furthermore, whenever
some other control invariant K is applied to (TS; pr), then (TS; pr)=K still satis�es
the priority rule pr.

In some cases, the property 3.1 holds without applying the splitting procedure,
as shown in the following examples.

3.3 Basic scheduling algorithms

We model scheduling policies by using priorities and constraints. We consider the
�rst in �rst out policy, the earliest deadline �rst policy, and the �xed priority
policy with preemption. The system to schedule is the timed system of n processes
fP1; : : : ; Png as in the previous examples, where Kmutex has already been applied.

Example 3.2 (�fo policy)
A scheduler follows a �rst in �rst out policy (�fo) if the CPU is granted to the
process that has been waiting for the longest time. For non-preemptible processes,
�fo is speci�ed by using priorities as follows:

pr�fo = f(tj < ti; fbj �0 big)gi6=j

This means that whenever two processes Pi and Pj are both waiting for the CPU,
bi has priority over bj if process Pi has been waiting for longer time than process
Pj , i.e. tj < ti.

The following property shows that the constraint

K�fo =
^
i6=j

�
wi ^ ej ^ xj = 0) ti � tj

�

associated with pr�fo is also a composable control invariant of TS.

11

Property 3.3 (TS; pr�fo) = TS=K�fo, and K�fo is a composable control invariant
for TS.

Proof. As TS is already restricted by Kmutex, among the transitions that reach a
state, there is at most one transition dominated in pr, thus its guard in TS=Kpr is
the same as the corresponding guard in (TS; pr).

Then, we show that TSu � inv(K�fo): assume K�fo(s; x) for some state (s; x) of
TSu. (2) By taking an uncontrollable transition from (s; x) this leads to (s0; x0). If
it is an action ai then (s0; x0) satis�es wi ^ ti = 0. If there exists j such that (s; x)
satis�es ej ^xj = 0 then (s0; x0) satis�es ti � tj since tj = 0. Hence, K�fo(s

0; x0). If
it is an action fi then K�fo(s

0; x0) obviously holds. (3) If time can elapse by t > 0
from (s; x) then K�fo(s; x+ tbs). �

Example 3.3 (edf policy)
We showed in example 3.1 how to model partially the edf policy on TS as a priority
rule, pr1edf. But this speci�cation has to be completed since in case a process Pi
arrives (transition ai) exactly when the decision to allot the CPU to another process
is made, this might be wrong depending on whether Pi was taken into account or
not. This confusion situation can be prevented by a priority rule ensuring that
the set of waiting processes is up to date before any decision is made. Therefore,
processes arrival actions ai are given priority over bj actions:

predf = pr1edf [f(ti = Ti; fbj �0 aig)gi6=j

Let Kedf be the constraint associated with predf:

Kedf =
V
i6=j wi ^ ej ^ xj = 0) Dj � tj � Di � ti

^ si ^ ej ^ xj = 0) ti 6= Ti

Property 3.4 (TS; predf) = TS=Kedf, and Kedf is a composable control invariant.

The proof is slightly more complex but similar to the previous one.

Preemptive �xed-priority scheduling

Preemptive �xed-priority scheduling assigns the CPU according to some �xed pri-
ority order between the processes to be scheduled. If the CPU is free, the highest
priority process among the waiting processes is scheduled. An arriving process can
preempt a running process of lower priority.

s

e

w

p

au; (t = T)�

t := 0

bc; (t � D � E)�

x := 0

fu; (x = E)� prc; (x < E)Æ

xpr := 0

rsc; (t� x � D � E)�

Fig. 7: A preemptible process.

Fig. 7 shows the model of a pre-
emptible process. It has an additional
control state p (preempted), and two
more transitions: pr (preempt) and rs
(resume). The timer x is stopped in
control state p, i.e. bp[x] = 0. Every-
where else, all timers progress. The
timer xpr measures the time elapsed
since the process has been preempted.

Consider system of n processes P1;
: : : ; Pn as shown in �g. 7 with the
given �xed priorities �1; : : : ; �n, where �i < �j means that Pj has priority over
Pi. As before, mutual exclusion is achieved by application of Kmutex. We construct
the scheduled system of these processes according to the preemptive policy with the
priorities �1; : : : ; �n as follows.

12

Process priorities. Priorities between the processes are speci�ed by the priority
rule pr� on the CPU allocating actions b and rs:

pr� = f(true; fbi �0 bj ; bi �0 rsj ; rsi �0 bj ; rsi �0 rsjg);
(tj = Tj ; fbi �0 aj ; rsi � ajg)g�i<�j

The �rst line says that the CPU is granted | by an action bj or rsj | to a process
Pj that has highest priority among the waiting processes. Here, the constraint that
speci�es when the priority order applies is true, since the priorities are �xed and do
not depend on timer valuations. The second line guarantees that the set of waiting
processes is up to date before a new process is scheduled.

It is easy to show that pr� satis�es the de�nition of a priority rule.

Property 3.5 Let Kpr� be the constraint associated to pr�. Then, (TS; pr�) =
TS=Kpr� , and Kpr� is a composable control invariant of TS.

This property can be proven by using the same kind of arguments as for the �fo

example.
pr� only speci�es the CPU allocation policy, but not the mechanism preempting

a running process, which will be imposed by a further constraint Kpmtn.

Preemption. Preemption is enforced by the constraint

Kpmtn =
^
i

�
pi ^ xpri = 0) 9j : �j > �i ^ tj = 0

�

It means that a process Pi must not take the pri action unless there is a higher
priority process Pj that has just arrived. Notice that for given process priorities
�1; : : : ; �n, the term 9j : �j > �i ^ tj = 0 is a X-constraint.

Applying Kpmtn restricts the guard of pri actions to

gpri = xi < Ei ^
_

9j : �j>�i

tj = 0

In other words, a running process is preempted as soon as a process of higher priority
arrives. Immediately after that, since the ai actions are eager, the CPU is assigned
to a waiting process according to pr.

Kpmtn is a control invariant for TS, thus from corollary 2.5, Kpmtn ^K� is also a
control invariant of TS. But Kpmtn is not composable, and neither is Kpmtn ^K�.

Example 3.4 (rms with preemption)
The algorithm of preemptive rate-monotonic scheduling (rms, [7]) assigns to each
process a �xed priority such that processes with shorter period have higher priority,
i.e., Ti > Tj) �i < �j .

The invariant K� can be obtained from pr� as before. As remarked above,
Kpmtn^K� is not composable. However, the rms policy makes the scheduled system
(TS; pr�)=Kpmtn nearly deterministic since � de�nes a total order. Therefore, there
is no need to further restrict the system | it is either schedulable or not.

In the same way, the deadline monotonic policy [2] is modeled by specifying the
�xed process priorities as Di > Dj) �i < �j .

4 Conclusion

This work aims at bridging the gap between scheduling theory and timed systems
speci�cation and analysis. From the general idea that a scheduler is a controller

13

of the scheduled processes, we elaborate a methodology for the construction of a
scheduled system. The methodology is illustrated on periodic processes but it can
be applied to arbitrary systems of structurally timelock-free processes.

A contribution of this work is the decomposition of scheduling requirements into
classes of requirements that can be expressed as safety constraints. We believe that
the decomposition allows better understanding of scheduling problems and clari-
�cation of the di�erences between the two approaches. Scheduling theory studies
suÆcient conditions guaranteeing Ksched for particular scheduling algorithms char-
acterized by some Kalgo. On the contrary, timed systems speci�cation and analysis
have focused so far on the extraction of behaviors satisfying Ksched from a global
model.

This work relates controller synthesis by means of the notion of control invariant,
to a methodology for constructing a scheduled system satisfying given requirements.
The existence of composable control invariants allows the automatic application of
the corresponding synthesis steps. Not surprisingly, �nding control invariants for
schedulability is the hard problem that deserves further investigation. Possible
directions are the development of speci�c synthesis algorithms or the use of con-
structive correctness techniques as in [3].

This work is developed in the framework of a project on real-time systems mod-
eling and validation. We have applied the methodology to the description of the
ceiling protocol [12] and are currently developing tools supporting the methodology.

References

[1] K. Altisen, G. G�o�ler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A framework
for scheduler synthesis. In IEEE Computer Society, editor, RTSS 1999 proceedings,
pages 154{163, 1999.

[2] N.C. Audsley, A. Burns, and M.F. Richardson. Hard real-time scheduling: the dead-
line monotonic approach. In Workshop on real-time operating systems and software,
1991.

[3] S. Bornot, G. G�o�ler, and J. Sifakis. On the construction of live timed systems. In
TACAS 2000 proceedings, volume 1785 of LNCS. Springer-Verlag, 2000.

[4] S. Bornot and J. Sifakis. On the composition of hybrid systems. In International

NATO School on \Veri�cation of Digital and Hybrid Systems", LNCS. Springer Ver-
lag, June 1997.

[5] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: A class of decid-
able hybrid systems. Information and Computation, 1992. LNCS 736, Springer-Verlag.

[6] H.-H. Kwak, I. Lee, A. Philippou, J.-Y. Choi, and O. Sokolsky. Symbolic schedula-
bility analysis of real-time systems. In IEEE Computer Society, editor, RTSS 1999

proceedings, pages 409{418, 1998.

[7] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1), 1973.

[8] Z. Liu and M. Joseph. Speci�cation and veri�cation of fault-tolerance, timing, and
scheduling. ACM Transactions on Programming Languages and Systems, 21(1):46{89,
January 1999.

[9] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In E.W. Mayr and C. Puech, editors, proceedings of STACS'95, pages 229{
242. LNCS 900, Springer Verlag, 1995.

[10] P. Niebert and S. Yovine. Computing optimal operation schemes for chemical plants
in multi-batch mode. In Springer Verlag, editor, Proceedings of Hybrid Systems,

Computation and Control, volume 1790 of LNCS, March 2000.

[11] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
systems. Journal of Control and Optimization, 25(1):206{230, 1987.

14

[12] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transactions on Computers, 1990.

[13] S. Vestal. Modeling and veri�cation of real-time software using extended linear hybrid
automata. In Fifth NASA Langley Formal Methods Workshop, 2000.

15

